
A Proof of Useful Work for Artificial
Intelligence on the Blockchain

Andrei Lihu1, Jincheng Du2, Igor Barjaktarević1,
Patrick Gerzanics1 and Mark Harvilla2

1Up and Running Software
2Oben

Email: andrei.lihu@upandrunningsoftware.com, jincheng@oben.com,
igor.barjaktarevic@upandrunningsoftware.com,

patrick.gerzanics@upandrunningsoftware.com, mark@oben.com

Bitcoin mining is a wasteful and resource-intensive process. To add a block of
transactions to the blockchain, miners spend a considerable amount of energy.
The Bitcoin protocol, named ‘proof of work’ (PoW), resembles a lottery and the
underlying computational work is not useful otherwise. In this paper, we describe
a novel ‘proof of useful work’ (PoUW) protocol based on training a machine
learning model on the blockchain. Miners get a chance to create new coins after
performing honest ML training work. Clients submit tasks and pay all training
contributors. This is an extra incentive to participate in the network because the
system does not rely only on the lottery procedure. Using our consensus protocol,
interested parties can order, complete, and verify useful work in a distributed
environment. We outline mechanisms to reward useful work and punish malicious
actors. We aim to build better AI systems using the security of the blockchain.

Keywords: Machine learning, blockchain, proof of useful work, mining, PAI coin, project
PAI, artificial intelligence.

1. INTRODUCTION

Bitcoin [1] miners are spending a huge amount of
electricity to append a new block to the blockchain. A
blockchain is a sequence of blocks, where each block
packs several transactions. Among other fields, the
header of a block contains a cryptographic hash of
the previous block, a target value, and a nonce. To
add a new block, in the classical proof of work (PoW)
protocol, the double SHA-256 hash of the block’s header
must fall under a target value which is known to all
network participants. The nonce is varied to obtain
different hash values. For each successfully mined block,
a miner is allowed to create out of thin air a specific
amount of new coins (the block subsidy) and also to
collect the fees for transactions included in the block.
Sometimes new blocks are created on top of the same
previous block, which leads to forks. According to
the consensus rule, miners should build on the longest
chain, therefore shorter forks will be discarded. PoW
is easy to verify, but hard to produce [2]. Repeated
hashing (by varying the nonce) is not useful per se, PoW
is a pure lottery and does not guarantee fair payment
for all actors that spend computational resources. We
would like to reward only productive actors. To do so,
PoW should be replaced or combined with beneficial
work (e.g. machine learning) and miners should
compete to provide a proof of useful work (PoUW).

There are several obstacles in designing a PoUW
system using machine learning (ML) as the basis for
useful work. Compared to hashing, ML tasks are
complex and diverse. The Bitcoin puzzle [2] grows
in complexity over time, but in a real-world scenario,
the client’s ML problem dictates the complexity. Due
to the ML task’s heterogeneity, it is difficult to verify
if an actor performed honest work. There are many
steps in the ML algorithms where bad actors can avoid
work, perform cheap work, or behave maliciously. The
blockchain is not designed to hold the large amounts of
data needed for ML training and most of data is not
of interest to the majority of actors. It is also hard to
distribute and coordinate a ML training process in a
trust-less environment as the blockchain’s peer-to-peer
(P2P) network.

A significant number of commercial machine learning
platforms distribute and execute operations in parallel
(e.g. Facebook [3], Amazon [4], Google [5]). They work
with Big Data that requires distribution of workloads
and orchestration across multiple nodes. These systems
use data parallelism: each node holds an internal replica
of the trained ML model, while data is divided across
worker nodes [6]. The blockchain offers access to more
computational resources than a standard cloud ML
service.

Our research was motivated by the questions: Can

ar
X

iv
:2

00
1.

09
24

4v
1

 [
cs

.D
C

]
 2

5
Ja

n
20

20

2 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

we build better AI systems using blockchain’s security?
Can we provide a better blockchain protocol based on
PoUW?

We used blockchain’s infrastructure to coordinate the
training of a deep neural network (DNN). We designed
a decentralised network with a consensus protocol to
perform and verify useful work based on ML. At the
core of the protocol lies a novel way to create nonces
derived from useful work.

Our paper is organised as follows: In Section 2
we briefly present related efforts to combine artificial
intelligence with the blockchain. We provide an
overview of our environment and the protocol in Section
3. We show the detailed steps of the ML training in
Section 4. In the section about the proof of useful work
(Section 5), we describe the mining and the verification
processes. We also implemented a proof of concept
(PoC) whose details are given in Section 6. In Section 7,
we discuss potential performance and security concerns
related to our proposal. We provide conclusions and
details about future work in Section 8.

2. RELATED WORK

A series of different PoUW protocols have been
proposed, all of them with limited practicality:
Ball et al. [2] proposed methods for solving the
orthogonal vectors, all-pairs shortest path and 3SUM
problems on blockchain; in PrimeCoin miners search
for Cunningham chains of prime numbers [7].

DML [8] and SingularityNET [9] are marketplaces
for distributed AI services utilizing smart contracts.
SingularityNET requires curation of services. None
of them have a tight integration with the blockchain,
keeping AI as a separate service.

Gridcoin [10] is an open-source proof-of-stake
(PoS) blockchain for solving tasks on Berkeley Open
Infrastructure for Network Computing and their system
is centralised (whitelists, central server, centralised
verification).

Coin.AI [11] is just a theoretical proposal where
miners train separately a DNN. The architecture of
the deep neural network is generated based on the last
mined block and the verification involves checking the
model’s performance. Their system is prone to security
risks, e.g. miners doing cheap work or no work.

CrowdBC [12] is a crowdsourcing framework using
Ethereum smart contracts. Participants deposit a
certain monetary amount to mitigate for potential bad
behaviour, but miners do not perform useful work.

According to our knowledge, our PoUW proposal
is the only protocol that tightly integrates with the
blockchain. It does not require smart contracts. The
miners perform useful computational work that can be
deterministically verified. Our PoUW facilitates better
AI through decentralisation, enhanced security and the
right incentives.

PAI Blockchain

Client

PAI Network

ML task group

task

miners

supervisors

verifiers

evaluators

peers

FIGURE 1: Environment overview. The client
submits a ML task to the PAI network. Worker nodes
perform the training and evaluators decide how to pay.
The PAI blockchain ensures the security of the ML
process.

3. SYSTEM OVERVIEW

3.1. Environment

The environment is the PAI (Personalised Artificial
Intelligence) blockchain, a hybrid Proof of Work/Proof
of Stake (PoW/PoS) blockchain. It is a P2P
decentralised network (1) composed of:

Clients: Nodes that pay to train their models on the
PAI blockchain.

Miners: Nodes that perform the training. They can
mine a new block with special nonces obtained after
each iteration. The training is distributed and all
miners collaborate by sharing updates about their
local model.

Supervisors: Actors that record all messages during
a task in a log called ’message history’. They
also guard against malicious behaviour during the
training because the environment may also contain
Byzantine nodes.

Evaluators: Independent nodes that test the final
models from each miner and send the best one to
the client. They also split the client’s fee and pay
all nodes accordingly.

Verifiers: Nodes that verify if a block is valid. We
need them because verification is computationally
expensive and it is not carried out by all nodes.

Peers: Nodes that do not have any of the aforemen-
tioned roles. They are using regular blockchain
transactions.

A Proof of Useful Work for Artificial Intelligence on the Blockchain 3

M1

direct link

direct link

direct link

M2 M3

M4 M5 M6

S1 S2 S3

FIGURE 2: A communication topology example.
Miners (M1-M6) are fully connected with the supervi-
sors (S1-S3) and send/query data to/from them. A few
miners established direct links in-between them (e.g.
M2-M3, M4-M5, M3-M6).

Miners and supervisors are called worker nodes
because they actively participate in the training.
Worker nodes communicate by using fast message
channels. To facilitate direct communication, we
recommend running all worker nodes in a virtual
private network (VPN) with a full VPN mesh topology
(e.g. PeerVPN – https://peervpn.net). Miners send
messages to supervisors that record the message history.
Directly sending messages between miners is optional
(see Fig. 2).

3.2. Transactions

A Bitcoin transaction is a digitally signed data
structure that contains versioning, inputs and outputs.
A transaction is valid if its inputs refer to other
unspent outputs (UTXOs). OP RETURN is a script
operation field (80 bytes in length in Bitcoin) that
marks a transaction output invalid, but can be used
to store arbitrary data in the blockchain.

In the PAI blockchain, we use special transactions
to handle the training, verification, evaluation and
payment of the ML tasks. To do so, we encode all the
required extra information in the OP RETURN code
(160 bytes in our protocol) of one of the transaction’s
outputs 3.

Before inclusion in blocks, transactions wait in the

3We provided an example implementation for special
transactions in the Supplementary material in Appendix A, and
in Appendix B we detailed a method to shorten the task wait
time.

mempool, a buffer of pending transactions. Nodes
relay transactions from the mempool to each other
and eventually they propagate across the whole P2P
network.

Off-chain messages and own transactions are signed
using the participant’s private ECDSA key. When
we need multi-party transactions we use Boneh-Lynn-
Shacham (BLS) keys and signatures ([13]), for example
when supervisors must agree on a common decision. To
reduce the number of special transactions, we require
that a leader posts a multi-party transaction.

3.3. Staking

Except regular peers, all nodes must first deposit coins
as a collateral. We call this process ’staking ’. The
deposits represent locked money that are later returned
along with extra fees if the participants finish properly
their work.

Staking means buying tickets. Nodes can issue
BUY TICKETS transactions, which are special trans-
actions containing the desired role (miner, supervisor
etc) and preferences for specific tasks (encoded in the
OP RETURN field). Tickets become ’live’ after they
are included in the blockchain and buried under a pre-
set number of blocks (e.g. 128). There are around 40960
tickets in the mempool and their number is kept con-
stant by updating ticket prices after every 144 mined
blocks. We use Decred’s algorithm ([14]) to adjust
prices. No more than 50 tickets can be included in a
mined block.

Another type of stake transaction is
PAY FOR TASK, which is issued by clients when
they submit a new task. It includes a task description
and a training fee.

Staking is a way to ensure against malicious
behaviour because the stakes of dishonest actors are
captured and re-distributed to fair players. At the
end of training, the evaluators decide how to split the
client’s fee and punish the bad actors. Evaluators issue
a CHARGE FOR TASK transaction to pay the honest
participants. The client’s fee is returned if the task
could not be executed. The stakes of honest worker
nodes are also returned if the task was compromised
by malicious actors. Each stake has an expiration time
after which, if the holder has not been assigned to do
work, the amount is fully returned. Offline nodes that
are selected to perform work lose a part of their stake
(e.g. 10%).

3.4. Tasks

A client submits a task definition T and a fee F as a spe-
cial transaction to the blockchain (PAY FOR TASK),
containing:

• A description of the trained model: the model
type (e.g.: multi-layer perceptron, convolutional
neural network) and its architecture: the layers

https://peervpn.net

4 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

(e.g. dense, dropout, convolutional, batch
normalisation, pooling) with the number of
neurons, the activation functions (e.g. relu,
sigmoid, tanh), the loss function (e.g. softmax
cross-entropy loss).

• The optimiser (e.g. SGD, Adam) and its
parameters (e.g. the initialiser, the learning rate).

• The stopping criterion (early-stopping, preset no.
of epochs etc)

• The validation strategy (e.g. cross-fold validation,
holdout) and the percentage of data from the

training dataset set apart for validation. – D
(val)
pct .

• Metrics of interest K (e.g. accuracy, loss); the
client will pay the best model based on these
metrics on the test dataset.

• Dataset information: format (e.g. CSV, MNIST
[15]), mini-batch size, training dataset percent out

of the whole dataset (D
(tr′)
pct), the hashes of at least

10 equally divided data batches from the original
dataset D and the size of the whole dataset D.

• Performance: expected training time (texp),
hardware preferences (e.g. CPU vs GPU).

The fee F is split between honest worker nodes and
evaluators following a reward scheme R: a part is
received by miners based on performance, a part by
supervisors and another part by evaluators. All nodes
are incentivised to participate in the PAI blockchain:
clients receive a trained model, miners can receive block
rewards and a fraction of the client’s fee, supervisors
and evaluators also receive a part of the client’s fee.
Miners compensate verifiers with a share of the block’s
reward.

3.5. Protocol

In our system, a client utilises the PAI blockchain to
train a ML model and to pay for this service. After
the client broadcasts the task to the PAI network, the
miners and the supervisors are matched randomly by
the network based on the worker nodes’ preferences P
vs the task definition T .

The dataset D is first split into:

• A training dataset, further revealed to the miners
to perform ML work on it.

• A validation dataset selected from the initial
training dataset for ML validation.

• A test dataset revealed to the evaluators when the
final model should be tested.

The training dataset is further split into equally-sized
mini-batches. Typical sizes for a mini-batch range from
10 to 1000 records. A mini-batch is processed in each

iteration. An epoch is a full training cycle, i.e. all mini-
batches from the training dataset are processed.

Once training is started, miners iteratively improve
their local models based on their work on mini-batches
and based on messages they receive from fellow miners.
Every miner shares the modifications to his/her model
with other task participants. They also mine with
several nonces obtained after each iteration.

The supervisors record all the messages during a task
and look after malicious behaviours. Evaluators test the
final models, select the best model for the client and
distribute the client’s fee.

Miners build blocks as in the Bitcoin protocol, but
with the addition of useful work, i.e. honestly executing
an iteration of the ML task. A miner scans the
mempool, collects transactions, creates the block and
adds additional information (extra fields) for the proof
of useful work. In our PoUW, the nonce is a SHA-256
hash occupying 32 bytes.

To validate a block, verifiers will receive the input
data, re-run the lucky iteration and check if the outputs
are reproducible. A miner will send to verifiers all data
and context necessary for the proof of useful work.

4. WORKFLOW

There are four ML task workflow stages: registration,
initialisation, training and finalisation.

4.1. Registration

In the registration phase, the client submits a
PAY FOR TASK transaction. This transaction is in-
cluded in a block called the task definition block. Clients
can revoke a task if it has not started yet by send-
ing a REVOKE TASK transaction referencing the ini-
tial submission. The corresponding PAY FOR TASK
transaction is thus annulled and the stake released. In
case they want to adjust their bids, clients may also
re-post their tasks before they start or expire. After
updating, a task’s maturity time is reinitialized.

At least 2 miners and 3 supervisors are required to
start a task. The number of supervisors can be in the
interval |S| ∈ [3,max(3, sqrt|M |)], while the number of
miners can be in the interval [2, ωD ∗disk size(D)+ωt∗
texp+ωF ∗F], where disk size is a function that returns
the size of the dataset on the disk (in kB), |S| is the
number of the supervisors, |M | is the number of miners,
while ωD, ωt and ωF are network-wide coefficients. A
task definition block not satisfying these requirements
is deemed invalid.

A worker node calculates if any of its live tickets is
selected for participation in training. A ticket bought
after task submission cannot participate in the training.
For each ticket, the procedure is as follows:

1. calculate the cosine similarity between a ticket’s
preferences P and the corresponding maximal
subset of possible task preferences, Pmax ⊆ T (P

A Proof of Useful Work for Artificial Intelligence on the Blockchain 5

and Pmax are encoded as vectors with non-negative

values): s(P, Pmax) =
∑n

i=1 PiPmaxi√∑n
i=1 P

2
i

√∑n
i=1 Pmax

2
i

;

s(P, Pmax) ∈ [0, 1]

2. using a verifiable random function (VRF) [16],
using the hash of the task definition block
(hashTDB) and the role on the ticket (supervisor,
miner, etc) as inputs, produce a hash and a proof:
(hash, proof) = V RFsk(hashTDB ||role) (see also
[17]). Note: The hash looks random, but it is
dependent on a secret key, sk, and the input string.
Knowing the public key, pk, corresponding to sk
and the proof, one can verify if the hash was
generated correctly.

3. if s(P, Pmax) ≥ ωS
hash

2hashlen−1
, the ticket is selected

to participate in task T . ωS is a network-wide
parameter, hashlen is the bit-length of the hash.

Selected worker nodes will send special transactions
named applications (JOIN TASK transactions) that
will be included in a subsequent block, called the
participation block. We seed the random number
generator with the task definition block’s hash to
reproduce/verify the selection process.

4.2. Initialisation

4.2.1. Key exchange and generation
Worker nodes exchange their public keys to verify the
received messages and the special transactions.

Supervisors use t-of-n threshold BLS signatures to
reach consensus, where n = |S| and t represents a
2/3 threshold (t = 2

3n). Any subset of t up to n
supervisors are able to sign a transaction and make
it valid, but less than t signers would render the
transaction invalid. Supervisors run a modified version
of the Joint-Feldman distributed key generation (DKG)
protocol ([18]) to collectively generate their private
BLS keys (see Supplementary material, Appendix C
and Appendix D). Due to the BLS threshold signature
properties, for any multi-party transaction tx, as soon
as any t signature shares are collected, a leader can
reconstitute the global signature on the transaction
and verify it as if the global private key (which
is unknown) had been used for signing. At the
end of the DKG protocol, all supervisors must post
DKG SUCCESSFUL transactions to the blockchain
signed with their ECDSA secret keys containing their
locally calculated t-of-n public key. If all supervisors
post transactions with the same public key during a
predefined time window, then the protocol is successful
and the parties should proceed to the next phase.
Otherwise, faulty supervisors are replaced, their stakes
confiscated and the DKG protocol is restarted.

4.2.2. Data preparation
Before submitting a task, the client privately splits
the dataset D into p ≥ 10 consecutive fragments

(d1, d2..dp), such that |d1| = |d2| = .. = |dp−1|; and
|dp| = |D|−(p−1)|d1| < |d1|, then hashes the fragments,
getsH(d1), H(d2)..H(dp) and appends the hashes to the
dataset section in the task definition. Hashes are public,
but D is known only to the client.

During the initialisation phase, the client and the
worker nodes use the task definition block hash as a
random seed to permute the hashes from D. The first

D
(tr′)
pct % of hashes will correspond to the initial training

dataset and the client will reveal it to the worker nodes,
while the rest will correspond to the test dataset, which
is kept secret until the ML task is finished.

The validation dataset is independently and deter-
ministically derived by the miners from the initial train-
ing dataset based on the validation strategy. For exam-
ple, in the case of holdout, the validation dataset D(val)

contains the last D
(val)
pct % mini-batches of the initial

training dataset D(tr′). The final training dataset is
obtained by subtracting the validation dataset from the
initial training dataset: D(tr) = D(tr′) \D(val).

The final training dataset is further split into m
mini-batches b1...bm; |b1| = |b2| = .. = |bm−1| and
|bm| = |D(tr)| − (m − 1)|b1| ≤ |b1| (size specified by
the client in the task preferences). We use one of the
following two methods to assign batches to miners:

Consistent hashing with bounded loads , a
method inspired by [19] and [20], in which
one computes the hashes of mini-batches con-
catenated with the current epoch number ξ:
H(b1||ξ)..H(bn||ξ). Then, maps every hash to a
consistent hash ring of size 2κ using the modulo
function: H mod 2κ, where κ is the exponent of
the mapping space (chosen network-wide, e.g.
κ = 10). Each miner should process the mini-
batches with the hashes between his/her hash
and his/her successor’s hash on the hash ring.
To prevent discrepancies between the amount of
assigned work, we never let a miner process more
than cm/|M | mini-batches, where 1 ≤ c ≤ 2 is a
public constant. We do so by assigning the cur-
rent mini-batch to the next miner until the above
condition is met.

Interleaved parts , a procedure in which miners
and mini-batches are sorted lexicographically by
their IDs (M = {M1..Mn}) and their hashes,
respectively. The allocation procedure specifies
that the first miner gets the first mini-batch, the
second one gets the second and so on, until all
|M | miners are assigned to the first |M | mini-
batches. Then, the first miner receives the |M |+1-
th mini-batch and so on, until all m mini-batches
are assigned. For each epoch ξ, a miner Mi is first
assigned to mini-batch bi+ξ−1, then the assignment
continues with bi+ξ−1+|M |, bi+ξ−1+2|M |... in a
rotating manner to also include the first initially
uncovered positions [1..i+ ξ] (the mini-batches are

6 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

seen as a circular data structure).

If a miner quits or a new one joins a task, the above
assignment is re-evaluated. Using a random number
generator seed based on the hash of the task definition
block, we ensure that the miners know in advance which
mini-batches should be processed and the order. The
steps can also be reproduced during the verification.

4.2.3. Data storage
Supervisors store the data during the ML training.
They can use one of the following redundancy schemes:

Full replicas Every supervisor keeps a copy of D(tr′).
This has a high redundancy factor ([21, p. 36])

equal to the number of supervisors β = |datared|
|data| =

|S|, and a miner can selectively download mini-
batches.

Reed-Solomon The supervisors store D(tr′) using a
(k+h) Reed-Solomon storage scheme ([22]). They
split the training dataset into k+h equal fragments,
where the total number of the supervisors is
roughly |S| ≈ k + h and k ≈ [1/3..2/3] ∗ |S|.
To get the full dataset, a miner should download
data from k supervisors and re-construct it. The
redundancy is low β = k+h

k = [1.5..3], but
miners perform extra computation to re-create the
dataset.

4.3. Training

Miners start working on a ML task by initialising the
weights and biases (θ) of their local models. At each
iteration they fetch a mini-batch, perform stochastic
gradient descent (SGD) on it ([23, p. 147]), then
communicate what they changed in θ (weight updates)
to the other worker nodes. Cost functions in most ML
algorithms are sums of loss functions L over training
records and their global gradient is an expectation.
To minimise the global loss, instead of using all
records, one could sample a mini-batch bi and calculate
a partial gradient g(i) that approximates the global

gradient: g(i) = 1
|bi|∇

∑|bi|
j=1 L(x(j), y(j), θ), where x and

y represent the features and targets per record. Using
this gradient, the classical SGD algorithm updates the
model as follows: θ ← θ − εg(i), where ε is the learning
rate.

The size of a gradient is equal to the size of the
local model, so it is impractical for a miner to send
all the gradient updates to the network. To overcome
this issue, we use the ”dead-reckoning” scheme from [4],
in which we update only weights that under/over-flow
a certain τ value and communicate the coordinates of
these updates in the local model. Gradients under/over
τ accumulate and are applied later. Learning is not
negatively impacted by this delay.

An iteration consists of the steps described in
Algorithm 1, adapted from [4]. See Table 2 for

31 30 2 1 0

±?

index

. . .

FIGURE 3: Message map. Leftmost bit is for τ , the
rest is for the index.

notation.

• The miner fetches a mini-batch (bi) according to a
method from subsection 4.2.2.

• Updates the local model with weight updates received
from peers.

• Derives local gradients using backpropagation and
adds them to a residual gradient.

• Prepares a message map, a list δ(`) containing the
addresses (indices) of the gradients whose values
exceed a threshold value ±τ in the residual gradient,
where τ is given by the client. An element e(0|1, i)
of the list has 4 bytes. The leftmost bit is 0 when
the gradient residual at index i is less than −τ and
1 when it is greater than +τ). The other 31 bits are
for the index i (unsigned integer from 0 to 231 − 1)
(see Fig. 3).

• Applies the weight updates from the message map to
the local replica of the DNN.

• Receives and uncompresses peers’ messages.

• Communicates to the network a message containing:
version of current implementation, ML task ID,
message type (IT RES), epoch – ξ, number of peer
updates, message map of weight updates – δ(`),
values of metrics – K(tr), start and finish times –
t(s), t(f), hash of mini-batch, hash of the list with
peer messages applied at current iteration, hash of
initial model state θ, hash of initial gradient residual,
hash of zero-nonce block intended to be mined k
iterations in the future – hash(ZNB), hash of list
with uncompressed peer messages to be used in the
next iteration (received in step 20) and the DER-
encoded ECDSA signature of the miner (see Table
1).

• Mines with several nonces.

If a miner finishes earlier the work for an epoch, then
he/she will wait for the majority of his/her peers to also
complete and will apply their peer updates ad interim.

For each epoch ξ, a leader supervisor is chosen
in a round-robin fashion using the formula: (i − 1)

A Proof of Useful Work for Artificial Intelligence on the Blockchain 7

Algorithm 1 Work done during an iteration

1: procedure Iteration()
2: X(tr),y(tr) ← Load(bi) . Load a mini-batch

3: for each ∆
(p)
i ∈∆(p) do

4: θ′ ← θ − ε∆(p)
i . Update local replica with

peer values

5: g(`) ← Backprop() . Compute local gradients
using backpropagation

6: g(r)′ ← g(r) + g(`) . Update gradient residual
7: g(r)′′ ← g(r)′ ; ∆(`) ← 0n; δ(`) ← .

Initialise final residual gradient, local weights list
and message map (n – length of the gradient)

8: for each g
(r)′

i ∈ g(r)′ do

9: if g
(r)′

i > +τ then
10: δ(`) ← δ(`) ∪ e(1, i)
11: ∆

(`)
i ← +τ

12: g
(r)′′

i ← g
(r)′

i − τ
13: else if g

(r)′

i < −τ then
14: δ(`) ← δ(`) ∪ e(0, i)
15: ∆

(`)
i ← −τ

16: g
(r)′′

i ← g
(r)′

i + τ

17: θ′′ ← θ′ − ε∆(`) . Update local replica with
local values

18: K(tr) ← FwdPass(θ′′,X(tr),y(tr)) . Evaluate
metrics on the training mini-batch

19: δ(p) ← Get peers message maps() . Receive,
uncompress peer messages and extract the message
maps.

20: ∆(p) ← Rebuild gradients(δ(p))
21: msg ← Build message (serialise the variables in

Table 1 in an IT RES message, sign and compress)
22: Send(msg) . Broadcast message to network
23: Mine(...) . Mine

mod ξ + 1, where i is the rank of the supervisor’s ID
after sorting all supervisors in lexicographical order.
If the next potential leader (index (i − 1) mod ξ +
2) submits a valid multi-party REPLACE LEADER
special transaction backed by at least 2/3 of supervisors
then the current leader is replaced by the next one.
The transaction contains the reason why the leader
was replaced (offline, too slow, malicious etc). This
procedure can continue until a good leader is found.

Supervisors help miners to prove that they performed
honest ML work by recording the messages sent during
the training, the message history. Verifiers are only
interested in the segments of the message history that
can demonstrate useful work. Therefore, during an
epoch the leader will pack sets of consecutive messages
into slots. Supervisors agree on the exact order of the
messages in a slot using preferential voting (e.g. Schulze
method [24]). After the votes are cast, the leader
computes the result per slot and publishes the hash of it
as a MESSAGE HISTORY transaction. The slot raw

TABLE 1: Payload of an IT RES message.

field bytes type notes

version 2 short message version

task id 16 uuid task id

msg type 1 char IT RES

ξ 2 ushort epoch

|δ(`)| 2 ushort no. of peer updates

δ(`) 4 ∗ |δ(`)| list see Fig. 3

|K(tr)| 2 ushort no. of metrics

K(tr) 4 * |K(tr)| list metrics

t(s) 4 uint UNIX timestamp

t(f) 4 uint UNIX timestamp

hash(bi) 32 uint256 SHA256

hash(∆(p)) 32 uint256 SHA256

hash(θ) 32 uint256 SHA256

hash(g(r)) 32 uint256 SHA256

hash(ZNB) 32 uint256 SHA256

hash(δ(p)) 32 uint256 SHA256

sgn 65 string DER-encoded ECDSA

data is kept by all supervisors and can be downloaded
by miners or verifiers.

Worker nodes lose their stake if they skip assigned
iterations (5% for miners and 10% for supervisors).
A worker node rejoining a task has to catch up
with the latest weight updates. Supervisors can add
another miner to the group if the number of miners
drops below 80% of the initial size. A supervisor is
replaced when he/she fails to record more than 10%
of the iterations. The leader initiates the replacement
procedure by publishing a special transaction called
RECRUIT WORKER NODE. We provide all the
details about the detection of offline nodes and the
replacement procedure in the Supplementary material
(Appendix E).

4.4. Finalisation

The client provides the test dataset to the evaluators
and they will verify if the client did not cheat (i.e. the
hashes match the withheld test mini-batches). They
check the model from each miner on the test dataset
and they send the model with the best performance to
the client. Evaluators are selected using a matching
algorithm similar to the one used for worker nodes.

8 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

TABLE 2: Notation used in Algorithm 1.

symbol meaning

X(tr) features in the mini-batch

y(tr) targets in the mini-batch

θ model’s state (weights and biases)

at the beginning of iteration

θ′ model’s state (weights and biases)

after applying peer updates

θ′′ model’s state (weights and biases)

after applying local updates

ε learning rate

∆(p) weight updates from peers

∆(`) local weight updates

g(`) local gradient

g(r), g(r)′ , g(r)′′ residual gradient at different steps

δ(`) message map

δ(p) message maps from peers

K(tr) metrics on mini-batch

t(s) iteration start time

t(f) iteration end time

Evaluators must produce identical conclusions con-
taining ML metrics. A conclusion is published using
the special CHARGE FOR TASK transaction. If less
than 2/3 of the evaluators produce identical reports,
subsequent rounds of evaluators are drawn until a 2/3
consensus is reached. An evaluator can cheat by wait-
ing to see the conclusions of others appearing in the
mempool, and then publish an identical one. To pre-
vent this, we break the procedure in two phases: 1) all
evaluators post conclusions to the mempool in an en-
crypted form; 2) once they see that all conclusions have
been posted, each of them then posts the decryption
key. We call this method commit-then-reveal.

We summarised all the above steps in Fig. 4.

5. PROOF OF USEFUL WORK

5.1. Mining

After each iteration, a miner has the right to mine a
block. In the classical Bitcoin, a miner can obtain
different hashes of the block header by varying the
nonce. We limit the number of nonces to a = ωB ∗
disk size(bi) +ωM ∗model size(θ′′), where model size
is a function returning the number of weighs and
biases in the model, while ωB and ωM are network-

R
E

G
IS

T
R

A
T

IO
N

IN
IT

IA
L
IS

A
T

IO
N

T
R

A
IN

IN
G

F
IN

A
L
IS

A
T

IO
N

client submits
task

worked nodes
are assigned to

task

task definition
block is created

participation
block is created

key exchange
and generation

dataset
preparation

mini-batches
assignment

data storage
and backup

miners process
iterations in

parallel

supervisors
record

messages

miners create
blocks with lucky

nonces

verifiers check
new blocks

evaluators are
selected

evaluators
receive models
and test dataset

evaluators test
all models

evaluators split
the client's fee

and pay the
honest

participants

FIGURE 4: ML task steps. Summary of main events
during a typical ML training procedure in the PAI
blockchain.

iteration i iteration i+1 iteration i+k

zero-nonce block commitment

iteration i+k+1

zero-nonce block commitment

...

mine with block

committed at

iteration i

mine with block

committed at

iteration i+1

FIGURE 5: Zero-nonce block commitment. A
miner announces k iterations in advance the zero-nonce
block to be mined.

wide coefficients. We want to ensure that hashing is
insignificant and that most computing power is spent
for ML training.

A miner might also generate billions of hashes by
manipulating the transactions included in the block
(e.g. changing the timestamp). Therefore, we require
that k iterations before, the miner should ”commit” to
a zero-nonce block (ZNB), as illustrated in Fig. 5. A
ZNB is built using a fixed header and a fixed set of
transactions, with the nonce and other auxiliary fields
necessary for PoUW set to zero. A miner should include
the ZNB hash in the IT RES message at iteration i. At
iteration i + k, the miner replaces the nonce from the
ZNB with the nonces obtained with by-products of ML
training, as described in Algorithm 2. The nonce is a
double hash of the concatenation of the local model at
the end of the iteration (θ′′) and the local gradients.
We call the first hash obtained with the by-products of
ML work the nonce precursor.

A Proof of Useful Work for Artificial Intelligence on the Blockchain 9

Algorithm 2 Mining operation

1: procedure Mine(...)
2: nonceprecursor ← hash(θ′′|∆(`)) . Build nonce

precursor
3: nonce← hash(nonceprecursor) . Build nonce
4: a = ωB ∗ disk size(bi) + ωM ∗model size(θ′′) .

No. of nonces allowed
5: for j ← 0 to a− 1 do
6: success = MineWithNonce(nonce+ j)
7: if success then
8: Store(θ, bi, g

(r),∆(p), hi) .
Miner stores: model from beginning of iteration,
mini-batch, gradient residual, peer updates and the
relevant message history IDs

9: block ← MakeBlock(...nonce, hash(hi),
hash(msg)...) . New block with PoUW fields.

10: AddToPAIBlockChain(block) . Adds
the block to the PAI blockchain.

Upon successful mining, the miner stores the initial
model state (weights and biases), the mini-batch, the
initial gradient residual and the peer updates, but
also downloads and stores the relevant message history
slots from the supervisors. Furthermore, creates a new
block with hash(hi) and hash(msg) as extra fields for
lookup, where hash(hi) refers to the Merkle tree of the
message history slots containing the IT RES messages
from iteration i up to iteration i+ k, while hash(msg)
is the hash of the IT RES message corresponding to the
lucky iteration. After successful verification, the block
is added to the PAI blockchain. Fig. 6 shows the block
header particularities of PoUW vs. the Bitcoin.

For settlement, transactions are added from the
mempool to the blockchain through mining. When
there are periods without client tasks, to ensure
continuous mining, miners will work on several network-
wide predefined tasks, such as protein structure
prediction using DNN. Miners would not get a client’s
fee, only the block’s reward and the transactions’
fees. Exceptionally, supervisors, verifiers and evaluators
would get paid from the block’s reward. After all blocks
with non-zero subsidy have been mined, they will be
paid from the transactions’ fees. To prevent a shortage
of miners, the network should have a limited number of
dedicated mining agents belonging to Project PAI.

5.2. Verification

Verification of a mined block is delegated to the verifier
because re-running an iteration is computationally
expensive. Verification has the following steps:

• Ten verifiers are automatically selected based on the
mined block hash (as a random seed).

• Verifiers first check if the hash of the block is under
the network target T (as in Bitcoin).

Bitcoin PAICoin

nVersion
always 2

HashPrevBlock
hash of the previous
block header

HashMerkleRoot
root of the Merkle hash
tree of transactions

nTime
block creation time

nBits
network target value

nNonce
4 bytes of arbitrary data

nVersion
may vary

HashPrevBlock
hash of the previous
block header

HashMerkleRoot
root of the Merkle hash
tree

nTime
block creation time

nBits
network target value

nNonce
32 bytes

HashMsg
hash of message

HashMsgHist
root of Merkle tree
for message history
slots

FIGURE 6: Block header differences between
Bitcoin and PAICoin. Differing fields are marked
by a square sign. We used the same notation and block
structure as in [25].

• They extract the fields from the block:
nonce, hash(hi) and hash(msg) and receive the
mini-batch, the local model from the start of the
iteration, the gradient residual, the peers’ weight
updates and the relevant message history part.

• After extracting information from the message
history, they can check if the miner is legit and if
the ticket and the ML task are valid.

• A verifier compares the hashes and decides if the
message history slot was registered as a special
transaction in a previous block and if the hash of the
starting model, the gradient residual and the peers’
updates were announced in the previous iteration.

• They verify if batch bi exists and if it should have
been processed at that particular time in that order,
as given by the preset order of messages from the
initial allocation.

• From message history, verifiers can check if the i+ k
commitment is valid, by comparing it with the zero-
nonce block version of the currently mined block.

• Given the mini-batch, the starting local model, the
peers’ updates and the gradient residual, verifiers re-
run steps 2-18 from the Algorithm 1 and check if the
obtained metrics coincide with the ones sent to the
network.

10 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

• Verifiers compress, hash the peer messages and check
if the results match the hash reported in the previous
message.

• With the end iteration model state and the local
weights map calculated, a verifier will reconstruct the
nonce precursor and the nonce and compare it with
the one provided in the mined block.

• Verifiers will also check if the metrics improved over
a time window ∆t.

• Each verifier will post an encrypted digest (as a
transaction) containing the nonce precursor to the
mempool.

• The miner watches for digests to appear
and decides at some point to post a COL-
LECT VERIFICATIONS special transaction.
The miner is interested to get as many confirma-
tions as possible because the next block subsidy is
proportional to them (in increments of 10%, up to
100% of the usual Bitcoin subsidy per block when
10 approvals are collected) and he/she wants other
miners to build on top of his block in the future.

• Verifiers will reveal their digests by providing the
encryption key as another transaction. The digests
also contain the metrics reported on the task.

Regular peer nodes check if the block hash is under
the network target as in the Bitcoin protocol, but they
also watch for verifiers’ digests to verify if the nonce was
generated from the nonce precursor. The transactions
containing digests for the previous block are included
in the current block to prove the subsidy amount in
the coinbase transaction (the transaction that pays the
miner for finding the block).

6. IMPLEMENTATION

We implemented an early stage proof-of-concept (PoC)
of PoUW. Our work can be found at pouw.projectpai.
com. There are three software repositories and all
projects have detailed step-by-step setup and usage
instructions.:

PoUW Core contains the code related to the dis-
tributed ML training (Algorithm 1), verification
(Subsection 5.2) and mining (see Algorithm 2). For
the ML training, we used MXNet [26], which is
suited for high performance machine learning and
has support for dynamic computational graphs.
According to our preliminary tests, MXNet is gen-
erally faster than several other similar ML frame-
works. MXNet is also used by Amazon in their
ML cloud offerings and it is an open-source project,
part of the Apache Incubator.

PoUW Blockchain is the underlying blockchain used
for our PoC and it is a modified version of

miner 3

miner 2

miner 1

0 5000 10000 15000

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

iterations

a
c
c
u
ra

c
y

miner 3

miner 2

miner 1

0 5000 10000 15000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

iterations

lo
s
s

FIGURE 7: Convergence. In this example, a
distributed ML system with 3 miners improves the
accuracy and minimises the loss as the training is
progressing.

Project PAI’s blockchain. It contains the block
header modifications, special transactions and
other blockchain logic. PoUW Core cannot
function without PoUW Blockchain and viceversa.

PoUW Simulation is a project based on Kubernetes
[27] to simulate a PoUW environment with
different actors for how to setup a simulation). It
can be used to study a PAI network on a local or
cloud machine. Fig. 7 shows an example of how
our ML system is improving the metrics during
the training. To collect these metrics, 3 miners
trained a fully-connected DNN using the standard
MNIST dataset from [15] on a NC6 Microsoft
Azure machine (Intel Xeon E5-2690v3 CPU, 56
GB RAM and 1 x K80 GPU). The convergence
topic and how the distributed system behaves with
different numbers of training nodes on various data
sets are outside the scope of this paper (see [4] for
more information on these matters).

PoUW is now part of the Project PAI initiative. More
details about the project are available on the parent
page at projectpai.com.

7. DISCUSSION

Our protocol brings several advantages over the
classical Bitcoin. We use a modified hybrid PoW/PoS
consensus with better security and we provide more
rewards to network participants. However, due to its
inherent complexity, our solution takes into account

pouw.projectpai.com
pouw.projectpai.com
projectpai.com

A Proof of Useful Work for Artificial Intelligence on the Blockchain 11

and mitigates potential performance and security
risks. In the following subsections, we provide
an economical analysis and discuss about several
performance optimisations and adversarial scenarios
important for the security of the system.

7.1. Economical analysis

Our PoUW solution is more profitable than Bitcoin
mining and it is cheaper than ML cloud solutions.
To prove it, we compare the costs of a client using
a cloud ML solution vs. ours, and the return on
investment (ROI) for miners in two scenarios: Bitcoin
and PoUW mining. We assume that a client will not
pay an hourly fee higher than what cloud providers
are charging for a ML-capable virtual machine. Miners
would not participate if their investment and operating
costs exceed their profits. Miners would switch to
Bitcoin mining if that would be more profitable.

To study the ROI and the profitability, we published
an online PoUW cost calculator available online on the
project page under the ’ROI Calculator’ link. The
variables’ names and formulas are explained in the
online document. We briefly describe the calculator:

• The first sheet contains global parameters, such as
the client’s hourly fee (in USD), the average number
of paid participants per task, the ML distributed
system efficiency, the price of the PAICoin and the
Bitcoin, the electricity price, no. of active miners in
the PAI network and the PAI block revenue.

• The second sheet is a price study containing profits
for the most popular Bitcoin mining rigs.

• The third sheet contains a comparison between using
cloud ML training solutions from Amazon, Microsoft
and Google vs. four local deep learning workstation
configurations (two hardware configurations from [28]
and two from Exxact [29]).

• The fourth sheet shows the client’s profit if he/she
uses our system.

We assume a PoUW miner invests initial capital to
buy ML hardware that is amortised in 3 years. It is
cheaper for a miner to buy and use a local workstation
than use similar cloud machine configurations. The
total costs after 1 and 3 years for local vs. cloud
scenarios are shown in Fig. 8. The formula for the
return on investment (ROI) as a percentage is:

R = 100(
g
(
Fh

Q + 6WU

)
CH

26280 + E
− 1),

where g is the number of GPUs in the configuration,
Fh is the client hourly fee (fee usd client 1h from
the cost calculator), Q is the average number of
paid participants per task (paid participants per task),
W – miner’s block revenue (revenue pai block *

0

10000

20000

30000

40000

50000

AW
S M

L
(p

3.
2x

la
rg

e)

Azu
re

 M
L

(N
C
6s

 v
3)

Bud
ge

t w
or

ks
ta

tio
n

Exx
ac

t E
nt

ry
−L

ev
el

Exx
ac

t M
id
−R

an
ge

G
oo

gl
e

C
lo
ud

 M
L

(c
2−

st
an

da
rd

−8
 &

 v
10

0)

M
id
−L

ev
el
 w

or
ks

ta
tio

n

configuration
to

ta
l
c
o
s
t
($

)

year

first

third

FIGURE 8: Total costs at 1 and 3 years. Budget,
Mid-Level and Exxact configurations are local solutions.
AWS, Azure and Google are cloud solutions.

price usd paicoin), U – average number of miners in
the network at any moment (miners active), CH –
initial cost of hardware (cost usd hwd), E – electricity
price per hour (power kwh 1h * cost usd 1h). To assess
how ROI changes in respect to the input variables, we
provide its partial derivatives:

dR

dFh
=

2628000g

Q (CH + 26280E)

dR

dQ
= − 2628000g · Fh

Q2 (CH + 26280E)

dR

dW
=

15768000g

U (CH + 26280E)

dR

dU
= − 15768000g ·W

U2 (CH + 26280E)

dR

dCH
= −2628000g · (Fh · U + 6 ·Q ·W)

QU (CH + 26280E)
2

dR

dE
= −69063840000g (Fh · U + 6 ·Q ·W)

QU (CH + 26280 · E)
2

To quantify the importance of the ROI variables, we
need to take into account real-world constraints: the
electricity price is in an interval, the block reward is
halving and there are static hardware configurations.
In the case when Fh = 0.50 $, Q = 20, W = 1155 $
(revenue pai block=1500 and price usd paicoin=0.77 $,
the mean all-time price of PAICoin), U = 10000, CH =
1945 $ and 0.12 $ for 1 kWh, we have obtained the
importance scores (in percentages) outlined in Fig. 9.
We can see that electricity is the variable whose change
has the most influence on the profitability. Fig. 10

12 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

27.36

8.59

20.52

37.45

6.08

variable

client fee

electricity

network size

no. of paid task participants

PAICoin reward

FIGURE 9: Importance of variables. We plotted
the most important ROI variables (others are <1%).
Variables were assessed by their absolute values.

shows a rapid decrease in profits as the price of a kWh
increases. The same is true for the classical Bitcoin.
The PAICoin reward (composed of the block reward
multiplied by the PAICoin price) is the second most
important variable, closely followed by the network
size. Other variables that matter are the average
number of paid task participants (miners, supervisors
and evaluators) and the client’s fee.

However, Fig. 9 does not capture the impact of the
initial hardware investment. From Fig. 11, it might
seem that PoUW profitability is higher for miners that
invest less in their hardware configurations. To mitigate
against this kind of risk, our solution has a matching
mechanism between a specific task hardware preferences
and the miners’ systems capabilities (see Subsection
4.1). More expensive hardware comes with more GPUs
(g > 1), and the miner can participate in several tasks
simultaneously (one GPU per task). Additionally, the
reward scheme R should allocate a higher compensation
for the better hardware.

A miner participates in our network if his/her hourly

profit P
(pai)
h is positive and greater than the profit

obtained by mining Bitcoin using the best mining rig

on the market (P
(btc)
h): P

(pai)
h > P

(btc)
h and P

(pai)
h >

0. The hourly profit is calculated as: P
(pai)
h =

g
(
Fh

Q + 6WU

)
−
(
CH

26280 + E
)
.

Clients use our PoUW system if they pay less than

the cheapest cloud option F
(cloud)
hmin

(in our case, GCP

is F
(cloud)
hmin

= 2.36 $), attenuated by a variable that
describes the distributed system’s efficiency, Ef , such

0

200

400

0.00 0.25 0.50 0.75 1.00

kWh price ($)
R

O
I
(%

)

configuration

Budget workstation

Exxact entry level

Exxact mid−range

Mid−level workstation

FIGURE 10: ROI (%) as a function of electricity
price.

100

200

2000 4000 6000 8000 10000

Initial hardware cost ($)

R
O

I
(%

)

FIGURE 11: ROI (%) as a function of initial
hardware cost.

that: Fh < F
(cloud)
hmin

·Ef . The advantage (%) gained by

a client using our solution is 100

(
1− Fh

F
(cloud)
hmin

·Ef

)
.

With the price of Bitcoin being $8243.41 (as
of October 2019), only the best Bitcoin mining
rig on the market (Antminer S17 Pro) achieved
a 18% ROI in our calculations, while the PoUW
miner configurations achieved a mean ROI of around
200% using the previously stated parameter values.
Therefore, PAICoin PoUW mining was approx. 10x
more profitable than Bitcoin. For clients, we also
obtained reduced fees by approx. 30% vs. using the

A Proof of Useful Work for Artificial Intelligence on the Blockchain 13

cheapest cloud ML option.

7.2. Performance considerations

A distributed solution will never be as efficient as
running the whole training on a local machine, but
there are several optimisations which can improve
the performance: miners can receive gradients
asynchronously during the whole iteration, the mini-
batches can be preloaded, building the message map
can be done in parallel. Mining can be performed
in a different thread or process. Worker nodes can
discard unnecessary data. Only verifiers carry out full
verifications, regular peer nodes are not overwhelmed
with expensive computations. In our Supplementary
Material, we offer more information about performance
characteristics and how we can increase the efficiency
Ef .

To optimise bandwidth, we use the ”dead-reckoning”
scheme from Strom in [4]. The technique achieves a
reduction of 99.6 % in data transfers for a model with
14.6 million parameters, as reported in [6].

7.3. Security

We assume that the majority of participants is honest.
We designed our PoUW protocol to avert various
threats from Byzantine actors. We list the strategies
to disincentivize and make cheating impossible in the
following paragraphs:

Client uses pre-trained models
In this scenario, a client has pre-trained a model with
good performance. He/she submits the ML task to
the PAI network and then acts as a miner. If the
malicious actor is selected to work on the task, he/she
could submit his/her pre-trained model without doing
ML work, while mining for PAI coins.

Homomorphic encryption would ensure adequate
protection, but it is computationally infeasible [30]. To
mitigate this risk, each miner must send weight updates
at every iteration and must provide the inputs for lucky
nonces. A malicious actor cannot perform cheap work
because his/her progress depends on peer updates.

Client uses a test set from another distribution
The client might do this to obtain a trained model
without having to pay for it because it would have a
bad performance on the test dataset. The training and
the test dataset should be identically distributed.

In our protocol, the client submits the whole dataset
that is shuffled and split into a training and a test
dataset based on the hash of the task definition
block (as described in subsection 4.2.2). The task
definition block is unknown, it doesn’t exist before task
submission and subsequent mining.

Client submits a malformed task definition
We allow the worker nodes to inspect and report if
the task T is malformed. In that case, the client’s fee
is confiscated and distributed to worker nodes and to
evaluators.

Gradient poisoning attack
Gradient poisoning is a type of attack in which a miner
tries to skew the learning process by sending huge or
fake gradients. Sending the same message multiple
times is also a type of poisoning (spam). Blanchard
et al. have proven in [31] that only one Byzantine actor
could significantly affect the ML process and proposed
the Krum function for detection. Damaskinos et al.
also proposed the Kardam filter [32] for dealing with
this threat.

Supervisors watch for this attack and add the
malicious worker node to a blacklist which they expose
publicly. Fellow nodes will ignore the gradient updates
from the bad miners and evaluators will confiscate their
stakes. Also, miners will not apply multiple IT RES
messages corresponding to the same iteration. To turn
away miners that do not make progress, validators
require that a lucky miner must prove that his/her local
model improved over previous iterations.

Miner performs only mining
We constrain the number of nonces to make classical
mining insignificant. A miner that would do bogus ML
work and focus only on mining would be unable to prove
the validity of the produced blocks. Bogus ML work
includes: echoing received weight updates, leaving the
task before completion or not following the steps in the
ML training. It is economically damaging to the miners
to engage in such behaviours because they would lose
their stake and wouldn’t receive any fee from the client
anyway.

Sybil attacks
Bad actors can setup several Sybils on the network to
collectively generate a bad model. They could also
perform cheap work by replicating only one unit of work
across all controlled nodes. To avert this attack, worker
nodes are not allowed to pick tasks themselves, they
only state their preferences (see Subsection 4.1). By
doing so, they also cannot pick easy tasks.

Byzantine leader
If the leader of the supervisors delays publishing
the MESSAGE HISTORY transactions, then another
leader is immediately elected. If the leader publishes in-
valid MESSAGE HISTORY transactions, then he/she
is added to the blacklist and replaced.

DOS attacks
Worker nodes may suspect that a DOS attack takes
place when they do not receive enough peer updates or

14 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

when the training process is very slow (or stalled). They
can pause the training process and resume it when the
attack is over.

The procedure to defend against DOS attacks
is: several worker nodes issue a CONSIDER PAUSE
transaction with the reason DOS ATTACK. When a
majority is considering to pause within a predefined
time-frame, then honest workers emit a PAUSE
transaction and everybody pauses. In pause mode,
every concerned node will send HEARTBEAT off-
chain messages to the former nodes in the ML task
group. When a new majority of active nodes is formed,
they can publish CONSIDER RESUME messages and
finally, RESUME transactions to continue the training
process.

A verifier can reject a block mined during a DOS
attack if there are enough elements to suspect that it
was mined by an attacker.

Blockchain spam
A malicious miner could flood the blockchain with
bogus blocks and determine honest verifiers to spend
a considerable effort to validate them. This is also a
DoS attack because it is hard to validate these blocks
very fast. We adopt the following countermeasures:

• We prioritise the less expensive verification opera-
tions to be run first.

• A miner’s stake gets confiscated and the miner is
blacklisted if he/she submits invalid blocks.

• We limit the number of blocks a miner can publish
during a predefined time interval.

Long-range attacks
In a long range attack, an attacker forks a large number
of blocks or the entire blockchain starting with the
genesis block. If the attacker has a high computational
power, he/she can even outpace the main chain and
publish his/her alternative chain.

Our underlying blockchain is a hybrid PoS/PoW
blockchain protected by the longest chain rule. New
blocks are created by spending a considerable amount
of energy on useful work. We also require that at every
1024 blocks a checkpoint is created: everything before
the checkpoint is truly immutable (i.e. no change can be
done later to parts of the blockchain deeper than 1024
blocks). To establish a checkpoint, a set of 12 validators
are randomly chosen to vote. At least 9 out of 12 votes
are needed to establish a checkpoint.

8. CONCLUSION

We presented a novel proof of useful work concept using
a distributed and decentralised machine learning system
on blockchain. Our proposal can be easily extended to
other AI algorithms.

We briefly reviewed the related work and outlined
the unique characteristics of our solution. We
conceived a different blockchain framework in which
miners get compensation for doing useful work and
we elaborated mechanisms to deter and punish bad
actors. We presented the roles, the environment and
the consensus protocol that combines machine learning
with blockchain mining to create and reward useful
work.

In our system, a client can train a ML model using
a distributed network of worker nodes. After they
perform a small unit of pre-assigned work, miners
can mine new blocks with special nonces. At each
iteration, nonces are obtained with a formula that
takes into consideration inputs and by-products of
the ML training. If a miner finds a lucky nonce,
he/she must prove that he/she executed honestly the
iteration so that his block will be accepted by the
rest of the network. Verification means re-running
the lucky iteration. Because miners are using data
parallelism to train their models, they need to exchange
information quickly using off-chain messages. Most of
these messages carry data about updates that a miner
performed to his/her local model. These updates are
replicated across the task group by fellow worker nodes.
A message history is recorded and will serve later in the
verification. Compared to other blockchains, a node
always receives compensation from the client; solving
the blockchain puzzle is a bonus. Although we constrain
the nonces to several values, the target difficulty in the
network is very low in order to mine a block every 10
minutes as in the Bitcoin protocol. We shift the mining
process towards ML training, while the actual hashing
is insignificant.

We also implemented a proof of concept for PoUW.
We showed that our PoUW solution is more cost-
friendly to a client than regular cloud ML training,
but also more profitable to miners compared to Bitcoin
mining. Our approach also shows that ML models
can be trained collectively with good performance
using commodity hardware owned by individuals.
We believe that such a system would democratise
artificial intelligence using the security of the blockchain
technologies.

In this paper, we described the particular case
of training a deep neural network (DNN), but the
principles can easily generalise to most AI iteration-
based algorithms. Future work includes adding
multi-party secure computation to the protocol and
a production-ready implementation of the system
described in this paper.

ACKNOWLEDGMENTS

The authors would like to thank Muhammad Naveed,
Assistant Professor of Computer Science at the
University of Southern California for his extraordinary
assistance and for reviewing this work.

A Proof of Useful Work for Artificial Intelligence on the Blockchain 15

REFERENCES

[1] Nakamoto, S. (2009). Bitcoin: A peer-to-peer
electronic cash system.

[2] Ball, M., Rosen, A., Sabin, M., and Vasudevan, P. N.
(2017) Proofs of useful work. IACR Cryptology ePrint
Archive, 2018, 203.

[3] Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. (2017) Accurate, Large Minibatch SGD Training
ImageNet in 1 Hour. CoRR, arXiv.

[4] Strom, N. (2015) Scalable distributed dnn training
using commodity gpu cloud computing. INTER-
SPEECH, pp. 1488–1492. ISCA.

[5] Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin,
M., Le, Q. V., Mao, M. Z., Ranzato, M., Senior, A.,
Tucker, P., Yang, K., and Ng, A. Y. (2012) Large
scale distributed deep networks. Proceedings of the
25th International Conference on Neural Information
Processing Systems - Volume 1, USA NIPS’12, pp.
1223–1231. Curran Associates Inc.

[6] Skymind (2018) Introduction to Distributed Training of
Neural Networks.

[7] King, S. (2013). Primecoin: Cryptocur-
rency with prime number proof-of-work.
http://primecoin.io/bin/primecoin-paper.pdf.

[8] Decentralized machine learning: whitepaper. https:
//decentralizedml.com.

[9] SingularityNET: A decentralized, open market
and inter-network for AIs. https://public.
singularitynet.io/whitepaper.pdf .

[10] Gridcoin whitepaper. https://gridcoin.us/assets/
img/whitepaper.pdf .

[11] Baldominos, A. and Saez, Y. (2019) Coin.AI: A proof-
of-useful-work scheme for blockchain-based distributed
deep learning. CoRR, arXiv.

[12] Li, M., Weng, J., Yang, A., Lu, W., Zhang, Y.,
Hou, L., Liu, J., Xiang, Y., and Deng, R. H. (2019)
Crowdbc: A blockchain-based decentralized framework
for crowdsourcing. IEEE Transactions on Parallel and
Distributed Systems, 30, 1251–1266.

[13] Boneh, D., Lynn, B., and Shacham, H. (2004) Short
signatures from the weil pairing. Journal of Cryptology,
17, 297–319.

[14] developers, D. Decred documentation. https://docs.
decred.org/.

[15] LeCun, Y. and Cortes, C. (2010). MNIST handwritten
digit database.

[16] Micali, S., Rabin, M., and Vadhan, S. (1999) Verifiable
random functions. Proceedings of the 40th Annual
Symposium on the Foundations of Computer Science,
New York, NY, October, pp. 120–130. IEEE.

[17] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and
Zeldovich, N. (2017) Algorand: Scaling byzantine
agreements for cryptocurrencies. Proceedings of the
26th Symposium on Operating Systems Principles, New
York, NY, USA SOSP ’17, pp. 51–68. ACM.

[18] Pedersen, T. P. (1991) A threshold cryptosystem
without a trusted party. Proceedings of the
10th Annual International Conference on Theory
and Application of Cryptographic Techniques, Berlin,
Heidelberg EUROCRYPT’91, pp. 522–526. Springer-
Verlag.

[19] Karger, D., Lehman, E., Leighton, T., Panigrahy, R.,
Levine, M., and Lewin, D. (1997) Consistent hashing
and random trees: Distributed caching protocols for
relieving hot spots on the world wide web. Proceedings
of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, New York, NY, USA STOC ’97,
pp. 654–663. ACM.

[20] Mirrokni, V., Thorup, M., and Zadimoghaddam,
M. (2018) Consistent hashing with bounded loads.
Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 587–604.

[21] Duminuco, A. (2009) Data Redundancy and Mainte-
nance for Peer-to-Peer File Backup Systems. Phd the-
sis Télécom ParisTech.

[22] Reed, I. and Solomon, G. (1960) Polynomial codes over
certain finite fields. Journal of the Society for Industrial
and Applied Mathematics, 8, 300–304.

[23] Goodfellow, I., Bengio, Y., and Courville, A. (2016)
Deep Learning. The MIT Press.

[24] Schulze, M. (2011) A new monotonic, clone-
independent, reversal symmetric, and condorcet-
consistent single-winner election method. Social Choice
and Welfare, 36, 267–303.

[25] Okupski, K. (2014). Bitcoin developer reference.

[26] Chen, T., Li, M., Cmu, U. W., Li, Y., Lin, M.,
Wang, N., Wang, M., Xu, B., Zhang, C., Zhang,
Z., and Alberta, U. MXNet : A Flexible and
Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiV, 2015, 1–6.

[27] What is Kubernetes. https://kubernetes.io/docs/
concepts/overview/what-is-kubernetes/.

[28] Chen, J. (2019). How to build the perfect Deep
Learning Computer and save thousands of dol-
lars. https://medium.com/the-mission/
how-to-build-the-perfect-deep-learning-\
computer-and-save-thousands-of-dollars-\
9ec3b2eb4ce2.

[29] Exxact Corp – The Best Deep Learning Workstations
in the Business. https://www.exxactcorp.com/
Deep-Learning-NVIDIA-GPU-Systems.

[30] Rist, L. Jan Encrypt your Machine Learning. Medium,
2018.

[31] Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and
Stainer, J. (2017) Machine learning with adversaries:
Byzantine tolerant gradient descent. Proceedings of the
31st International Conference on Neural Information
Processing Systems, Red Hook, NY, USA NIPS’17
118–128. Curran Associates Inc.

[32] Damaskinos, G., Mhamdi, E. M. E., Guerraoui, R.,
Patra, R., and Taziki, M. Asynchronous Byzantine
Machine Learning. arXiv, 2018.

[33] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M.,
and Werthimer, D. (2002) Seti@home: An experiment
in public-resource computing. Commun. ACM, 45, 56–
61.

[34] Miller, A., Juels, A., Shi, E., Parno, B., and Katz, J.
(2014) Permacoin: Repurposing bitcoin work for data
preservation. Proceedings of the IEEE Symposium on
Security and Privacy, May. IEEE.

[35] Labs, P. (2017). Filecoin: A decentralized storage
network. https://filecoin.io/filecoin.pdf .

https://decentralizedml.com
https://decentralizedml.com
https://public.singularitynet.io/whitepaper. pdf
https://public.singularitynet.io/whitepaper. pdf
https://gridcoin.us/assets/img/whitepaper.pdf
https://gridcoin.us/assets/img/whitepaper.pdf
https://docs.decred.org/
https://docs.decred.org/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://medium.com/the-mission/how-to-build-the-perfect-deep-learning-\computer-and-save-thousands-of-dollars-\9ec3b2eb4ce2
https://medium.com/the-mission/how-to-build-the-perfect-deep-learning-\computer-and-save-thousands-of-dollars-\9ec3b2eb4ce2
https://medium.com/the-mission/how-to-build-the-perfect-deep-learning-\computer-and-save-thousands-of-dollars-\9ec3b2eb4ce2
https://medium.com/the-mission/how-to-build-the-perfect-deep-learning-\computer-and-save-thousands-of-dollars-\9ec3b2eb4ce2
https://www.exxactcorp.com/Deep-Learning-NVIDIA-GPU-Systems
https://www.exxactcorp.com/Deep-Learning-NVIDIA-GPU-Systems
https://filecoin.io/filecoin.pdf

16 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

[36] Vorick, D. and Champine, L. (2014). Sia: Simple
decentralized storage. https://sia.tech/sia.pdf .

[37] Schrijvers, O., Bonneau, J., Boneh, D., and Roughgar-
den, T. (2017) Incentive compatibility of bitcoin mining
pool reward functions. In Grossklags, J. and Preneel,
B. (eds.), Financial Cryptography and Data Security,
Berlin, Heidelberg, pp. 477–498. Springer Berlin Hei-
delberg.

[38] Miller, A., Juels, A., Shi, E., Parno, B., and Katz,
J. (2014) Permacoin: Repurposing bitcoin work for
data preservation. Proceedings - IEEE Symposium on
Security and Privacy, may, pp. 475–490. IEEE.

[39] (2020) Bitcoin Core version 0.9.0 released.

[40] Du, J. (2018) PoUW Research Report.

[41] Zhang, B. and Srihari, S. N. (2003). Properties of
binary vector dissimilarity measures.

[42] Prechelt, L. (2012) Early Stopping — But When? In
Montavon, G., Orr, G. B., and Müller, K.-R. (eds.),
Neural Networks: Tricks of the Trade: Second Edition.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[43] Chiu, J. and Koeppl, T. V. (2018). Incentive
compatibility on the blockchain.

[44] Waters, A., Harvilla, M., and Gerzanics, P. (2018) PAI
Data Storage and Sharing.

[45] Castro, M. and Liskov, B. (1999) Practical byzantine
fault tolerance. Proceedings of the Third Symposium
on Operating Systems Design and Implementation,
Berkeley, CA, USA OSDI ’99, pp. 173–186. USENIX
Association.

[46] Das, A., Gupta, I., and Motivala, A. (2002) Swim:
Scalable weakly-consistent infection-style process group
membership protocol. Proceedings of the 2002
International Conference on Dependable Systems and
Networks, Washington, DC, USA DSN ’02, pp. 303–
312. IEEE Computer Society.

[47] Backes, M. and Cachin, C. (2003) Reliable broadcast
in a computational hybrid model with byzantine faults,
crashes, and recoveries. In Proc. of Intl. Conference
on Dependable Systems and Networks (DSN-2003, pp.
37–46. IEEE.

https://sia.tech/sia.pdf

A Proof of Useful Work for Artificial Intelligence on the Blockchain 17

TABLE A.1: BUY TICKETS

transaction description

txin[0..n] references to existing UTXOs

txout[0] contains a value that is a multiple of the current price of tickets of the
according type (miner, supervisor etc.); script field is empty!

txout[1] returns change to the staker as P2PKH; this is the address to which
mining remuneration will be paid

txout[2] an OP RETURN that declares ticket type and preferences: ”TICKET-
TYPE:preferences”

TABLE A.2: PAY FOR TASK

transaction description

txin[0..n] these reference existing UTXOs

txout[0] declaring only the amount staked; script field is empty!

txout[1] returns change to the staker

txout[2] an OP RETURN that describes the task

APPENDIX A. ANATOMY OF TRANSACTIONS

PAI nodes recognise transaction types by reading their last TXOUT’s. They contain descriptions in their
OP RETURN scripts. Here is an example of a possible implementation. Details are given in Tables A.1, A.2
and A.3.

The specification of the Bitcoin OP RETURN outputs states that the first opcode is OP RETURN and it is
followed by a push opcode. We introduced a richer format called structured data outputs, which are recognized as
having OP RETURN fields followed by special OP STRUCT opcodes, which in turn are followed by an array of
data items. The specification for the structured data format also states that the first data item must specify the
version, followed by transaction specifics. For example, for PAY FOR TASK, the next fields contain details about
the dataset, validation, optimiser etc.

APPENDIX B. SHORTENING TASK WAIT TIME

We aim to shorten the waiting time of starting a task. We require that the timestamp of the task is earlier than the
block containing it and the task must eventually appear in all blockchain forks.

A node keeps a local list of tasks along with their detection time (which differs across nodes by seconds). To add
new elements to it, each node searches the chain starting from task’s timestamp, including orphaned forks in the
traversal. Any mined block containing the task submission is a task definition block, but the nodes should recognise
only one of them. Therefore, the oldest block is chosen, regardless of the branch. In case there is more than one
block with an identical timestamp containing the same task submission, the one with the lowest hash is picked.

Selected workers start joining by sending JOIN TASK transactions, in which they include the hash of their
perceived task definition block and the task hash. A majority with a specific task definition hash will emerge and
only those selected by it will start the training. Those who are not selected are ignored if they try to participate.

TABLE A.3: CHARGE FOR TASK

transaction description

txin[0..n] these reference task-related stakes (client’s stake as well as captured
stakes of participants who transgressed); script fields are empty!

txout[0..n] these are classic P2PKH outputs that pay participants; note that only
one CHARGE FOR TASK transaction is spendable

txout[n+1] an OP RETURN script that publishes the best model for the client to
download: ”RESULT:taskHash:url”

18 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

When training is completed, the part of the ledger around task submission moment will have been stabilised.
Nodes have to find the task stake block to reference the PAY FOR TASK stake. They search the chain starting from
the task’s timestamp, traversing only the active branch and disregarding stalled forks. The first block containing
the task submission is the task stake block.

Using this procedure the network can safely start working on tasks long before the stakes are confirmed.

APPENDIX C. A DISTRIBUTED KEY GENERATION (DKG) SCHEME

In our PoUW system, the private key shares are constructed using a distributed key generation (DKG) protocol
during task initialisation, which is a modified version of the Joint-Feldman protocol ([18]). It contains the following
steps:

• Each supervisor creates an t− 1-degree polynomial Si(x) = si,0 + si,1x+ ...+ si,t−1x
t−1, where all the coefficients

except si,0 are randomly generated private keys. si,0 = ski is the private BLS key of the participant.

• Based on their Si(x), all supervisors calculate and broadcast their own Pi(x) = pi,0 +pi,1x+ ...+pi,t−1x
t−1 which

is another polynomial of the same degree, that holds the corresponding public keys, such that pi,j = gi × si,j , j ∈
{0, ..t− 1}.

• Every party evaluates S(x) for all participants and for itself, by replacing x with the corresponding index of each
supervisor. For example, in case we are dealing with a 3-of-5 scheme, supervisor 2 will calculate the following:

S2(1) = s2,0 + s2,1 · 1 + s2,2 · 1
S2(2) = s2,0 + s2,1 · 2 + s2,2 · 22

S2(3) = s2,0 + s2,1 · 3 + s2,2 · 32

S2(4) = s2,0 + s2,1 · 4 + s2,2 · 42

S2(5) = s2,0 + s2,1 · 5 + s2,2 · 52

• Every supervisor will encrypt and send every Si(x) to the corresponding parties. E.g. supervisor 2 will use
supervisor 1’s public key to encrypt S2(1) and send it to supervisor 1. In case one party does not receive
all the private shares during a pre-set time window, he/she will complain against the senders by sending
DKG COMPLAINT transactions to the blockchain containing the indexes of the senders.

• Every private share is decrypted upon arrival and verified using P(x) by replacing x with his/her own
identifier/index. If the result does not match the public key derived from the received private share, the node
will fill a complaint against the sender by publishing a DKG COMPLAINT transaction on the blockchain, that
contains the identity of the culprit and the received private share.

• To obtain the global public key (Pk), all supervisors will aggregate the free terms of all polynomials P(x):
Pk =

∑n
i=1 pi,0 = p1,0 + p2,0 + ...+ pn,0, which are publicly known.

• The global private key Sk =
∑n
i=1 si,0 = s1,0 + s2,0 + ...+ sn,0 is unknown to any party.

• At the end of the protocol, all supervisors must post DKG SUCCESSFUL transactions containing the locally
calculated t-of-n public key Pk. When n such transactions with the same public key are observed during a
predefined time window ∆t, then the DKG protocol is considered successful and the parties can proceed to the
next phase.

A DKG protocol runs in the initialisation phase of a ML task (after the key exchange), but also whenever the
supervisory committee changes. Supervisors that produce faults during DKG are banned from the network and their
stakes are confiscated.

It is not easy to detect if a node received a wrong share or the node received a correct share but pretends that
he/she didn’t in order to exclude another node. If 2/3 of the nodes complain against one node, then that supervisor is
automatically disqualified; however, if only one node complains against another, then the other nodes will vote based
on the current evidence which of the nodes will be excluded: the sender or the receiver. The DKG is restarted with
the existing non-faulty members if their reduced number still satisfies the size requirements or with new members
replacing faulty ones if there would be less worker nodes than required. The selection procedure for additional worker
nodes is the same as the one provided in the task registration phase. Miners will include JOIN TASK transactions
for the extra nodes in a second participation block that should reference the first participation block.

A Proof of Useful Work for Artificial Intelligence on the Blockchain 19

APPENDIX D. SIGNING T-OF-N TRANSACTIONS

Each supervisor has several secret key shares that are used to sign t-of-n transactions. For a transaction tx, each
supervisor will follow these steps:

1. Compute H(tx), which is the hash of the transaction to the BLS curve.

2. Publishes Sigi(tx) =
∑n
j=1 Sj(i) × H(tx), where i is the index of the current node and j indexes the private

shares. Please note that each node i calculates the aggregation of its private key shares as
∑n
j=1 Sj(i) and uses

it to sign the transactions.

3. The epoch leader collects at least t signature shares.

For a given transaction tx, as soon as any t signature shares are collected, due to the BLS threshold signature
properties, the leader can reconstitute the global signature on the transaction (Sig(tx)) by performing Lagrange
interpolation, as if the global private had been used to sign the transaction (Sig(tx) = (s1,0+s2,0+...+sn,0)×H(tx)).
The global signature validates against the free coefficient of the global public key P(x).

APPENDIX E. CRASH-RECOVERY MODEL

We use a crash-recovery model to detect when and which nodes go offline. It is inspired from [47], a framework in
which nodes may crash and recover repeatedly, while some may go offline permanently. In real-life, although there
are potential network problems or software/hardware glitches, nodes eventually go back online and continue the ML
training.

Appendix E.1. Offline detection

If a worker node suspects that another worker node (miner or supervisor) becomes too slow or does not send the
expected messages in a reasonable amount of time tr, then he/she launches a test to detect if the node is offline
(crashed). The probing algorithm (Algorithm 3) is inspired from an algorithm called SWIM ([46]). We modified
the algorithm to become Byzantine Fault Tolerant (BFT). As in PBFT ([45]), we require that more than 1/3 of the
nodes (the maximum accepted number of possible faulty nodes in a BFT system) should declare that a particular
node is online so that the entire task group considers that the node is online. We assume a weak synchrony as in [45],
i.e. network faults are eventually repaired and most nodes are coming back from the offline mode fairly quickly.

Any worker node wi keeps a local list of known active worker nodes W . As outlined in Algorithm 3, a supervisor
si pings another suspected worker node wj . If no response is received in a time interval ∆t then si will randomly
select a subset of k worker nodes (Wk (W) nodes and ask them in parallel to also ping the node in question. To
avoid any bias, the k chosen nodes are determined by a random number generator seeded with the hash of the last
participation block. The number of ”alive” responses are counted. If more than 1/3 of the enquired nodes declare
that the node is alive then all nodes must keep it in their local list. Each response is signed by the sender. Otherwise,
the suspecting worker node will publicly contact the leader and ask him/her to decide whether the node should be
replaced (ReportOfflineNode procedure). To do so, the suspecting node will publish a transaction (CHECK NODE)
containing the responses from peers and the reason for investigation (e.g. ”offline”). The leader runs an election in
which supervisors must vote on whether the node should be declared offline or online. Each supervisor will directly
ping the suspected offline node and if no response is received in a specified time interval, then the supervisor will
vote it as offline. The leader will publish a NODE STATUS t-of-n transaction with all the votes. If the final status is
offline (2/3 or more of the supervisors voted ”offline”), then the leader will publish a RECRUIT WORKER NODE
transaction containing the ID of the replaced worker node and the reason for replacement. The working nodes will
remove the offline node from their lists.

Algorithm 4 is similar to the Algorithm 3, but it is run only by supervisors.
A node that is going in offline-online mode too often must be removed from the task working group using the

CHECK NODE and NODE STATUS transactions, with ”offline-online” as the reason. Malicious nodes are reported
and verified in the same way using different reasons (e.g. ”denial-of-service attack”, ”gradient poisoning” – sending
wrong updates to derail the ML training etc.).

Appendix E.2. Offline supervisors

A supervisor could go offline because of a faulty network connection. If he/she loses more than 10% of the training
iterations, then he/she loses his/her stake and cannot rejoin the task.

20 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

Algorithm 3 Algorithm used by a worker node wi to detect if a suspected node wj is offline.

1: procedure DetectOfflineNode(...)

2: r
∆t←−− ping(wj) . Ping wj and wait for a time ∆t for a response

3: if r == online then
4: W ←W ∪ wj . Keep or add it to the list
5: else . No response
6: Wk ← rnd(W \ {wi, wj}) . Pick k random worker nodes (a subset of W).
7: c← 0 . Online counter.
8: R← {r} . Responses.
9: parfor wk ∈Wk do . In parallel.

10: Rk
∆t←−− ping req(wk) . Send ping requests to each chosen node.

11: if status(Rk) == online then
12: c← c+ 1

13: end parfor
14: if c > |W |/3 then . If more than 1/3 report the node as online
15: W ←W ∪ wj . The node is alive.
16: else
17: s← ReportOfflineNode(wj ,Wk, R) . Report the k chosen nodes and the responses.
18: if s == offline then
19: W ←W \ wj . Remove the node from the active list.

Algorithm 4 Algorithm run by the leader to determine if he/she should declare a worker node as offline.

1: procedure InvestigateNodeStatus(...)
2: cx ← 0 . Offline counter.

3: r
∆t←−− ping(wj) . Ping wj and wait for a time ∆t for a response

4: if r 6= online then
5: cx ← 1 . Offline counter.

6: R← {r} . Responses.
7: parfor sk ∈ Sk \ {si} do . In parallel.

8: Rk
∆t←−− ping req(sk) . Send ping requests to each supervisor.

9: if status(Rk) == offline then
10: cx ← cx + 1

11: end parfor
12: if cx ≥ 2/3|S| then . If more than 2/3 report the node as offline
13: Tr(RECRUIT WORKER NODE,R) . Issue transaction to recruit a new worker node
14: else
15: Tr(NODE STATUS ONLINE,R)

If a supervisor comes back online and he/she didn’t lose over 10% of the iterations, then he/she can synchronise
with the other supervisors. The supervisor will read from the public streams/databases of the other supervisors and
will get up-to-date.

If a supervisor is missing for periods of more than 10% of the training, then the other supervisors will initiate
a recruitment process to replace the absent supervisor. The leader will post a RECRUIT WORKER NODE
transaction which will specify that a new supervisor is needed.

Appendix E.3. Offline miners

If a miner does not participate in more than 5% of all training operations, he/she will lose his/her stake. Otherwise,
he/she can rejoin the task. No model synchronisation is needed, yet the miner has to catch up with the latest weight
updates.

Another miner is called in by the supervisors when the total number of miners drops to less than 80% of the
original size. The leader will publish a special transaction called RECRUIT WORKER NODE. The stake of the
lost miner will be transferred to the task’s stake and redistributed by the evaluators at the end of the training.

A Proof of Useful Work for Artificial Intelligence on the Blockchain 21

Appendix E.4. Recovery

A supervisor or miner that comes back online but did not lose enough iterations in order to be replaces will synchronise
his/her internal database with the rest of the group. No voting to re-accept the old member is required.

APPENDIX F. PERFORMANCE OF THE ML DISTRIBUTED SYSTEM

The efficiency of a ML distributed system is less than the one of running the training on a single machine. We
consider Ef = 1 when the training is run entirely on a single machine. In case of a distributed system, Ef is much
lower, but can be increased by parallelising different operations, as shown in F.1.

In the left pane of the figure, we show the operations that would take place on a single machine. In the middle,
we have an unoptimised scenario in which all operations are executed serially. In the right pane, we improved the
execution: peer messages are asynchronously received during the whole iteration, the peer updates are summed and
applied once, while the message map is done concomitantly with other related operations.

We measured the execution times for various steps in the main algorithm on a machine that used only the CPU
and on another machine equipped with a GPU. The first machine was a MacBook Pro 2017 with 2,8 GHz Quad-Core
Intel Core i7 CPU and 16 GB of RAM. The GPU machine was a NC6 Microsft Azure machine (E5-2690v3 Intel
Xeon CPU with 56 GB RAM and 1 x K80 GPU). We provided the measurements in F.2 and F.3, respectively. As
expected, most of the steps that involve ML operations (e.g. backpropagation, model updates) are executed faster
on the GPU machine.

22 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

SINGLE MACHINE DISTRIBUTED DISTRIBUTED OPTIMISED

Load mini-batch

Apply peer
updates

Backpropagation

Update gradient
residual

Build message
map

Calculate local
weights

Apply local
updates

Update gradient
residual

Evaluate metrics

Receive peer
messages and

extract gradients

Build and send
IT_RES

message

Mine with
nonces

Load mini-batch

Backpropagation

Apply local
updates

Evaluate metrics

Load mini-batch

Backpropagation

Sum and apply
all peer updates

Build message
map

Apply local
updates

Evaluate metrics

Update
gradient
residual

Calculate local
weights

Update gradient
residual

Receive peer
messages and

extract gradients

Build and send
IT_RES

message

Mine with
nonces

FIGURE F.1: Performance optimisations.

A Proof of Useful Work for Artificial Intelligence on the Blockchain 23

●

●

●●

●●

●

●

●

●●
●
●●

●
●

●

●

●

●

●●

●

1000

2000

3000

ap
pl
y
lo
ca

l u
pd

at
es

ba
ck

pr
op

ag
at

io
n

bu
ild

 a
nd

.s
en

d
it
re

s

ev
al
ua

te
 m

et
ric

s

up
da

te
 g

ra
di
en

t r
es

id
ua

l

d
u
ra

ti
o
n
 (

µ
s
)

●
●

●
●●
●●●

●

●●

●●●

200

300

400

500

600

700

apply peer updates load mini batch

d
u
ra

ti
o

n
 (

µ
s
)

●

●

●

5000

6000

7000

8000

9000

build message map

d
u
ra

ti
o

n
 (

µ
s
)

●

●

●
●

●

60

70

80

90

100

mine

d
u

ra
ti
o

n
 (

µ
s
)

FIGURE F.2: Time measurements for different steps on CPU.

24 A. Lihu, J. Du, I. Barjaktarević, P. Gerzanics, M. Harvilla

●
●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●
●
●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●
●●●●●
●●●●●

1000

1500

2000

2500

3000

3500

build and.send it res evaluate metrics

d
u
ra

ti
o
n
 (

µ
s
)

●
●●
●●●

●●
●

●

●

●
●●●
●●
●●

●

●●●

●
●

●

●●●
●
●
●●●
●●●●
●

●

●

●●●
●
●
●
●

●

●
●●

●
●

●
●

●

●●
●●●
●●
●

●●

●

●●●●

●
●
●●
●
●

●
●
●●
●●●

●
●

●

●

●

●●●●

●

●●
●

●●

●

●

●

●
●
●

●

●

●
●

●
●
●
●

●
●
●

●

●
●

●

●●
●

0

2500

5000

7500

10000

apply peer updates

d
u
ra

ti
o
n
 (

µ
s
)

●
●●●

●

●●

●

●●

●

●●

●●

●●
●●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●
●●

●
●
●●
●

●
●

●

●

●

●

●
●
●
●
●

●●
●

●

●
●

●
●

●
●●

●

●
●●

●
●●
●●

●

●

●●
●

●

●
●

●

●
●●●

●
●

●

●●●
●

●

●

●

●●

●
●

●

●●●

●●
●●

●●●

●●

●

●

●

●

●
●

●

●
●

●●●

●

●●

●

●

●

●●

●

●

●
●

●
●

●
●
●

●
●
●●●●●

●

●

●
●

●

●
●
●
●
●
●
●

●

●

●●
●
●
●
●
●●●●

●●

●

●
●
●
●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

6000

8000

10000

build message map

d
u
ra

ti
o
n
 (

µ
s
)

24

26

28

30

32

34

mine

d
u
ra

ti
o
n
 (

µ
s
)

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

350

400

450

500

load mini batch

d
u
ra

ti
o
n
 (

µ
s
)

●●
●
●

●
●

●

●

●●
●

●

●●
●

●
●

●●

●●
●
●

●
●●●

●●

●●
●
●
●

●

●
●●

●
●
●
●

●●

●●

●
●

●●
●
●●
●

●

●
●
●

●●●
●
●●

●

●

●●
●
●
●

●
●●●
●

●●●●
●●
●●
●●
●
●
●
●●●
●●●●
●
●●●
●●
●

●

●●

●●
●

●●
●
●

●

●
●
●

●
●
●●●●

●

●

●

●
●
●

●

●●●

●

●
●
●●●
●
●

●●

●

●

●●

●

●●
●
●●
●

●
●

●●

●

●
●

●
●
●
●
●●●
●●
●
●

●

●
●

●

●
●
●

●

●●
●
●
●

●
●
●
●●
●●
●

●

●

●
●

●
●●●●●
●●
●

●●●●
●●

●
●
●
●●●
●●

●
●●●●●●
●
●
●
●●●
●●
●
●

●●●
●●

●●

●
●
●

●
●
●●●

●
●●●●
●●
●
●
●
●

600

800

1000

1200

apply local updates backpropagation

d
u
ra

ti
o
n
 (

µ
s
)

FIGURE F.3: Time measurements for different steps on GPU.

	1 Introduction
	2 Related work
	3 System Overview
	3.1 Environment
	3.2 Transactions
	3.3 Staking
	3.4 Tasks
	3.5 Protocol

	4 Workflow
	4.1 Registration
	4.2 Initialisation
	4.3 Training
	4.4 Finalisation

	5 Proof of Useful Work
	5.1 Mining
	5.2 Verification

	6 Implementation
	7 Discussion
	7.1 Economical analysis
	7.2 Performance considerations
	7.3 Security

	8 Conclusion
	Appendix A Anatomy of transactions
	Appendix B Shortening task wait time
	Appendix C A Distributed Key Generation (DKG) scheme
	Appendix D Signing t-of-n transactions
	Appendix E Crash-recovery model
	Appendix E.1 Offline detection
	Appendix E.2 Offline supervisors
	Appendix E.3 Offline miners
	Appendix E.4 Recovery

	Appendix F Performance of the ML distributed system

