
Blockchain

Developer

Table of Contents
1 Blockchain developer ... 4

2 Applications for Blockchain developers ... 6

2.1 Decentralized Finance or Defi .. 6

2.2 NFT.. 6

2.3 Gaming ... 6

2.4 DAO .. 6

3 Video content ... 6

4 Solidity .. 11

4.1 Public, external, internal, private ... 12

4.2 Pure, view, payable .. 13

4.3 State variables .. 13

4.4 Storage, memory .. 14

4.5 Modifiers (e.g. Ownable) .. 15

4.6 Self distruct... 16

4.7 Debugging... 16

4.8 Require, assert.. 17

4.9 Sending and receiving Ethers ... 18

4.9.1 How to receive Ether: receive and fallback.. 18

4.9.2 Which method should you use? ... 18

4.10 Fallback function .. 19

4.11 Inheritance ... 20

4.11.1 Single Inheritance ... 20

4.11.2 Multiple Inheritance ... 21

5 Solidity Security .. 22

5.1 Historical re-entrancy hacks ... 25

5.1.1 Uniswap april 2020 ... 26

5.1.2 Defi Pie Hack on Binance Smart Chain ... 28

5.2 Popsicle Finance bug .. 33

6 Openzeppelin ... 34

7 Metamask ... 34

7.1 MetaMask: a different model of account security .. 35

7.1.1 Intro to Secret Recovery Phrases ... 35

7.1.2 There are a number of important features to note here: ... 35

7.1.3 MetaMask Secret Recovery Phrase: DOs and DON'Ts ... 36

8 Remix .. 36

9 Blockchains and tokens .. 36

9.1 Tokens .. 37

9.1.1 ERC-20 token standards ... 37

9.1.2 ERC-721: Non- fungible tokens .. 38

9.1.3 ERC-1155: Multi-token Standard ... 38

9.1.4 ERC-777 .. 39

9.2 How does the interface of ERC-20, ERC-721, and ERC-1155 look like ? .. 40

9.2.1 ERC-20 .. 40

9.2.2 ERC-721 .. 42

9.2.3 ERC-1155 .. 43

10 Frontend interfaces .. 46

10.1 Creating a React project and directory structure .. 48

10.2 React with Vite ... 51

10.3 Component Directory ... 52

10.4 Unit Tests .. 52

10.5 Index Page .. 52

10.6 Ejecting ... 54

10.7 Building, debugging, running the project ... 55

10.8 Connecting Metamask Wallet .. 55

10.9 Web3.js ... 61

10.9.1 Building a transaction ... 62

10.9.2 Deploying Smart Contracts... 65

10.9.3 Calling Smart Contract Functions with Web3.js ... 71

10.9.4 Smart Contract Events with Web3.js ... 73

10.9.5 Inspecting Blocks with Web3.js .. 76

10.9.6 Web3.js Utilities ... 78

10.10 ether.js.. 79

11 Smart contracts development tools ... 80

11.1 Web3 .. 80

11.2 Brownie .. 82

11.2.1 Deploy scripts ... 83

11.2.2 Test python scripts ... 86

11.2.3 Networks .. 87

11.2.4 External networks .. 88

11.2.5 Brownie console ... 89

11.2.6 Brownie-config.yaml .. 89

11.2.7 Environment variables ... 90

11.3 Hardhat ... 90

11.4 Truffle ... 94

12 Calls and transactions... 97

12.1 Call .. 97

12.2 Transaction ... 98

12.3 Recommendation to Call first, then sendTransaction ... 98

13 Brownie mixes and Chainlink mix .. 98

14 Github ... 98

15 An NFT project .. 101

15.1 Other details about NFT ... 103

15.2 Code comments ... 108

15.3 More on ERC721 standard ... 109

15.3.1 No ability to get token ids .. 109

15.3.2 Inefficient transfer capability ... 109

15.3.3 Inefficient design in general ... 109

15.3.4 What will happen if these problems are not addressed .. 109

15.3.5 Solutions ... 110

16 A DAO project ... 110

16.1 Solidity token contract ... 111

16.2 Governor Contract.. 111

16.3 Deploy and run ... 113

16.4 Output and debugging ... 116

16.5 Testing .. 118

16.6 Debugging... 119

17 A Defi staking project ... 125

17.1 Uniswap version 1 .. 125

17.1.1 Order Books .. 125

17.1.2 Automated Market Makers .. 127

17.1.3 Being a liquidity provider ... 128

17.1.4 Impermanent loss... 129

17.2 A staking Dapp .. 130

17.3 Dapp Token .. 131

17.4 Token farm ... 131

18 Tools ... 134

18.1 New developers start here ... 134

18.1.1 Developing Smart Contracts... 135

18.1.2 Other tools ... 136

18.1.3 Test Blockchain Networks .. 136

18.1.4 Communicating with Ethereum ... 137

18.1.5 Infrastructure ... 141

18.1.6 Testing Tools ... 142

18.1.7 Security Tools ... 143

18.1.8 Monitoring .. 143

18.1.9 Other Miscellaneous Tools ... 144

18.1.10 Smart Contract Standards & Libraries .. 145

18.1.11 Developer Guides for 2nd Layer Infrastructure ... 146

1 Blockchain developer
To become a blockchain developer, you shouldn’t only learn programming a few languages and frameworks,

but also how things work ‘under the hood’. It’s a long journey if you really want to learn all the details. Many

tools and technologies can be found here:

https://github.com/ConsenSys/ethereum-developer-tools-list

As for ‘legacy’ web 2.0 developers, usually there is a distinction between the following:

- frontend developers who develop the client/server side web interface or the so called UI, they use

programming languages like HTML, CSS, JavaScript, React, Angular ...

- backend developers who write scripts to interact with the databases to retrieve/push data, using

programming languages like Solidity (for blockchains smart contracts), Python, C++, Rust, Go, Php,

C#, Javascript, Perl ...

‘Full stack’ developers are able to write everything on their own, of course everyone claims to be an

experienced full stack developer because companies always look for them to save one more person and its

gross salary, but REAL experienced full stack developers are rare. They are two DIFFERENT career paths each

of them probably requiring YEARS of experience. As usual, companies ask for more and more tech knowledge,

without understanding that it’s simply impossible to know a variety of stuff that spans multiple tech areas,

where you need YEARS to become an expert. Luckily there are no barriers for tech, you don’t need a

computer science degree to start programming, leaning AI, working on blockchain and developing a smart

contract, becoming a network engineer or a security engineer, a Cybersecurity expert or an IOT expert. Also

do not believe to all those video ‘clone the internet in 2 minutes’, ‘reinvent Ethereum in 10 seconds’, ‘create

an NFT marketplace in 30 minutes’, usually they are just titles to have more people watching the videos and

increase their gains. At the same time, don’t feel stupid if you think you can’t learn and do everything in 10

minutes, and as the time passes by you feel like the Iceberg is quite big below the water’s surface: real tech

professionals already know it’s BULLSHIT.

The effort and work in the last years around the blockchain space has been terrific, so many tools are out

there to make your life easier and develop better and faster. Security is still a concern, since many hacks still

happen and will continue to happen. Even stupid ones, like someone modifying the official library for NFT

provided by OpenZeppelin, so that the call to transfer the owner of an NFT can be performed by anyone, or

by other people different from the owner (like for example the contract’s issuer). This will continue to happen

until more secure standards will be in place.

For example, as far as I know only the bytecode is stored in the blockchain, not the source code that

generated it. There should be a way to reverse the process, so that if you wish, you can check what the code

in the blockchain really does, and what is the source code that has generated it. I was shocked in 2002 when

I discovered that someone could reverse engineer a Java bytecode (that machine independent middle

‘stratum’), thus providing back the source code, even though Java claimed it was virtually impossible. Well,

it looks like it’s also possible with Solidity bytecode, even though it requires time.

Programming frontend and backend interfaces is important, but the idea behind it is even more. Inventing

new protocols and services is what can make the difference in the crypto world with thousands of tokens

that are often a copy and paste of free open source code on Github. Who can resist, to the power of having

a token and the power and capability of generating or burning tokens, thus deciding the “tokeconomy” ?

Everybody wants to be the BCE or FED president right ? The dream is coming true, for all of you. But if your

project doesn’t solve any problem, and is just a copy and paste of another one, you’re gonna be like a copy

of the ‘Monna Lisa’, and thus worthless. This is why there can’t be another Bitcoin, the first one is the only

one. But there can be other Ethereum, trying to solve Ethereum’s problems. But if you’ll ever become an

‘entrepreneur’ in the blockchain world, remember that the hiring process is fundamental, especially if you’re

dealing with Defi and real money. Don’t let cheap and desperate people do the job, nor other people you

don’t know nor trust, or other airplanes are gonna crash just because of a few more bucks that managers

need to earn to lower down costs and meet their budget goals.

2 Applications for Blockchain developers
Since Ethereum became a live network in 2015, applications exploded especially in 2019. New stuff is coming

and other will be invented and come into life. Blockchain size increased a lot, with the number of transactions

and their associated costs, due to the network becoming overwhelmed. This opened space for other ‘L1’

blockchains like Solana, Avalanche, Cardano. Other blockchains are developing stuff on new, and secure data

or ‘proof of computations’ on Ethereum, which in 2022 should also migrate to PoS, with the Beacon chain

being already active. We can presently distinguish a few areas:

2.1 Decentralized Finance or Defi
The most simple example is Uniswap, a quite simple protocol to swap different tokens. Many other successful

protocols came after this, like SushiSwap, Aave (borrow and lend cryptos), Stablecoins (Terra-Luna is the

most successful one), and many other will come. It’s an area of great research and work.

2.2 NFT
‘Non Fungible Tokens’, standard being ERC-721. They are created once, ownership can change and be sold

between people. Storing things on chain is expensive, thus only ‘metadata’ is stored on chain, with details

and references on where the original content associated to the NFT can be found on the external world.

Usually (but not always) IPFS is used for this.

2.3 Gaming
Most gaming applications related to blockchains are NFT related: you create ‘tokens’ that represent specific

awards, object or trophies in a game, and save such achievements in the blockchain. That ‘stuff’ is associated

to the account of the player.

2.4 DAO
Distributed Autonomous Organization: people taking decisions because they hold ‘voting tokens’, that allow

them to vote to take decisions and potentially change the rules of the organization. A CDA with written and

pre-defined rules, that can’t be changed unless an agreed amount of voters want to. Again an area of BIG

research and interest.

https://www.youtube.com/watch?v=Lltt6j6Hmww

3 Video content
Patrick Collins:

https://www.linkedin.com/in/patrickalphac/

https://github.com/PatrickAlphaC/

has produced this 16 hours long video, with a lot of Python content. You don’t need to copy and paste

everything from the video, even though you could learn more in this way, at least in the beginning. Most if

not all the source code is available on github and thus you can locally clone it with one single command.

In general FreeCodeCamp contains a lot of free resources about programming languages, and they are

averagely speaking FREE and very well done. Of course, just watching them is not enough. 16 hours is not

enough to become a ‘from zero to hero’ blockchain developer. It’s a hard path understanding all the details,

but you need to start somewhere.

https://www.youtube.com/watch?v=M576WGiDBdQ&t=12013s

00:00:00 - Introduction

00:00:51 - Author

00:02:04 - prerequisites

00:03:00 - Resources

00:03:57 - learn at your own Pace

00:05:00 - Community

00:05:58 - Blockchain

00:06:25 - Bitcoin

00:07:27 - Ethereum

00:08:14 - Smart Contracts

00:09:07 - Bitcoin vs Ethereum

00:09:43 - Oracle problem & Solution

00:10:28 - Hybrid Smart Contracts

00:11:01 - Chainlink

00:12:47 - Importance of Ethereum

00:13:33 - Chainlink features

00:13:50 - summary

00:15:04 - Features & Advantages of Smart contracts and Blockchain

00:15:15 - Decentralized

00:16:55 - Transparency & Flexibility

00:17:35 - Speed & Efficiency

00:18:11 - Security & Immutability

00:19:34 - Removal of Counterparty risks

00:21:13 - Trust Minimized Agreements

00:23:21 - Summary

00:24:46 - DAOs

00:25:15 - Ethereum Transaction On a Live Blockchain

00:25:57 - Wallet Creation

00:29:30 - Etherscan

00:30:03 - Multiple Accounts

00:30:28 - Mnemonic , Public & Private keys

00:31:34 - Mnemonic vs Private vs Public keys

00:32:02 - Mainnet & Testnets

00:33:39 - Initiating our first Transaction

00:35:55 - Transaction details

00:36:50 - Gas fees, Transaction fees, Gas limit, Gas price

00:39:36 - Gas vs Gas price vs Gas Limit vs Transaction fee

00:40:40 - Gas estimator

00:43:46 - How Blockchain works/whats going on Inside the Blockchain

00:44:26 - Hash or Hashing or SHA256

00:46:35 - Block

00:49:37 - Blockchain

00:53:18 - Decentralized/Distributed Blockchain

00:57:19 - Tokens/Transaction History

00:59:55 - Recap/summary

01:01:34 - Signing and Verifying a Transaction

01:01:45 - Public & Private Keys

01:03:29 - Signatures

01:05:05 - Transactions

01:07:39 - Recap/summary

01:09:00 - Concepts are same

01:10:03 - Nodes

01:10:40 - Anyone can Become a Node

01:11:02 - Centralized entity vs Decentralized Blockchain

01:11:55 - Transactions are Listed

01:12:27 - Consensus ,Proof of Work ,Proof of Stake

01:12:35 - Consensus

01:13:21 - proof of work/Sybil resistance mechanism

01:14:56 - Blocktime

01:15:32 - Chain selection rule

01:15:50 - Nakamoto consensus

01:16:15 - Block Confirmations

01:17:00 - Block rewards & transaction fees

01:19:34 - Sybil attack

01:19:52 - 51% attack

01:21:41 - Drawbacks of pow

01:21:53 - proof of stake/sybil resistance mechanism

01:23:14 - Validators

01:24:27 - pros & cons of pos

01:25:27 - Scalability problem & Sharding solution

01:26:40 - Layer 1 & Layer 2

01:27:22 - Rollups

01:28:15 - Recap/Summary

01:29:28 - Solidity

01:30:47 - Lesson 1 - Remix IDE & its features

01:33:32 - Solidity version

01:35:29 - Defining a Contract

01:36:08 - Variable types & Declaration

01:38:45 - Solidity Documentation

01:39:01 - Initializing

01:39:55 - Functions or methods

01:40:54 - Deploying a Contract

01:42:05 - Public , Internal , private , External Visibility

01:44:54 - Modifying a Variable

01:45:49 - Scope

01:47:10 - View functions

01:48:51 - Pure function

01:50:57 - Structs

01:52:42 - Intro to storage

01:53:22 - Arrays

01:54:27 - Dynamic array

01:54:41 - Fixed array

01:54:54 - Adding to an array

01:56:12 - Compiler Errors

01:57:27 - Memory Keyword

01:57:48 - Storage keyword

01:59:44 - Mappings Datastructure

02:01:53 - SPDX license

02:02:37 - Deploying to a live network

02:06:16 - Interacting with deployed contracts

02:07:35 - EVM

02:08:31 - Recap/summary

02:09:20 - Lesson 2 - StorageFactory

02:09:44 - Factory pattern

02:10:21 - New contract StorageFactory

02:11:36 - Import 1 contract into another

02:13:01 - Deploy a Contract from a Contract

02:14:43 - Track simple storage contracts

02:16:34 - Interacting with Contract deployed Contract

02:16:43 - Calling Store & Retrieve Functions from SF

02:17:43 - Address & ABI

02:19:15 - Compiling & storing in SS through SF

02:20:00 - Adding Retrieve Function

02:21:50 - Compiling

02:22:27 - Making the Code lil bit Simpler

02:23:32 - Additional Note

02:23:58 - Inheritance

02:25:53 - Recap

02:26:23 - Lesson 3 - Fund me

02:27:12 - purpose of this contract

02:27:21 - Payable function , wei , gwei & ether

02:28:30 - Mapping , msg. sender , msg.value

02:30:23 - Funding

02:31:48 - ETH -> USD /conversion

02:32:38 - Deterministic problem & Oracle solution

02:34:15 - Centralized Oracles

02:34:52 - Decentralized Oracle Networks

02:35:23 - Chainlink Datafeeds

02:36:50 - Chainlink Code documentation on ETH/USD

02:40:17 - Importing Datafeed code from Chainlink NPM package

02:41:31 - Interfaces

02:42:55 - ABI/Application Binary Interface

02:43:43 - Interacting with an Interface Contract

02:45:06 - Finding the Pricefeed Address

02:46:13 - Deploying

02:47:58 - Getprice function

02:48:29 - Tuples

02:49:57 - Typecasting

02:50:30 - deploying

02:51:46 - Clearing unused Tuple Variables & Deploying

02:52:53 - Making the contract look Clean

02:53:50 - Wei/Gwei Standard (Matching Units)

02:54:45 - getting the price using Get conversion rate

02:57:32 - deploying

02:58:29 - Safemath & Integer Overflow

03:02:35 - Libraries

03:03:30 - Setting Threshold

03:04:26 - Require statement

03:05:18 - Revert

03:06:05 - Deplying & Transaction

03:08:26 - Withdraw Function

03:09:09 - Transfer , Balance , This

03:10:21 - Deploying

03:11:08 - Owner , Constructor Function

03:13:17 - Deploying

03:15:51 - Modifiers

03:17:42 - Deploying

03:18:05 - Resetting the Funders Balances to Zero

03:19:37 - For loop

03:21:39 - Summary

03:22:27 - Deploying & Transaction

03:25:00 - Forcing a Trasacttion

03:26:35 - Python

03:26:35 - Lesson 4 - Web3. py SimpleStorage

03:27:06 - Limitations of Remix

03:28:10 - VScode , Python , Solidity Setup

03:30:31 - VScode features

03:30:58 - Testing python install & Troubleshooting

03:32:32 - Creating a new folder

03:32:59 - SimpleStorage. sol

03:34:40 - Remember to save

03:35:26 - VScode Solidity Settings

03:36:57 - Python Formatter & settings

03:37:56 - Author's recommended Settings

03:38:09 - working with python

03:38:51 - Reading our solidity file in python

03:40:19 - Running in Python

03:40:40 - Keyboard Shortcuts

03:40:56 - Py-Solc-x

03:41:43 - Importing solcx

03:42:01 - Compiled_sol

03:42:51 - Bracket pair colorized

03:43:56 - pysolcx documentation

03:44:25 - Printing Compiled_sol

03:44:47 - Comparison wih remix (Lowlevelstuffs , ABI)

03:46:29 - Saving Compiled Code/writing

03:46:56 - import Json

03:47:32 - Json formatting/settings

03:48:28 - Deploying in Python (Bytecode , ABI)

03:50:54 - Which Blockchain/Where to deploy

03:51:25 - Ganache Chain

03:52:27 - Ganache UI

03:53:27 - Introduction to Web3. py

03:53:32 - pip install web3

03:53:40 - import web3

03:53:52 - Http/Rpc provider

03:54:23 - Connecting to Ganache(RPC server,Documentation,Chain ID,address,Privatekey)

03:56:14 - Deploy to Ganache

03:57:03 - Building a Transaction

03:57:22 - Nonce

03:58:14 - Getting Nonce

03:59:00 - Create a Transaction

03:59:42 - Transaction Parameters

04:00:55 - Signing Our Transaction(signed_txn)

04:01:52 - Never Hardcode your Private keys

04:02:09 - Environment Variables

04:02:27 - Setting Environment variables

04:03:00 - Limitations of Exporting Environment Variables

04:03:27 - Private key PSA

04:03:53 - Accessing Environment Variables

04:04:20 - .env file, .gitignore, pip install python-dotenv

04:05:49 - load_dotenv()

04:07:03 - Sending the signed Transaction

04:07:47 - Deployment

04:08:31 - Block confirmation(wait_for_transaction_reciept)

04:09:05 - interact/work with thee contract

04:09:27 - Address & ABI

04:10:28 - Retrieve() , Call & Transact

04:12:38 - Store function

04:13:58 - Creating Transaction(Store_transaction)

04:15:14 - Signing Transaction(signed_store_txn)

04:15:42 - Sending Transaction(send_store_tx,tx_receipt)

04:16:47 - Deployment

04:17:42 - some nice syntax & deployment

04:18:48 - ganache-cli

04:19:10 - install Nodejs

04:19:40 - install yarn

04:20:38 - Run ganache cli , ganache documentation

04:21:44 - update privatekeys,addresses,http provider

04:22:13 - open new terminal & deploy

04:23:00 - deploy to testnet/mainnet

04:23:55 - Infura, Alchemy

04:24:34 - Create project

04:25:05 - update the rinkeby url, Chain id , address & private key

04:26:20 - Deploying

04:27:21 - summary/recap

04:27:40 - Lesson 5 - Brownie Simple Storage

04:27:53 - Brownie Intro & Features

04:28:44 - create new directory

04:29:39 - install Brownie

04:30:41 - 1st brownie simplestorage project

04:31:08 - Brownie Folders

04:32:25 - copying simplestorage.sol

04:32:44 - brownie compile & store

04:33:22 - brownie deploy

04:33:44 - brownie commands

04:34:22 - brownie runscripts/deploy. py & default brownie network

04:35:10 - brownie Advantages over web3. py in deploying

04:35:38 - getting address & private key using Accounts package

04:36:00 - add default ganache account using index

04:36:58 - add accounts using Commandline

04:37:50 - remove accounts & terminal tips

04:38:17 - getting freecodecamp-account

04:39:15 - add accounts using env variables

04:40:01 - create .env file , brownie-config. yaml

04:40:51 - getting . env

04:41:17 - adding wallets in yaml file and updating in account

04:42:47 - importing contract simplestorage

04:43:09 - importing & deploying in brownie vs web3. py

04:44:27 - running

04:44:46 - recreating web3 .py script in brownie

04:46:20 - running

04:46:48 - tests

04:47:43 - test SS

The above index has been copied from the comments to the video. The shortest summary is the following:

⌨️ (00:00:00) Introduction

⌨️ (00:06:33) Lesson 0: Welcome To Blockchain

⌨️ (01:31:00) Lesson 1: Welcome to Remix! Simple Storage

⌨️ (02:09:32) Lesson 2: Storage Factory

⌨️ (02:26:35) Lesson 3: Fund Me

⌨️ (03:26:48) Lesson 4: Web3.py Simple Storage

⌨️ (04:27:55) Lesson 5: Brownie Simple Storage

⌨️ (05:06:34) Lesson 6: Brownie Fund Me

⌨️ (06:11:38) Lesson 7: SmartContract Lottery

⌨️ (08:21:02) Lesson 8: Chainlink Mix

⌨️ (08:23:25) Lesson 9: ERC20s, EIPs, and Token Standards

⌨️ (08:34:53) Lesson 10: Defi & Aave

⌨️ (09:50:20) Lesson 11: NFTs

⌨️ (11:49:15) Lesson 12: Upgrades

⌨️ (12:48:06) Lesson 13: Full Stack Defi

⌨️ (16:14:16) Closing and Summary

Another great source is the following one:

https://www.youtube.com/c/DappUniversity/community

... in this case Javascript, Web3.js and Truffle are used to build the apps (no Python).

For Brownie and Python applied to ‘Curve’ Defi and DAO project, watch the following video series:

https://www.youtube.com/watch?v=nkvIFE2QVp0&list=PLVOHzVzbg7bFUaOGwN0NOgkTItUAVyBBQ&inde

x=1

4 Solidity
The most complete resource for detailed documentation and learning is the official one:

https://docs.soliditylang.org/en/v0.8.12/

... where you can find tons of ‘learn by examples’ too. A simple example smart contract:

contract Example{

 function(uint256) returns (uint256) varName;

 function simpleFunction(uint256 parameter) returns (uint256){

 return parameter;

 }

 function test(){

 varName = simpleFunction;

 }

}

The learning curve if you already know Java, C++ or others (object oriented programming languages), is

absolutely not high. Some important notes about Solidity:

- ‘strong typing’ is everywhere, storing things in the blockchain is expensive, thus all variables must be

type specified (uint8, uint256, uint40, string, address, ...)

- all variables are automatically initialized to 0

- if you create a mapping (or a dictionary, as it is known in Python), all keys exist by definition and the

mapped value is zero. As a consequence, you can efficiently reference a key in a mapping, but you

can’t easily know if a key really exists and was previously inserted or not. If ‘zero’ has a meaning in

your application, and you can’t just check that value is different from zero, you will need to maintain

and update also another data structure.

- you will end up sometimes writing expensive ‘for’ cycles because there is no other way to do things

in a more quick way

- math operations are dangerous, you must take care that overloading does not occur, especially if

you’re dealing with tokens, Ether and money in general. ‘SafeMath’ was a library provided to revert

transaction in case overload occurs, from Solidity 0.8.0 it is already included by default in the code,

and you can exclude it if you want to save some extra gas costs (probably it’s not worth it)

- special keywords are used to revert transactions in case something goes wrong, because in the logic

of the application there can be sequences of operations, contracts calling other contracts, and if

anything goes wrong ALL operations need to be reverted. See NFT chapter for a real life example.

- you can raise events, depending on things that happen

- ???

Unlike Bitcoin, which only permits simple operations that can’t block the system under infinite loops, Solidity

is a more complete language but you can’t know if a smart contracts will finish its execution, and in how

much time. This is why to keep the whole system safe, you have a ‘gas’ and gas cost concepts, and a ‘gas

limit’. In case the execution goes on for too long, the EVM stops it and the transactions gets interrupted.

Coding optimizations must be kept in mind by developers, and all the people working on the project.

Regarding the above sentence on loops and for cycles, keep in mind the following:

“First of all, if you use loops inside read-only functions (most likely "view" functions), which get invoked by a

message call, no gas is consumed and therefore you don't really have to care about the iteration count (note

though that nodes can suspend your request if it takes too long). Keep in mind that this only applies if no

transaction is sent and consequently the Ethereum node only locally executes your request. If a transaction

is sent and this function is invoked (even indirectly through other contracts), you have to think about how to

limit your loop”.

An interesting thesis on the subject:

https://computerscience.unicam.it/marcantoni/tesi/Ethereum%20Smart%20Contracts%20Optimization.pd

f

4.1 Public, external, internal, private
The scope of state variables and functions is controlled by the following possible keywords:

• public - all can access
• external - Cannot be accessed internally, only externally. From internal functions, it must be called with

this-->func_name()
• internal - only this contract and contracts deriving from it can access it
• private - can be accessed only from this contract, contracts inheriting from another one can’t access it

As you can notice private is a subset of internal and external is a subset of public. When you define a
function, you have the following syntax:

function name(type1 var1, ...) public [payable|pure|view] [returns (type var)] { ... }

4.2 Pure, view, payable

• view: the function will NOT alter the contract’s storage

• pure: the function will not even READ the contract’s storage variables (it’s an auxiliary function, for
example sums two values and returns the result)

• payable: the function can send and receive Ethers.

view can be considered as the subset of constant that will read the storage (hence viewing). However the
storage will not be modified. If you use such functions, you’re not gonna pay any gas for it, but the EVM could
stop you if your queries become too long.

contract viewExample {

 string state;

 // other contract functions

 function viewState() public view returns(string) {

 //read the contract storage

 return state;

 }

}

pure can be considered as the subset of constant where the return value will only be determined by it's
parameters (input values). There will be no read or write to storage and only local variable will be used (has
the concept of pure functions in functional programming).

contract pureExample {

 // other contract functions

 function pureComputation(uint para1 , uint para2) public pure returns(uint result) {

 // do whatever with para1 and para2 and assign to result as below

 result = para1 + para2;

 return result;

 }

}

4.3 State variables

https://docs.soliditylang.org/en/develop/units-and-global-variables.html?highlight=msg.value#block-and-

transaction-properties

Follow hereafter the ‘embedded’ state variables that can always be accessed from inside a contract. They

are passed by the system itself, thus they depend on Ethereum and could be different from chain to chain

(for example Avalanche, Binance Chain, Solana, ...).

• blockhash(uint blockNumber) returns (bytes32) : hash of the given block when blocknumber is one of

the 256 most recent blocks; otherwise returns zero

• block.basefee (uint): current block’s base fee (EIP-3198 and EIP-1559)

• block.chainid (uint): current chain id

• block.coinbase (address payable): current block miner’s address

• block.difficulty (uint): current block difficulty

• block.gaslimit (uint): current block gaslimit

• block.number (uint): current block number

• block.timestamp (uint): current block timestamp as seconds since unix epoch

• gasleft() returns (uint256) : remaining gas

• msg.data (bytes calldata): complete calldata

• msg.sender (address): sender of the message (current call)

• msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)

• msg.value (uint): number of wei sent with the message

• tx.gasprice (uint): gas price of the transaction

• tx.origin (address): sender of the transaction (full call chain)

The following parameters are contract related:

• abi.decode(bytes memory encodedData, (...)) returns (...) : ABI-decodes the given data, while the types

are given in parentheses as second argument.

Example: (uint a, uint[2] memory b, bytes memory c) = abi.decode(data, (uint, uint[2], bytes))

• abi.encode(...) returns (bytes memory) : ABI-encodes the given arguments

• abi.encodePacked(...) returns (bytes memory) : Performs packed encoding of the given arguments.

Note that packed encoding can be ambiguous!

• abi.encodeWithSelector(bytes4 selector, ...) returns (bytes memory) : ABI-encodes the given

arguments starting from the second and prepends the given four-byte selector

• abi.encodeWithSignature(string memory signature, ...) returns (bytes memory) : Equivalent

to abi.encodeWithSelector(bytes4(keccak256(bytes(signature))), ...)

• abi.encodeCall(function functionPointer, (...)) returns (bytes memory) : ABI-encodes a call

to functionPointer with the arguments found in the tuple. Performs a full type-check, ensuring the

types match the function signature. Result

equals abi.encodeWithSelector(functionPointer.selector, (...))

4.4 Storage, memory
Storage and Memory keywords in Solidity are analogous to Computer’s hard drive and Computer’s RAM.

Much like RAM, Memory in Solidity is a temporary place to store data whereas Storage holds data between

function calls. The Solidity Smart Contract can use any amount of memory during the execution but once the

execution stops, the Memory is completely wiped off for the next execution. Whereas Storage on the other

hand is persistent, each execution of the Smart contract has access to the data previously stored on the

storage area.

Every transaction on Ethereum Virtual Machine costs us some amount of Gas. The lower the Gas

consumption the better is your Solidity code. The Gas consumption of Memory is not very significant as

compared to the gas consumption of Storage. Therefore, it is always better to use Memory for intermediate

calculations and store the final result in Storage.

• state variables and Local Variables of structs, array are always stored in storage by default.

• function arguments are in memory

• whenever a new instance of an array is created using the keyword ‘memory’, a new copy of that
variable is created. Changing the array value of the new instance does not affect the original array.

4.5 Modifiers (e.g. Ownable)

using SafeMathChainLink for uint256;

Function Modifiers are used to modify the behavior of a function. For example to add a prerequisite to a

function. First we create a modifier with or without parameter.

contract Owner {

 modifier onlyOwner {

 require(msg.sender == owner);

 _;

 }

 modifier costs(uint price) {

 if (msg.value >= price) {

 _;

 }

 }

}

The function body is inserted where the special symbol "_;" appears in the definition of a modifier. So if

condition of modifier is satisfied while calling this function, the function is executed and otherwise, an

exception is thrown. See the example below.

pragma solidity ^0.5.0;

contract Owner {

 address owner;

 constructor() public {

 owner = msg.sender;

 }

 modifier onlyOwner {

 require(msg.sender == owner);

 _;

 }

 modifier costs(uint price) {

 if (msg.value >= price) {

 _;

 }

 }

}

contract Register is Owner {

 mapping (address => bool) registeredAddresses;

 uint price;

 constructor(uint initialPrice) public { price = initialPrice; }

 function register() public payable costs(price) {

 registeredAddresses[msg.sender] = true;

 }

 function changePrice(uint _price) public onlyOwner {

 price = _price;

 }

}

4.6 Self distruct
All you need to do is have the selfdestruct(address payable recipient) function. selfdestruct takes a single
parameter that sends all ETH in the contract to that address. In your case, you can do:

function finalize() public creatorOnly biddingClosedOnly {

 selfdestruct (_creator);

}

From the docs:

Selfdestruct (address payable recipient):

destroy the current contract, sending its funds to the given address.
The reason you can still call the function after the contract has been selfdestructed is because technically the
address is still valid. However, no contract (data) lives there any more. Because of this, you can still send
ETH to the address and you can still send transactions with data to the address, but the EVM will not execute
the function as it would with a non-selfdestructed address.

Edit: You can use the get_code RPC method to verify that the contract was, in fact, destroyed.

Using ethers.js, the following output will be given:

// Deploy contract

ethersProvider.getCode('0xDCcd6331401b62ebcE7F3a22e966b26ACe27559d').then(console.log)

>

0x608060405260043610603f576000357c01000

000900463ffffffff1680634bb278f3146044575b600080fd5b348015604f57600080fd5b5060566058565b00

5b3373ff16ff00a165627a7a7230582077ca7684f4d93293e36

0c5c695d0e416f54dde89713426cc4d6fddb9f9963faa0029

// Self destruct contract

ethersProvider.getCode('0xDCcd6331401b62ebcE7F3a22e966b26ACe27559d').then(console.log)

> 0x

4.7 Debugging
Remix can’t be used by professional developers. Unfortunately, it doesn’t seem there is a classic debugger to

analyze how things go step by step, and variables change after every line of command. Many tasks are written

and deployed using Python and Web3/Brownie, or Javascript and Web3.js and truffle/hardhat. In any case,

there is no simple way to debug a Solidity Smart Contract line by line. The ‘console’ feature is useful as will

be explained when we’ll talk about Brownie.

• Using the Remix editor

• Events

• Block explorer

• The Remix editor

Events are used to inform external users that something happened on the blockchain. Smart contracts

themselves cannot listen to any events.

All information in the blockchain is public and any actions can be found by looking into the transactions close

enough but events are a shortcut to ease the development of outside systems in cooperation with smart

contracts.

Solidity defines events with the event keyword. After events are called, their arguments are placed in the

blockchain. To use events first, you need to declare them in the following way:

event moneySent(address _from, address _to, uint _amount);

The definition of the event contains the name of the event and the parameters you want to save when you

trigger the event.

Then you need to emit your event within the function:

emit moneySent(msg.sender, _to, _amount);

Solidity events are interfaces with Ethereum Virtual Machine logging functionality. You can add an attribute

indexed to up to three parameters. When parameters do not have the indexed attribute, they are ABI-

encoded into the data portion of the log.

• there are two types of Solidity event parameters: indexed and not indexed,

• events are used for return values from the transaction and as a cheap data storage,

• blockchain keeps event parameters in transaction logsEvents can be filtered by name and by contract

address

Some other debugging tools are the following, to be used off-chain for local testing, excluded the last one:

• use Hardhat console.log

• use Tenderly Explorer (you can use testnet verified contracts or even local contracts using their CLI)

or if the contract is on testnet, you can also run it in their simulator.

• start isolating the function calls. And identifying one by one until where the call is reaching and what

state changes are it making, etc

4.8 Require, assert
The convenience functions assert and require can be used to check for conditions and throw an exception if

the condition is not met. The assert function creates an error of type Panic(uint256). The same error is

created by the compiler in certain situations as listed below.

Assert should only be used to test for internal errors, and to check invariants. Properly functioning code

should never create a Panic, not even on invalid external input. If this happens, then there is a bug in your

contract which you should fix. Language analysis tools can evaluate your contract to identify the conditions

and function calls which will cause a Panic.

The require function either creates an error without any data or an error of type Error(string). It should be

used to ensure valid conditions that cannot be detected until execution time. This includes conditions on

inputs or return values from calls to external contracts.

4.9 Sending and receiving Ethers
You can send Ether to other contracts by the ‘built-in’ payable defined functions:

• transfer (2300 gas, throws error)

• send (2300 gas, returns bool)

• call (forward all gas or set gas, returns bool)

Beware that a given approach could change with different Solidity releases. Check out everything always

twice !!

4.9.1 How to receive Ether: receive and fallback
A contract receiving Ether must have at least one of the functions below:

• receive() external payable

• fallback() external payable

receive() is called if msg.data is empty, otherwise fallback() is called.

4.9.2 Which method should you use?

Call in combination with re-entrancy guard is the recommended method to use after December 2019.

Guard against re-entrancy by making all state changes before calling other contracts and using re-entrancy

guard modifier. We’ll see much more on this in chapter 5.

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;

contract ReceiveEther {
/*
 Which function is called, fallback() or receive()?

 send Ether
 |
 msg.data is empty?
 / \
 yes no
 / \
receive() exists? fallback()
 / \
 yes no
 / \
 receive() fallback()
*/

 // Function to receive Ether. msg.data must be empty
 receive() external payable {}

 // Fallback function is called when msg.data is not empty
 fallback() external payable {}

 function getBalance() public view returns (uint) {
 return address(this).balance;
 }
}

contract SendEther {

 function sendViaTransfer(address payable _to) public payable {
 // This function is no longer recommended for sending Ether.
 _to.transfer(msg.value);
 }

 function sendViaSend(address payable _to) public payable {
 // Send returns a boolean value indicating success or failure.
 // This function is not recommended for sending Ether.
 bool sent = _to.send(msg.value);
 require(sent, "Failed to send Ether");
 }

 function sendViaCall(address payable _to) public payable {
 // Call returns a boolean value indicating success or failure.
 // This is the current recommended method to use.
 (bool sent, bytes memory data) = _to.call{value: msg.value}("");
 require(sent, "Failed to send Ether");
 }
}

4.10 Fallback function
Fallback functions in Solidity are executed when a function identifier does not match any of the available

functions in a smart contract or if there was no data supplied at all. They are unnamed, they can’t accept

arguments, they can’t return anything, and there can only ever be one fallback function in a smart contract.

In short, they’re a safety valve of sorts. Fallback functions are executed whenever a particular contract

receives plain Ether without any other data associated with the transaction. This default design choice

makes sense and helps protect users, however, depending on your use case, it may be critical that your smart

contract receive plain Ether via a fallback function. To do so the fallback function must include

the payable modifier:

contract ExampleContract {

 function() payable {

 ...

 }

}

If there is no payable fallback function and the contract receives plain Ether without any other data, the

contract will issue an exception and return the Ether to the sender.

What if a contract is supposed to do something once Ether is sent to it? The fallback function can only rely

on 2300 gas being available. This doesn’t leave much room to perform other operations, particularly

expensive ones like writing to storage, creating contracts, calling external functions, and sending Ether.

• fallback functions are particularly important given the immutability of smart contracts

• fallback functions are triggered when a function identifier does not match the available functions in

a smart contract or if no data is supplied at all

• fallback functions are executed when a contract receives plain Ether without any other data

associated with the transaction

• to receive Ether fallback functions must include the payable modifier

• fallback function can only rely on being able to use 2300 gas which leaves little room to perform

additional operations

• fallback functions should be made simplistic and inexpensive (not too much gas to execute them)

4.11 Inheritance
Inheritance is one of the most important features of the object-oriented programming language. It is a way

of extending the functionality of a program, used to separate the code, reduces the dependency, and

increases the re-usability of the existing code. Solidity supports inheritance between smart contracts, where

multiple contracts can be inherited into a single contract. The contract from which other contracts inherit

features is known as a base contract, while the contract which inherits the features is called a derived

contract. Simply, they are referred to as parent-child contracts. The scope of inheritance in Solidity is limited

to public and internal modifiers only. Some of the key highlights of Solidity are:

• a derived contract can access all non-private members including state variables and internal

methods. But using this is not allowed.

• function overriding is allowed provided function signature remains the same. In case of the

difference of output parameters, the compilation will fail.

• we can call a super contract’s function using a super keyword or using a super contract name.

• in the case of multiple inheritances, function calls using super gives preference to most derived

contracts.

Solidity provides different types of inheritance. Functions that can be overriden are defined as ‘virtual’ on

the parent class. This is thought to provide more secure implementations.

4.11.1 Single Inheritance
In Single or single level inheritance the functions and variables of one base contract are inherited to only one

derived contract.

Example: In the below example, the contract parent is inherited by the contract child, to demonstrate Single

Inheritance.

// Solidity program to
// demonstrate
// Single Inheritance
pragma solidity >=0.4.22 <0.6.0;

// Defining contract
contract parent{
 // Declaring internal
 // state variable
 uint internal sum;

 // Defining external function
 // to set value of internal
 // state variable sum
 function setValue() external {
 uint a = 10;
 uint b = 20;
 sum = a + b;
 }
}

// Defining child contract
contract child is parent{
 // Defining external function
 // to return value of
 // internal state variable sum
 function getValue(
) external view returns(uint) {
 return sum;

 }
}

// Defining calling contract
contract caller {
 // Creating child contract object
 child cc = new child();

 // Defining function to call
 // setValue and getValue functions
 function testInheritance(
) public returns (uint) {
 cc.setValue();
 return cc.getValue();
 }
}

Output :

4.11.2 Multiple Inheritance
In Multiple Inheritance, a single contract can be inherited from many contracts. A parent contract can have

more than one child while a child contract can have more than one parent.

Example: In the below example, contract A is inherited by contract B, contract C is inheriting contract A, and

contract B, thus demonstrating Multiple Inheritance.

Solidity

// Solidity program to

// demonstrate

// Multiple Inheritance

pragma solidity >=0.4.22 <0.6.0;

// Defining contract A

contract A {

 // Declaring internal

 // state variable

 string internal x;

 // Defining external function

 // to set value of

 // internal state variable x

 function setA() external {

 x = "GeeksForGeeks";

 }

}

// Defining contract B

contract B {

 // Declaring internal

 // state variable

 uint internal pow;

 // Defining external function

 // to set value of internal

 // state variable pow

 function setB() external {

 uint a = 2;

 uint b = 20;

 pow = a ** b;

 }

}

// Defining child contract C

// inheriting parent contract

// A and B

contract C is A, B {

 // Defining external function

 // to return state variable x

 function getStr(

) external returns(string memory) {

 return x;

 }

 // Defining external function

 // to return state variable pow

 function getPow(

) external returns(uint) {

 return pow;

 }

}

// Defining calling contract

contract caller {

 // Creating object of contract C

 C contractC = new C();

 // Defining public function to

 // return values from functions

 // getStr and getPow

 function testInheritance(

) public returns(string memory, uint) {

 contractC.setA();

 contractC.setB();

 return (

 contractC.getStr(), contractC.getPow());

 }

}

5 Blockchains and tokens
To develop smart contracts and become a blockchain developer, you will need to interact with blockchains.

You can do it in different ways:

- with remix tool, you can use a ‘local VM’ to compile e smart contract, and be sure that it would be

successfully deployed, but testing it would be more difficult

- you can use install ‘Ganache’ or ‘Ganache-cli’, which creates an Ethereum blockchain with 10

accounts to make all the tests you need to

- you can use external test blockchains (Gorli, Ropsten, Kovan, Rinkeby), interacting with them and

deploying real smart contracts, you will need to send to your wallet a few TEST money before doing

it.

Beware that only the ‘bytecode’ is stored on the blockchain. This is potentially a big security issue, because

if you rely on someone else’s smart contract, you must trust it. You can even know that the source code is

claimed to be somewhere, but how do you know that they didn’t change it before deploying it ? this could

lead to intentional bad code, trapdoors and backdoors, like it happened for an NFT market where the creator

had the power to re-assign the token to himself even after it was sold. The creators of a smart contract can

upload their source code here, and if you use one you should always check that it has been verified and the

read the source code.

https://etherscan.io/verifyContract

Some parts in this chapter have been taken mostly from here:

https://www.leewayhertz.com/erc-20-vs-erc-721-vs-erc-1155/

5.1 Tokens
Ethereum continues to introduce different ERC token standards to make the ecosystem more accessible and

to support various use cases. From ERC-20 to ERC-721 to ERC-1155, the Ethereum community has succeeded

in making this blockchain a mainstream protocol, which can never be obsolete.

Below, we have discussed how Ethereum token standards have evolved so far and what different ERC token

standards are relevant today. Thereby, we will examine the scope of growth and development opportunities

on the Ethereum blockchain for worldwide enterprises and users.

In general these tokens are already defined libraries that can be found on github, have already been audited

and are probably more secure than the same you could write down on your own:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

When a token is created, the total_supply is defined using the contract’s constructor, using a local ‘storage’

variable. Depending on the decisions of the contract’s creators, that are usually public and declared before

going live with the project, the total_supply could be stable and fixed during time, or new tokens could be

‘minted’ and/or old tokens could be ‘burned’. As long as tokens are transferred from the contract address

that created them to other accounts, which happens during contract’s creation or later, a dictionary is stored

on the blockchain saving the associations accounts->balances. Quite simple right ? Statistics are public and

can be found for example here:

https://ethplorer.io/address/0xd533a949740bb3306d119cc777fa900ba034cd52#tab=tab-holders

5.1.1 ERC-20 token standards
ERC-20 was first proposed in 2015, and it was finally integrated into the Ethereum ecosystem two years later

in 2017. ERC-20 introduces the token standard for creating fungible tokens on the Ethereum blockchain.

Simply put, ERC-20 consists of properties that support the development of identical tokens.
For example, an ERC-20 token representing a currency can act like the native currency of Ethereum, Ether.

That means 1 token will always be equal to the value of another token and can be interchangeable for each

other. ERC 20 token set standards for the development of fungible tokens, but what does fungible can

represent virtually? Let’s check them out:

- reputation points of any online platform.

- lottery tickets and schemes.

- financial assets such as shares, dividends, and stocks of a company

- fiat currencies, including USD.

- gold ounce, and much more…

Ethereum requires a robust standard to bring uniformity across the entire operations to support token

development and regulate them on the blockchain network. That’s where ERC-20 comes into the game.

Developers of the decentralized world widely use ERC-20 token standards for different purposes, like

developing interoperable token applications that are compatible with the rest of the products and services

available in the Ethereum ecosystem.

Characteristics of ERC-20 tokens

- ERC 20 tokens are another name for ”fungible tokens”
- fungibility defines the ability of an asset or Token to be exchanged for assets of the same value, say

two 1 dollar notes

- each ERC-20 Token is strictly equivalent to the same value regardless of its feature and structure

- ERC tokens’ most popular application areas are Stablecoins, governance tokens, and ICOs

5.1.2 ERC-721: Non- fungible tokens
To understand the ERC-721 standards, you must first understand NFTs (non-fungible tokens). Check our

detailed insight explaining NFTs and their role in the decentralized world of blockchain.
The founder and CTO of Cryptokitties (the widespread non-fungible tokens), Dieter Shirley, initially proposed

developing a new token type to support NFTs. The proposal for approval later in 2018. It’s specialized in NFTs,

which means a token developed abiding by the rules of ERC-721 can represent the value of any digital asset

that lives on the Ethereum blockchain.

With that, we come to a concluding statement: If ERC-20 are crucial for inventing new cryptocurrencies, ERC-

721 is invaluable for digital assets that represent someone’s ownership of those assets. ERC-721 can

represent the following:

• a unique digital artwork

• tweets and social media posts

• in-game collectibles

• gaming characters

• any cartoon character and millions of other NFTs….

This special type of Token brings amazing possibilities for businesses utilizing NFTs. Likewise, ERC-721 creates

challenges for them, and to address these challenges, ERC-721 standards come into play.

Note that each NFTs has a uint256 variable known as tokenId. Hence, for each EBR-721 contract, the pair

contract address- uint256 tokenId must be unique.

In addition, dApps should also have a ”converter” to regulate the input and output process of NFTs. For

example, the converter considers tokenId as input and outputs non-fungible tokens such as an image of

zombies, kills, gaming collectibles, etc.

Characteristics of ERC-721 tokens

• ERC-721 tokens are the standards for non-fungible tokens (NFTs)
• these tokens can’t be exchanged for anything of equal value since they are one-of-a-kind

• each ERC-721 represents the value of the respective NFT, which may differ

• the most popular application areas of ERC-721 tokens are NFTs in gaming

See also the chapter about NFT for more details on them. ERC-721 is not really a well thought standard, and

thus created quite a lot of efficiency problems, due to people trying to surf the hype.

5.1.3 ERC-1155: Multi-token Standard

Combining the abilities of ERC-20 and ERC-720, Witek Radomski (the Enjin’s CTO) introduced an all-inclusive

token standard for the Ethereum smart contracts. It’s a standard interface that supports the development of

fungible, semi-fungible, non-fungible tokens and other configurations with a common smart contact.
Now, you can fulfill all your token development needs and address the problems using a single interface,

making ERC-1155 a game-changer. The idea of such a unique token standard was to develop a robust smart

contract interface that represents and manages different forms of ERC tokens.

Another best thing about ERC-1155 is that it improves the overall functionality of previous ERC token

standards, making the Ethereum ecosystem more efficient and scalable.

Characteristics of ERC-1155 tokens

• ERC-1155 is a smart contract interface representing fungible, semi-fungible, and non-fungible tokens.

• ERC-1155 can perform the function of ERC-20 and ERC-720 and even both simultaneously.

• Each Token can represent a different value based on the nature of the token; fungible, semi-fungible,

or non-fungible.

• ERC-1155 is applicable for creating NFTs, redeemable shopping vouchers, ICOs, and so on

5.1.4 ERC-777

This one remembers me of an airplane model.

// SPDX-License-Identifier: MIT

pragma solidity 0.7.4;

import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-

0.7/contracts/token/ERC777/ERC777.sol";

import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-

0.7/contracts/token/ERC777/IERC777Sender.sol";

import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-

0.7/contracts/token/ERC777/IERC777Recipient.sol";

import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-

0.7/contracts/introspection/ERC1820Implementer.sol";

import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-

0.7/contracts/introspection/IERC1820Registry.sol";

contract TestERC777 is ERC777 {

 constructor(

 uint256 initialSupply,

 address[] memory defaultOperators

) ERC777("Gold", "GLD", defaultOperators) {

 _mint(msg.sender, initialSupply, "", "");

 }

}

The ERC-777 provides the following improvements over ERC-20:

Hooks

Hooks are a function described in the code of a smart contract. Hooks get called when tokens are sent or

received through the contract. This allows a smart contract to react to incoming or outgoing tokens.

The hooks are registered and discovered using the ERC-1820 standard.

Hooks allow sending tokens to a contract and notifying the contract in a single transaction , unlike ERC-20,

which requires a double call (approve/transferFrom) to achieve this.

Contracts that have not registered hooks are incompatible with ERC-777. The sending contract will abort the

transaction when the receiving contract has not registered a hook. This prevents accidental transfers to non-

ERC-777 smart contracts. Hooks can reject transactions.

One of the good things about 777 is that it's fully backwards compatible with ERC-20. This means all the same

functions must exist including the identical events. Meaning you can actually just treat it as an ERC-20. But

be aware of hooks. If you treat it as ERC-20 or not, any registered send or receive hooks will still be triggered

regardless. People can abuse this for reentrancy attacks. Simple solution: use reentrancy guards.

https://soliditydeveloper.com/erc-777

5.2 How does the interface of ERC-20, ERC-721, and ERC-1155 look like ?
As explained in Solidity, ‘interfaces’ are list of functions that need to be implemented by object classes that

extend those classes, defining a minimal set of functions for the specific uses and needs. They do not imply

any type of security implicitly, they are needed to standardize and provide interoperability. But they can be

written with hacking purposes, as we have seen in chapter 5.

5.2.1 ERC-20
Following is the basic interface of ERC20 that describes the function and event signature of ERC20 contracts,

followed by the explanation of each given function:

contract ERC20 {

 event Transfer(

 address indexed from,

 address indexed to,

 uint256 value

);

 event Approval(

 address indexed owner,

 address indexed spender,

 uint256 value

);

 function totalSupply() public view returns(uint256);

 function balanceOf(address who) public view returns(uint256);

 function transfer(address to, uint256 value) public returns(bool);

 function allowance(address owner, address spender)

 public view returns (uint256);

 function transferFrom(address from, address to, uint256 value)

 public returns (bool);

 function approve(address spender, uint256 value)

 public returns (bool);

}

Following are the features and components of the ERC-20 smart contract Interface.

5.2.1.1 totalsupply

The function totalSupply is public and thus accessible to all. It displays the total number of tokens that are

currently in circulation. Since this totalSupply function is labeled with a view modifier, it doesn’t consume

gas. Moreover, it updates the internal token value totalSupply_ whenever a new token is minted.

// its value is increased when new tokens are minted

uint256 totalSupply_;// access the value of totalSupply_

function totalSupply() public view returns (uint256) {

return totalSupply_;

}

5.2.1.2 balanceOf

balanceOf is another public with view modifier that makes it accessible to everyone, and it’s gas-free. It takes

the Ethereum address and returns the tokens to the allocated address.

// Updated when tokens are minted or transferred

mapping(address => uint256) balances;// Returns tokens held by the address passed as _owner

function balanceOf(address _owner)

public view returns (uint256 balance) {

return balances[_owner];

}

5.2.1.3 Approve and transfer

If you need to transfer ERC20 tokens (not Ethers), there are two possible ways:

• approve() and transferFrom()

• transfer()

The transfer function supposes that the sender of the transaction is also the owner of the tokens, since the

transaction is already signed with the sender’s private key, everything is fine.

function transfer(address _to, uint256 _value) public returns (bool) {

 // Check for blank addresses

 require(_to != address(0)); // Check to ensure valid transfer

 require(_value <= balances[msg.sender]);

 // SafeMath.sub will throw if there is not enough balance.

 balances[msg.sender] = balances[msg.sender].sub(_value);

 balances[_to] = balances[_to].add(_value);

 // Event transfer defined in the ERC 20 interface above

 Transfer(msg.sender, _to, _value);

 return true;

}

The transferFrom function instead, allows a third party to transfer the tokens if the owner has priorly

approved the transfer. For example this could happen in case of exchanges, or even on NFT marketplaces,

or even just for security reasons (see the example below). Again you can have a look at openzeppelin code

and comments:

 /**

 * @dev See {IERC20-approve}.

 *

 * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on

 * `transferFrom`. This is semantically equivalent to an infinite approval.

 *

 * Requirements:

 *

 * - `spender` cannot be the zero address.

 */

 function approve(address spender, uint256 amount) public virtual override returns

(bool) {

 address owner = _msgSender();

 _approve(owner, spender, amount);

 return true;

 }

 /**

 * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.

 *

 * This internal function is equivalent to `approve`, and can be used to

 * e.g. set automatic allowances for certain subsystems, etc.

 *

 * Emits an {Approval} event.

 *

 * Requirements:

 *

 * - `owner` cannot be the zero address.

 * - `spender` cannot be the zero address.

 */

 function _approve(

 address owner, <- approver

 address spender, <- exchange or NFT marketplace

 uint256 amount <- number of Tokens

) internal virtual {

 require(owner != address(0), "ERC20: approve from the zero address");

 require(spender != address(0), "ERC20: approve to the zero address");

 _allowances[owner][spender] = amount;

 emit Approval(owner, spender, amount);

 }

Have a look at the following transaction, where tokens have been sent to the ‘0’ address and thus burnt:

https://etherscan.io/tx/0x96a7155b44b77c173e7c534ae1ceca536ba2ce534012ff844cf8c1737bc54921

Many people have addressed the difference in how approve() + transferFrom() and transfer() differ,

I would like to explain the why.

The above transaction costed the user 195 ETH(~500k USD as of 1/30/2022) due to a lack of understanding

of how the WETH contract worked. Since transferring ETH to the WETH contract allows you to mint WETH,

they thought that performing the same action (transferring WETH to the WETH contract) would reverse their

actions and give back their ETH. However, this is an incorrect assumption, and the only way to get back your

ETH from the WETH contract is by calling withdraw(). By transferring the WETH to the WETH contract, they

effectively burned 195 ETH.

If the WETH contract used the approve() + transferFrom() pattern, the user could have avoided this by

not transferring the WETH to a contract that cannot accept WETH. Instead, they would simply approve() the

transaction and let the contract pull their WETH out using transferFrom().

What us developers should do ?
If every ERC-20 token got rid of their transfer() method and replaced it

with approve() and transferFrom(), we could completely avoid the problem where tokens are burned

if transfer()ed to the wrong place.

5.2.2 ERC-721
To understand how ERC-721 works, let’s have a look at its interface added here:

contract ERC721 {

 event Transfer(

 address indexed _from,

 address indexed _to,

 uint256 _tokenId

);

 event Approval(

 address indexed _owner,

 address indexed _approved,

 uint256 _tokenId

);

 function balanceOf(address _owner)

 public view returns (uint256 _balance);

 function ownerOf(uint256 _tokenId)

 public view returns (address _owner);

 function transfer(address _to, uint256 _tokenId) public;

 function approve(address _to, uint256 _tokenId) public;

 function takeOwnership(uint256 _tokenId) public;

}

5.2.2.1 balanceOf

In the below snippet, ownedTokens represents the complete list of token IDs of a particular address.

Whereas,balanceOf function returns the number of tokens of that address.
mapping (address => uint256[]) private ownedTokens;function balanceOf(address _owner)

public view returns (uint256) {

return ownedTokens[_owner].length;

}

5.2.2.2 OwnerOf

Mapping token owner takes tokened and outputs the owner of that ID. However, since its visibility is set

private, by using the ownerOf function, you can set the value of this mapping as public. It also requires a

check against zero addresses before it returns the value.
mapping (uint256 => address) private tokenOwner;function ownerOf(uint256 _tokenId) public

view returns (address) {

address owner = tokenOwner[_tokenId];

require(owner != address(0));

return owner;

}

5.2.2.3 transfer

This transfer function takes in the new owner’s address as _to parameter and _tokenId of the token being

transferred, also note that it can only be called by the owner of token. It must include the logic to check

whether the transfer clears approval check, required for a transfer. Then comes the logic to remove token’s

possession from current owner and add it to the list of tokens owned by new owner.
modifier onlyOwnerOf(uint256 _tokenId) {

require(ownerOf(_tokenId) == msg.sender);

_;

}function transfer(address _to, uint256 _tokenId)

public onlyOwnerOf(_tokenId) {

// Logic to clear approval for token transfer // Logic to remove token from current token

owner // Logic to add Token to new token owner

}

5.2.2.4 approve

Approve is another function for another address to claim the ownership on a given token ID. It is restricted

by a modifier only OwnerOf, which explains that only the token oners can access this function for a definite

reason.
mapping (uint256 => address) private tokenApprovals;modifier onlyOwnerOf(uint256 _tokenId)

{

require(ownerOf(_tokenId) == msg.sender);

_;

}function approvedFor(uint256 _tokenId)

public view returns (address) {

return tokenApprovals[_tokenId];

}function approve(address _to, uint256 _tokenId)

public onlyOwnerOf(_tokenId) {

address owner = ownerOf(_tokenId);

require(_to != owner); if (approvedFor(_tokenId) != 0 || _to != 0) {

tokenApprovals[_tokenId] = _to; // Event initialised in the interface above

Approval(owner, _to, _tokenId);

}

}

5.2.2.5 takeOwnership

Function takeOwnership takes _tokenId and applies the same check on the message sender. If he passes

the check logic similar to the transfer function, he must claim the ownership of the following _tokenID .
function isApprovedFor(address _owner, uint256 _tokenId)

internal view returns (bool) {

return approvedFor(_tokenId) == _owner;

}function takeOwnership(uint256 _tokenId) public {

require(isApprovedFor(msg.sender, _tokenId)); // Logic to clear approval for token transfer

// Logic to remove token from current token owner // Logic to add Token to new token owner

5.2.3 ERC-1155
From Openzeppelin documentation:

https://docs.openzeppelin.com/contracts/4.x/erc1155

a useful example that makes you understand much more than many words. In this case, we are talking about

a ‘gaming multi-token’, that would be cheaper to manage. “Enji” is already using it ... and NOOOOOOOOOO

this is NOT a financial advise.

Here’s what a contract for tokenized items might look like:

// contracts/GameItems.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";

contract GameItems is ERC1155 {

 uint256 public constant GOLD = 0;

 uint256 public constant SILVER = 1;

 uint256 public constant THORS_HAMMER = 2;

 uint256 public constant SWORD = 3;

 uint256 public constant SHIELD = 4;

 constructor() ERC1155("https://game.example/api/item/{id}.json") {

 _mint(msg.sender, GOLD, 10**18, "");

 _mint(msg.sender, SILVER, 10**27, "");

 _mint(msg.sender, THORS_HAMMER, 1, ""); <-NFT, single token

 _mint(msg.sender, SWORD, 10**9, "");

 _mint(msg.sender, SHIELD, 10**9, "");

 }

}

Note that for our Game Items, Gold is a fungible token whilst Thor’s Hammer is a non-fungible token as we

minted only one. The ERC1155 contract includes the optional extension IERC1155MetadataURI.

That’s where the uri function comes from: we use it to retrieve the metadata uri. Also note that, unlike

ERC20, ERC1155 lacks a decimals field, since each token is distinct and cannot be partitioned. Once

deployed, we will be able to query the deployer’s balance:

> gameItems.balanceOf(deployerAddress,3)

1000000000

We can transfer items to player accounts:

> gameItems.safeTransferFrom(deployerAddress, playerAddress, 2, 1, "0x0")

> gameItems.balanceOf(playerAddress, 2)

1

> gameItems.balanceOf(deployerAddress, 2)

0

We can also batch transfer items to player accounts and get the balance of batches:

> gameItems.safeBatchTransferFrom(deployerAddress, playerAddress, [0,1,3,4], [50,100,1,1],

"0x0")

>

gameItems.balanceOfBatch([playerAddress,playerAddress,playerAddress,playerAddress,playerA

ddress], [0,1,2,3,4])

[50,100,1,1,1]

5.2.3.1 Batch Transfers

The batch transfer is closely similar to regular ERC-20 transfers. Let’s look at ERC-20 transferFrom function:
// ERC-20

function transferFrom(address from, address to, uint256 value) external returns (bool);

// ERC-1155

function safeBatchTransferFrom(

address _from,

address _to,

uint256[] calldata _ids,

uint256[] calldata _values,

bytes calldata _data

) external;

ERC-1155 differs in passing the token value as an array and an array of ids. The transfer results like this:

• transfer 200 tokens with id 5 from _from to _to

• transfer 300 tokens with id 7 from _from to _to

• transfer 3 tokens with id 15 from _from to _to

Apart from utilizing the function of ERC-1155 as transferFrom, no transfer, you can utilize it as regular

transfer by setting the form address to the address of calling the function.

5.2.3.2 Batch Balance

The respective ERC-20 balanceOf call likewise has its partner function with batch support. As a reminder,

this is the ERC-20 version:
// ERC-20

function balanceOf(address owner) external view returns (uint256);

// ERC-1155

function balanceOfBatch(

address[] calldata _owners,

uint256[] calldata _ids

) external view returns (uint256[] memory);

Even simpler for the balance call, we can retrieve multiple balances in a single call. We pass the array of

owners, followed by the array of token ids.

For example given _ids=[3, 6, 13] and _owners=[0xbeef…, 0x1337…, 0x1111…], the return value

will be

[

balanceOf(0xbeef...),

balanceOf(0x1337...),

balanceOf(0x1111...)

5.2.3.3 Batch Approval
// ERC-1155

function setApprovalForAll(

address _operator,

bool _approved

) external;

function isApprovedForAll(

address _owner,

address _operator

) external view returns (bool);

The approvals here are slightly different than ERC-20. You need to set the operator to approved or not

approved using setApprovalForAll rather than approving specific amounts.

5.2.3.4 Receive Hook
function onERC1155BatchReceived(

address _operator,

address _from,

uint256[] calldata _ids,

uint256[] calldata _values,

bytes calldata _data

) external returns(bytes4);

ERC-1155 supports receive hooks only for smart contracts. The hook function must have to return a

predefined magic bytes4 value which is as following:

bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))

As soon as receiving contracts returns this value, we assume that the contract can now accept the transfer

and it understand how to manage ERC-1155 tokens. That’s done!

6 Solidity Security
Many hacks have happened because of errors in programming smart contracts. Some of them where trivial

errors due to poor coding, no testing and no audits. Some other are extremely complex, difficult to predict

until they happen, and often even after they happened, there is no good ‘post mortem’ publication about

how things has gone wrong. Which would be very useful to avoid such errors from happening again in the

future.

In 2016 one of the first Decentralized Authority Organization or DAO was hacked because of a ‘re-entrancy

problem’. When the transfer function starts and from contract A is called contract B, on contract B is called

again contract A overriding the implicitly defined ‘fallback function’. The problem is that if the balance update

in contract A is called AFTER the funds are transferred calling contract B, you can go on withdrawing funds

even if the balance is no more positive.

This is what probably happened in 2016 during the DAO, after which funds have been given back doing a

hard fork. The old chain is still there for those who didn’t agree, because they though that human

intervention was against the immutability of the blockchain. This is the split between the vision that “Code

is law”, “a Blockchain is immutable”, and what should be the ‘spirit of the code’, which doesn’t always

come out so easily, and gets properly translated into the real world. I’ve taken the expression from “Keir

Finlow-Bates”, he probably doesn’t know me so he won’t be offended, but my opinion is that “Code is NOT

law” since we should always consider the Spirit and the ‘intent’ with which the code was written. Quite

clearly, in this case it was a mistake for a kind of problems that were not so easy to imagine and prevent

through normal testing procedures. Re-entrancy attacks continued to happen, and we will analyze some of

them in detail.

So two workaround solutions exist to avoid such problems, and of course they MUST be used together:

• ensure all state changes happen before calling external contracts (for example, update the local

balance before calling the external function)

• use function modifiers that prevent re-entrancy (i.e. store into a ‘flag’ if the function was already

called and hasn’t finished yet its execution, cleaning the flag is the last thing to do after execution)

The above approach is known as the “Check-Effects-Interactions pattern”: do all the necessary consistency

checks on input parameters using ‘require’, update the effects on contract’s storage variables, call the

functions that interact with other contracts.

Some other important thoughts about the above example picture:

• the first step in the evil contract is useful to avoid an infinite withdraw loop. In case the sender’s

amount of tokens is not updated, the receiver could call back the withdraw function for say 100

times, and steal 99*amount tokens. The ‘evil’ contract doesn’t want to fall in an infinite loop, because

running out of gas would make all data of all contracts be restored to their original values, thus the

theft wouldn’t be successful. Moreover, in this case there would be no real theft to the tokens owned

by account A, but tokens would be generated from ‘nothing’ and given to the receiver (tokens

‘inflation’).

• let’s suppose that the line code “balances[msg.sender] -= _amount” is moved before calling the

‘transfer’ function from contract A to contract B: this is not enough to solve the problem, since the

same re-entrancy attack would withdraw all the sender’s tokens, instead of just transfering ‘amount’

tokens.

• the contract A example above only checks if the balance is higher than the amount tokens to transfer.

This is good but should be included in a ‘require’ function, that reverts the transaction and stops the

execution of the smart contract in case the requirement is not satisfied. In the above example

instead, suppose that the amount is 103 and amount is 10. The re-entrancy is done 10 times, the

receiver gets 100 tokens instead of just 10. The 11th time, the origin balance is 3 and thus it is not

zero. Contract B calls one other time contract A, which checks that the present balance is no more

sufficient, and simply exits. The hack is successful anyways, while a ‘require’ would have saved us in

this case.

Follows hereafter from OpenZeppelin code a ‘no-reentrant modifier’ function. This is well known to all

software developers, those working with threading or operative systems, where different processes

communicate to each other through the usage of queues, and when there is a single resource that must be

used by only one process at a time, you use ‘lockers’ or ‘semaphores’ to book that resource and avoid

problems. Usually it’s just a ‘flag’, a status variable, the process that takes the flag does what it has to do, and

frees the flag once it’s done. The other processes need to sleep for a few seconds and check again if the flag

is free or not, or if they have something else to do, they go on with that. One other example is when you have

to read or write something on the same file: usually a file can be read by multiple processes at the same time,

but it can’t be written by multiple processes at the same time. Check my github repo for a Python example.

https://github.com/ricky-andre/Cisco_utility_scripts

// SPDX-License-Identifier: MIT

// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**

 * @dev Contract module that helps prevent reentrant calls to a function.

 *

 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier

 * available, which can be applied to functions to make sure there are no nested

 * (reentrant) calls to them.

 *

 * Note that because there is a single `nonReentrant` guard, functions marked as

 * `nonReentrant` may not call one another. This can be worked around by making

 * those functions `private`, and then adding `external` `nonReentrant` entry

 * points to them.

 *

 * TIP: If you would like to learn more about reentrancy and alternative ways

 * to protect against it, check out our blog post

 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].

 */

abstract contract ReentrancyGuard {

 // Booleans are more expensive than uint256 or any type that takes up a full

 // word because each write operation emits an extra SLOAD to first read the

 // slot's contents, replace the bits taken up by the boolean, and then write

 // back. This is the compiler's defense against contract upgrades and

 // pointer aliasing, and it cannot be disabled.

 // The values being non-zero value makes deployment a bit more expensive,

 // but in exchange the refund on every call to nonReentrant will be lower in

 // amount. Since refunds are capped to a percentage of the total

 // transaction's gas, it is best to keep them low in cases like this one, to

 // increase the likelihood of the full refund coming into effect.

 uint256 private constant _NOT_ENTERED = 1;

 uint256 private constant _ENTERED = 2;

 uint256 private _status;

 constructor() {

 _status = _NOT_ENTERED;

 }

 /**

 * @dev Prevents a contract from calling itself, directly or indirectly.

 * Calling a `nonReentrant` function from another `nonReentrant`

 * function is not supported. It is possible to prevent this from happening

 * by making the `nonReentrant` function external, and making it call a

 * `private` function that does the actual work.

 */

 modifier nonReentrant() {

 // On the first call to nonReentrant, _notEntered will be true

 require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

 // Any calls to nonReentrant after this point will fail

 _status = _ENTERED;

 _;

 // By storing the original value once again, a refund is triggered (see

 // https://eips.ethereum.org/EIPS/eip-2200)

 _status = _NOT_ENTERED;

 }

}

Other considerations can be found in the official Solidity documentation:

https://docs.soliditylang.org/en/latest/security-considerations.html

“This section will list some pitfalls and general security recommendations but can, of course, never be

complete. Also, keep in mind that even if your smart contract code is bug-free, the compiler or the platform

itself might have a bug. A list of some publicly known security-relevant bugs of the compiler can be found in

the list of known bugs, which is also machine-readable. Note that there is a bug bounty program that covers

the code generator of the Solidity compiler.”

A bug Bounty program reserves some money to provide awards to people who discover serious bugs and

vulnerabilities that prevent exploiting smart contracts and loosing a lot of funds.

6.1 Historical re-entrancy hacks
In the following site you can find the explanations about the hacks detailed hereafter by Dr. Chiachih Wu:

https://medium.com/amber-group/preventing-re-entrancy-attacks-lessons-from-history-c2d96480fac3

I have copied these explanations adding more details with a “NOTE:” to try to make things even more clear

(disclaimer: don’t know if I have been able to ... some attacks are REALLY complex and I don’t believe I’m at

Dr. Wu ‘super sayan’ levels, if I will ever be).

• the UniswapV1 re-entrancy attack in April 2020

• the DeFiPIE incident in July 2021 on Binance Smart Chain (BSC)

6.1.1 Uniswap april 2020

NOTE: I have cloned Uniswapv1 from github but I couldn’t find the tokenToEthInput function below. The

example is useful anyway to understand attack patterns and attack surface in smart contracts.

In UniswapV1’s tokenToInput() function below, we can see that the “token_reserve” is retrieved by the

balanceOf() call in line 204. Later on, the “wei_bought” is derived in line 206 and that amount of ETH is sent

to the “recipient”. After that, the “tokens_sold” amount of “self.token” is transferred to the “buyer” in line

210. There’s no explicit “effects” here such that it seems to follow the Checks-Effects-Interactions pattern.

NOTE: This paradigm is related to what has been previously explained: the effects on local variables of a

function call, possibly to an external contract, should be updated PRIOR to the call to the function call (e.g.

in the previous example update the balance before transfering tokens). Checks should be the first thing to

do and should be a list of ‘require’ lines.

However, the transferFrom() call itself (line 209) could have an “Effects After Interactions” scenario, which

may destroy the DeFi lego.

In the transferFrom() handler, _transferFrom(), of an ERC-777 token contract below, the _callTokensToSend()

function (line 866) notifies the “holder” by calling the “tokensToSend()” function of the “holder” if the

callback function is registered through ERC-1820 standard, which is an “interactions”.

NOTE: This is another area of investigation and further study: you can officially register certain function for

certain token standards, for sure to increase security and avoid incompatibility problems.

After that callback, _move() is called (line 868) to literally move the assets from “holder” to “recipient”, which

updates the token balances (i.e., effects). So, if UniswapV1’s tokenToEthInput() is re-entered through the

“tokensToSend()” callback function, the token balances would be left unchanged, leading to a never

decreased “token_reserve”. In short, when re-entrancy happens, the “token_reserve” value will not be

updated in consecutive token exchanges, leading to the violation of the “xy=k” setting of Uniswap. The

attacker could sell tokens at a much better rate to drain the liquidation pool. What the attacker needs to do,

is overload the ‘tokensToSend’ function to perform re-entrancy as described above.

NOTE: look at the first two require checks in the following picture, to avoid burning tokens sending them to

address(0). Also the sender must be different from address(0), again for security reasons, this function was

meant for transfers between regular accounts.

In the following section, we will explain how we use eth-brownie with an Ethereum archive node to

reproduce the incident at block height 9,488,451 mined on Feb 15, 2020.

NOTE: We will talk about Brownie later, basicly you can fork the Ethereum mainnet locally on your PC, until

a certain block or downloading only a block range. What for ? to perfectly reproduce hacks and attacks that

happened, using exactly the same data and starting point.

The first step of reproducing the hack is registering the tokensToSend() callback function through the ERC-

1820 contract. After the successful registration, all corresponding token transfers are hijacked.

Then, we can launch the attack. In the trigger() function, all ETH are swapped into tokens in line 38. That’s

another operation preparing the exploit contract so that it has enough token balance. The

“tokenToEthSwapInput()” call in line 39 is the real thing, which swaps 1/32 of tokens to ETH. The other 31/32

tokens are swapped by re-entrancy calls. After that, we use quite a few ETH to swap for tokens in line 40 for

draining the liquidity pool. And finally, we collect the profit by sending all ETH and tokens to the “owner”

(i.e., the attacker address).

Inside the callback function, tokensToSend(), the “entry” variable ensures that the exploit contract re-enters

Uniswap exactly 31 times for swapping the other 31/32 tokens but with the same rate. This breaks the “xy=k”

invariant. After those re-entrancy calls, most of ETH in the liquidation pool would be consumed such that

each ETH could swap for a large amount of tokens. Therefore, in the earlier mentioned trigger() function at

line 40, we could use a small amount of ETH to swap out most of the tokens. Example below:

The victim contract held 718 ETH + 19.59 imBTC tokens before the attack. After 32 re-entrancy swaps, the

victim contract (i.e., UniswapV1 imBTC pair) is left with only 0.013 ETH + 0.019 imBTC in residual funds. Both

the above UniswapV1 + ERC-777 case and TheDAO were caused by single-function re-entrancy.

NOTE: I had to read it twice, and still didn’t understand ALL the details. Luckily, to do hacks you need to be

very smart. Give yourself more time to read it a third, and even a fourth time, maybe after sleeping on it. The

next one is gonna be MUCH harder.

6.1.2 Defi Pie Hack on Binance Smart Chain
At first glance, the code-base of DeFiPIE looks very similar Compound Finance. Hence, one may think this

exploit is similar to the Lendf.Me (another lending platform) exploit which happened on April 19, 2020 (where

the attacker left an embedded message: “Better future”). Some more information can be found here:

https://peckshield.medium.com/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09

But further analysis shows that the DeFiPIE incident is way more complex than the Lendf.Me one in which

the attacker only exploited the loopholes in supply() and withdraw().

In DeFiPIE’s PToken contract, borrowFresh() updates the states (line 802–804) after transferring assets to

the “borrower” (line 799), which is kind of common in all Compound forks (NOTE: why should it be normal

in this case ?!?!). As we learned from the Lendf.Me incident, the supported tokens should be whitelisted to

ensure that no hijacking mechanism could be implemented such as ERC-777.

NOTE: here we are lacking for sure some details, but what we have understood is that not all tokens should

always be allowed to partecipate into any contract, there should be a whitelist (i.e. a list of allowed tokens).

A blacklist would be a list of prohibited tokens, which is in general a less secure approach. It is important to

notice that ERC777 itself is a community-established token standard with its advanced features for various

scenarios. However, these advanced features might not be compatible with certain DeFi scenarios. Worse,

such incompatibility could further lead to undesirable consequences (e.g., reentrancy).

Otherwise, the “Effects-After-Interactions” implementation could be exploited. The borrowFresh() function

in question allows the attacker to borrow multiple sets of assets with the same set of collateral in reentrant

borrowFresh() calls. The reason is that the states reflecting the borrowing operations have not been synced

into the storage until the final level of reentrant borrowFresh() calls is finished. In the end, the attacker

liquidates the debt which is created in those re-entrant borrows to make profits.

NOTE: Defi is already a big space in the blockchain world. There are already many borrowing/lending projects,

but usually if you borrow something, you have to provide an asset to cover for potential losses. It’s not a

bank-like approach to such services ... or let’s say they need a guarantor (unless you’re too big too fail or

you’re Elon Musk) or your house as a right of lien. This should be of course proportional: every time you

borrow something new, you should have some OTHER collateral funds available, and that you should provide

and ADD to the others. Disclaimer: I’ve studied Uniswap and published an article on that, I honestly didn’t

study ‘AAVE’ or other protocols, how do they work, on what they are based. But if you understand some

economic principles, that’s how it should work. Some simple explanations can be found here, confirming the

above:

https://decrypt.co/resources/what-is-aave-inside-the-defi-lending-protocol

In the Lendf.Me incident, the bad actor hijacks the transferFrom() calls through the built-in ERC-777

mechanism of imBTC. In DeFiPIE, there’s no whitelist/blacklist of the supported tokens, which means the

attacker can arbitrarily create a malicious token contract for hijacking and re-entrancy. In the following

paragraphs, we will show you how to reproduce the DeFiPIE hack from scratch.

Let’s start with the malicious token contract. As shown in the code snippet below, we use OpenZeppelin’s

template [7] to create a simple ERC20 token, X. In line 234, we use the “optIn’’ switch to control if we need

to hijack the transfer. When (optIn == true), X.transfer() invokes Lib.shellcode() to execute the re-entrancy

mission. Besides, we have some external functions for easily controlling the X token such as mint(), setup(),

and start().

The second component is the Lib.shellcode() function which is called by X.transfer() mentioned earlier. In our

experiment, we reenter the borrow() function three times by calling pX[1].borrow() and pX[2].borrow()

separately. When pX[2].borrow() is hijacked, Lib.shellcode() invokes pBUSD.borrow() to literally borrow 21k

BUSD, which creates an unhealthy loan that is not backed by enough collateral.

The third component is the key to making profit, the liquidator. In the Liquidator.trigger() function, X tokens

are used to liquidate the loan to get the collateral backs (i.e., pCAKE). After that, in line 66–67, pCAKE tokens

are converted to CAKE and sent to the owner (i.e., the Lib contract). Besides, mint() is used to provide enough

X tokens to the pX contract, which enables the Lib contract to invoke pX.borrow().

Now, the three components are prepared. We can put together all of them and use flashloan to make profits.

In the Exp contract above, three X tokens and a Lib contract are created. Inside the constructor of Lib, an

instance of Liquidator is created. After minting X tokens (line 272–278) and associating Lib with X tokens (line

280–284), Lib.trigger() is invoked followed by a WBNB transfer to collect profits:

Inside the Lib.trigger(), two consecutive PancakeSwap flash-loans are launched for borrowing 154.5 WBNB +

2,900 CAKE. The real exploit procedure is in the bottom-half of the second pancakeCall().

In the second pancakeCall(), the three X tokens (i.e., x[0], x[1], x[2]) are used to create three pTokens (i.e.,

pX[0], pX[1], pX[2]). To achieve that, we need to first add liquidity into Uniswap (line 136–142) which could

be withdrawn later (line 149). When pTokens are created, Liquidator.mint() is invoked to deposit enough X

tokens for later pX.borrow() calls (line 152).

Now, we have all three pTokens prepared. We need to activate them in the DeFiPIE system. Since we will use

pCAKE as the collateral, we also activate pCAKE with one Controller.enterMarkets() call (line 162). In line 166,

we deposit the 2,900 CAKE borrowed from flash-loan into pCAKE contract as the collateral. From now on, the

attacker could borrow assets from DeFiPIE backed by the 2,900 CAKE.

Here, the “optIn” switches of three X tokens are turned on (line 170–172) followed by a pX[0].borrow() call

(line 173). With the Lib.shellcode() mentioned earlier, pX[1].borrow(), pX[2].borrow(), and pBUSD.borrow()

are reentered consecutively. Eventually, we get the 21k BUSD and create the debt.

Next, we wake up the Liquidator to liquidate the debt and get CAKE back.

After paying back the flash loan, we end up with 66 WBNB.

NOTE: I am still getting into all the details with this, reading it over and over, again and again ... the

explanation is good, pretty sure it’s my fault if I can’t understand all the details, also due to the complexity

of the hack. Just would mention again that having standards properly written, tested and used by the widest

range of developers is the ONLY way to reduce the attack surface, and go toward a better and more secure

Defi world.

6.2 Popsicle Finance bug
This is an example of poor coding, because the mistake is a trivial error that should have been revealed by

the programmer or anyone else who should have audited the code.

Popsicle implements its profit distribution system by maintaining a global counter that records the profits

earned per LP token. When a user invests, the system records the value of the global counter at that time.

When a user withdraws her investment, the system calculates her profit as the product of her LP balance and

the difference between the current value of the global counter and its value at the time of the investment.

The bug occurs when one user transfers LP tokens to another user. The system correctly computes the new

balances, but it does not change the value of the profits-per-token it maintains for every user. This allows an

attacker to transfer N tokens which were minted when the global counter was X to a collaborator who

invested when the global counter was Y < X. As a result, the collaborator is now credited with a profit of N*(X-

Y), a profit which none of the parties deserve. See the chart below for a concrete example with N=10 and X-

Y=α.

Initially, the attacker doesn’t own any LP token. The attacker friend has 1 token, and its profits-per-token

value is k, which were earned fairly. The attacker deposits 10 LP tokens and transfers its newly minted tokens

to its friend. The friend is credited with its unchanged profits-per-token value for the newly received tokens

from the attacker. Therefore the friend can withdraw all the funds, with a profit of 10k more than deserved.

Once the bug is found, it is easy to fix — the transfer method should credit the receiver with its gains and

reset the value of its profits-per-token to the value of the current counter at the time of the transfer. But

losing $20MM to an attacker to find the bug is an expensive proposition; in the next section, we show how

to find it much more cheaply using the Certora Verification Tool.

Popsicle Finance together with ‘Wonderland’, ‘Abracadabra’ and some other tokens and projects, were

somewhat managed by ‘Daniele Sestagalli’, who was selling his ‘frog nation’ idea (whatever it is). He doesn’t

have an astonishing CV, but probably got rich through Bitcoin being an early adopter. You can find nice video

about him on Youtube, he’s a good talker and marketer but unfortunately ‘hired’ as a treasurer someone

that was involved into the defunct Canadian crypto exchange QuadrigaCX, which collapsed in 2019 causing

at least $190M in investor losses. No need to say that all these tokens lost 90% and more of their value in

one day, and that we won’t hear from this guy new stories about his vision of the Defi world (at least for a

long while).

	1 Blockchain developer
	2 Applications for Blockchain developers
	2.1 Decentralized Finance or Defi
	2.2 NFT
	2.3 Gaming
	2.4 DAO

	3 Video content
	4 Solidity
	4.1 Public, external, internal, private
	4.2 Pure, view, payable
	4.3 State variables
	4.4 Storage, memory
	4.5 Modifiers (e.g. Ownable)
	4.6 Self distruct
	4.7 Debugging
	4.8 Require, assert
	4.9 Sending and receiving Ethers
	4.9.1 How to receive Ether: receive and fallback
	4.9.2 Which method should you use?

	4.10 Fallback function
	4.11 Inheritance
	4.11.1 Single Inheritance
	4.11.2 Multiple Inheritance

	5 Blockchains and tokens
	5.1 Tokens
	5.1.1 ERC-20 token standards
	5.1.2 ERC-721: Non- fungible tokens
	5.1.3 ERC-1155: Multi-token Standard
	5.1.4 ERC-777

	5.2 How does the interface of ERC-20, ERC-721, and ERC-1155 look like ?
	5.2.1 ERC-20
	5.2.1.1 totalsupply
	5.2.1.2 balanceOf
	5.2.1.3 Approve and transfer

	5.2.2 ERC-721
	5.2.2.1 balanceOf
	5.2.2.2 OwnerOf
	5.2.2.3 transfer
	5.2.2.4 approve
	5.2.2.5 takeOwnership

	5.2.3 ERC-1155
	5.2.3.1 Batch Transfers
	5.2.3.2 Batch Balance
	5.2.3.3 Batch Approval
	5.2.3.4 Receive Hook

	6 Solidity Security
	6.1 Historical re-entrancy hacks
	6.1.1 Uniswap april 2020
	6.1.2 Defi Pie Hack on Binance Smart Chain

	6.2 Popsicle Finance bug

