
The 20
DeFi Whitepapers

Curated & Compiled By
Jamiel Sheikh
Raymond Chen

A curated set of the most relevant whitepapers

Protocols Included

RenVM

Flexa

Harvest Finance

Tornado Cash

Nexus Mutual

CREAM Finance

dYdX

KEEP Network

1INCH

Maker

Compound

AAVE

Curve

Uniswap

Instadapp

Synthetix

Balancer

Bancor

Vesper

The Maker Protocol:

MakerDAO’s Multi-Collateral Dai
(MCD) System

Abstract

The Maker Protocol, also known as the Multi-Collateral Dai (MCD) system,
allows users to generate Dai by leveraging collateral assets approved by
“Maker Governance.” Maker Governance is the community organized and
operated process of managing the various aspects of the Maker Protocol. Dai
is a decentralized, unbiased, collateral-backed cryptocurrency soft-pegged to
the US Dollar. Resistant to hyperinflation due to its low volatility, Dai offers
economic freedom and opportunity to anyone, anywhere.

This white paper is a reader-friendly description of the Protocol, which is built
on the Ethereum blockchain. Technically savvy users might want to head
directly to Introduction to the Maker Protocol in the Maker Documentation
Portal for an in-depth explanation of the entire system.

About MakerDAO
MakerDAO is an open-source project on the Ethereum blockchain and a
Decentralized Autonomous Organization created in 2014. The project is 1

managed by people around the world who hold its governance token, MKR.

1 Note that Decentralized Autonomous Organizations, or DAOs, are understood in the Ethereum
community as largely social and technical communities centered around a particular mission or
project, and does not necessarily imply the existence of traditional corporate forms.

Through a system of scientific governance involving Executive Voting and
Governance Polling, MKR holders manage the Maker Protocol and the
financial risks of Dai to ensure its stability, transparency, and efficiency. MKR
voting weight is proportional to the amount of MKR a voter stakes in the
voting contract, DSChief. In other words, the more MKR tokens locked in the
contract, the greater the voter’s decision-making power.

About the Maker Protocol
The Maker Protocol, built on the Ethereum blockchain, enables users to 2

create currency. Current elements of the Maker Protocol are the Dai
stablecoin, Maker Collateral Vaults, Oracles, and Voting. MakerDAO governs
the Maker Protocol by deciding on key parameters (e.g., stability fees,
collateral types/rates, etc.) through the voting power of MKR holders.

The Maker Protocol, one of the largest decentralized applications (dapps) on
the Ethereum blockchain, was the first decentralized finance (DeFi)
application to earn significant adoption.

About the Maker Foundation
The Maker Foundation, which is part of the global Maker community, built
and launched the Maker Protocol in conjunction with a number of outside
partners. It is currently working with the MakerDAO community to bootstrap
decentralized governance of the project and drive it toward complete
decentralization.

About the Dai Foundation
The Dai Foundation, based in Denmark, is self-governing and independent of
the Maker Foundation. It was formed to house the Maker community's key
intangible assets, such as trademarks and code copyrights, and it operates
solely on the basis of objective and rigid statutes that define its mandate. Its
purpose, as noted in the Dai Foundation Trust Deed, is to safeguard what
cannot be technologically decentralized in the Maker Protocol.

2 https://ethereum.org/

Introduction

Beginning in 2015, the MakerDAO project operated with developers around
the globe working together on the first iterations of code, architecture, and
documentation. In December 2017, the first MakerDAO formal white paper
was published, introducing the original Dai (now Sai) Stablecoin System.

The white paper described how anyone could generate Dai using that system
by leveraging Ethereum (ETH) as collateral through unique smart contracts
known as Collateralized Debt Positions (CDPs). Given that ETH was the only
collateral asset accepted by the system, the Dai generated was called
Single-Collateral Dai (SCD), or Sai. That white paper also included a plan to
upgrade the system to support multiple collateral asset types in addition to
ETH. What was then an intention, became a reality in November 2019.

The Dai Stablecoin System, today called the Maker Protocol, now accepts as
collateral any Ethereum-based asset that has been approved by MKR
holders, who also vote on corresponding Risk Parameters for each collateral
asset. Voting is a critical component of the Maker decentralized governance
process.

Welcome to Multi-Collateral Dai (MCD).

In MCD We Trust

Blockchain technology provides an unprecedented opportunity to ease the
public’s growing frustration with—and distrust of—dysfunctional centralized
financial systems. By distributing data across a network of computers, the
technology allows any group of individuals to embrace transparency rather
than central-entity control. The result is an unbiased, transparent, and highly
efficient permissionless system—one that can improve current global
financial and monetary structures and better serve the public good.

Bitcoin was created with this goal in mind. But, while Bitcoin succeeds as a
cryptocurrency on a number of levels, it is not ideal as a medium of exchange
because its fixed supply and speculative nature results in volatility, which
prevents it from proliferating as mainstream money.

The Dai stablecoin, on the other hand, succeeds where Bitcoin fails precisely
because Dai is designed to minimize price volatility. A decentralized,
unbiased, collateral-backed cryptocurrency that is soft-pegged to the US
Dollar, Dai’s value is in its stability.

Since the release of Single-Collateral Dai in 2017, user adoption of the
stablecoin has risen dramatically, and it has become a building block for
decentralized applications that help expand the DeFi (decentralized finance)
movement. Dai’s success is part of a wider industry movement for
stablecoins, which are cryptocurrencies designed to maintain price value and
function like money.

For example, in February 2019, JPMorgan became the first bank in the
United States to create and test a digital coin that represents 1 USD. As the 3

cryptocurrency industry grows, other banks, financial services companies,
and even governments will create stable digital currencies (e.g., Central Bank
Digital Currencies), as will large organizations outside of the finance sector.
Facebook, for example, announced its plans for Libra, “a stable digital
cryptocurrency that will be fully backed by a reserve of real assets,” in June 4

2019. However, such proposals forfeit the core value proposition of
blockchain technology: global adoption of a common infrastructure without a
central authority or administrator that may abuse its influence.

An Overview of the Maker Protocol and Its
Features

The Maker Protocol
The Maker Protocol is one of the largest dapps on the Ethereum blockchain.
Designed by a disparate group of contributors, including developers within

3 https://www.jpmorgan.com/global/news/digital-coin-payments
4 https://libra.org/en-US/wp-content/uploads/sites/23/2019/06/LibraWhitePaper_en_US.pdf

the Maker Foundation, its outside partners, and other persons and entities, it
is the first decentralized finance (DeFi) application to see significant adoption.

The Maker Protocol is managed by people around the world who hold its
governance token, MKR. Through a system of scientific governance
involvingExecutive Voting and Governance Polling, MKR holders govern the
Protocol and the financial risks of Dai to ensure its stability, transparency,
and efficiency. One MKR token locked in a voting contract equals one vote.

The Dai Stablecoin
The Dai stablecoin is a decentralized, unbiased, collateral-backed
cryptocurrency soft-pegged to the US Dollar. Dai is held in cryptocurrency
wallets or within platforms, and is supported on Ethereum and other popular
blockchains.

Dai is easy to generate, access, and use. Users generate Dai by depositing
collateral assets into Maker Vaults within the Maker Protocol. This is how Dai
is entered into circulation and how users gain access to liquidity. Others
obtain Dai by buying it from brokers or exchanges, or simply by receiving it
as a means of payment.

Once generated, bought, or received, Dai can be used in the same manner as
any other cryptocurrency: it can be sent to others, used as payments for
goods and services, and even held as savings through a feature of the Maker
Protocol called the Dai Savings Rate (DSR).

Every Dai in circulation is directly backed by excess collateral, meaning that
the value of the collateral is higher than the value of the Dai debt, and all Dai
transactions are publicly viewable on the Ethereum blockchain.

What Properties of Dai Function Similarly to Money?

Generally, money has four functions:

1. A store of value
2. A medium of exchange

3. A unit of account
4. A standard of deferred payment

Dai has properties and use cases designed to serve these functions.

Dai as a Store of Value

A store of value is an asset that keeps its value without significant
depreciation over time. Because Dai is a stablecoin, it is designed to function
as a store of value even in a volatile market.

Dai as a Medium of Exchange

A medium of exchange is anything that represents a standard of value and is
used to facilitate the sale, purchase, or exchange (trade) of goods or services.
The Dai stablecoin is used around the world for all types of transactional
purposes.

Dai as a Unit of Account

A unit of account is a standardized measurement of value used to price
goods and services (e.g., USD, EUR, YEN). Currently, Dai has a target price
of 1USD (1 Dai = 1 USD). While Dai is not used as a standard measurement
of value in the off-chain world, it functions as a unit of account within the
Maker Protocol and some blockchain dapps, whereby Maker Protocol
accounting or pricing of dapp services is in Dai rather than a fiat currency like
USD.

Dai as a Standard of Deferred Payment

Dai is used to settle debts within the Maker Protocol (e.g., users use Dai to
pay the stability fee and close their Vaults). This benefit separates Dai from
other stablecoins.

Collateral Assets
Dai is generated, backed, and kept stable through collateral assets that are
deposited into Maker Vaults on the Maker Protocol. A collateral asset is a
digital asset that MKR holders have voted to accept into the Protocol.

To generate Dai, the Maker Protocol accepts as collateral any
Ethereum-based asset that has been approved by MKR holders. MKR

holders also must also approve specific, corresponding Risk Parameters for
each accepted collateral (e.g., more stable assets might get more lenient Risk
Parameters, while more risky assets could get stricter Risk Parameters).
Detailed information on Risk Parameters is below. These and other decisions
of MKR holders are made through the Maker decentralized governance
process.

Maker Vaults

All accepted collateral assets can be leveraged to generate Dai in the Maker
Protocol through smart contracts called Maker Vaults. Users can access the
Maker Protocol and create Vaults through a number of different user
interfaces (i.e., network access portals), including Oasis Borrow and various
interfaces built by the community. Creating a Vault is not complicated, but
generating Dai does create an obligation to repay the Dai, along with a
Stability Fee, in order to withdraw the collateral leveraged and locked inside a
Vault.

Vaults are inherently non-custodial: Users interact with Vaults and the Maker
Protocol directly, and each user has complete and independent control over
their deposited collateral as long the value of that collateral doesn’t fall below
the required minimum level (the Liquidation Ratio, discussed in detail below).

Interacting with a Maker Vault

● Step 1: Create and Collateralize a Vault
A user creates a Vault via the Oasis Borrow portal or a
community-created interface, such as Instadapp, Zerion, or
MyEtherWallet, by funding it with a specific type and amount of
collateral that will be used to generate Dai. Once funded, a Vault is
considered collateralized.

● Step 2: Generate Dai from the Collateralized Vault
The Vault owner initiates a transaction, and then confirms it in her
unhosted cryptocurrency wallet in order to generate a specific amount
of Dai in exchange for keeping her collateral locked in the Vault.

● Step 3: Pay Down the Debt and the Stability Fee
To retrieve a portion or all of the collateral, a Vault owner must pay
down or completely pay back the Dai she generated, plus the Stability

Fee that continuously accrues on the Dai outstanding. The Stability Fee
can only be paid in Dai.

● Step 4: Withdraw Collateral
With the Dai returned and the Stability Fee paid, the Vault owner can
withdraw all or some of her collateral back to her wallet. Once all Dai is
completely returned and all collateral is retrieved, the Vault remains
empty until the owner chooses to make another deposit.

Importantly, each collateral asset deposited requires its own Vault. So, some
users will own multiple Vaults with different types of collateral and levels of
collateralization.

Liquidation of Risky Maker Vaults
To ensure there is always enough collateral in the Maker Protocol to cover
the value of all outstanding debt (the amount of Dai outstanding valued at the
Target Price), any Maker Vault deemed too risky (according to parameters
established by Maker Governance) is liquidated through automated Maker
Protocol auctions. The Protocol makes the determination after comparing the
Liquidation Ratio to the current collateral-to-debt ratio of a Vault. Each Vault
type has its own Liquidation Ratio, and each ratio is determined by MKR
voters based on the risk profile of the particular collateral asset type.

Maker Protocol Auctions
The auction mechanisms of the Maker Protocol enable the system to
liquidate Vaults even when price information for the collateral is unavailable.
At the point of liquidation, the Maker Protocol takes the liquidated Vault
collateral and subsequently sells it using an internal market-based auction
mechanism. This is a Collateral Auction.

The Dai received from the Collateral Auction is used to cover the Vault’s
outstanding obligations, including payment of the Liquidation Penalty fee set
by MKR voters for that specific Vault collateral type.

If enough Dai is bid in the Collateral Auction to fully cover the Vault
obligations plus the Liquidation Penalty, that auction converts to a Reverse
Collateral Auction in an attempt to sell as little collateral as possible. Any
leftover collateral is returned to the original Vault owner.

If the Collateral Auction does not raise enough Dai to cover the Vault’s
outstanding obligation, the deficit is converted into Protocol debt. Protocol
debt is covered by the Dai in the Maker Buffer. If there is not enough Dai in
the Buffer, the Protocol triggers a Debt Auction. During a Debt Auction, MKR
is minted by the system (increasing the amount of MKR in circulation), and
then sold to bidders for Dai.

Dai proceeds from the Collateral Auction go into the Maker Buffer, which
serves as a buffer against an increase of MKR overall supply that could result
from future uncovered Collateral Auctions and the accrual of the Dai Savings
Rate (discussed in detail below).

If Dai proceeds from auctions and Stability Fee payments exceed the Maker
Buffer limit (a number set by Maker Governance), they are sold through a
Surplus Auction. During a Surplus Auction, bidders compete by bidding
decreasing amounts of MKR to receive a fixed amount of Dai. Once the
Surplus Auction has ended, the Maker Protocol autonomously destroys the
MKR collected, thereby reducing the total MKR supply.

Example (Collateral Auction Process):

A large Vault becomes undercollateralized due to market conditions. An
Auction Keeper then detects the undercollateralized Vault opportunity and
initiates liquidation of the Vault, which kicks off a Collateral Auction for, say,
50 ETH.

Each Auction Keeper has a bidding model to assist in winning auctions. A
bidding model includes a price at which to bid for the collateral (ETH, in this
example). The Auction Keeper uses the token price from its bidding model as
the basis for its bids in the first phase of a Collateral Auction, where
increasing Dai bids are placed for the set amount of collateral. This amount
represents the price of the total Dai wanted from the collateral auction.

Now, let's say the Auction Keeper bids 5,000 Dai for the 50 ETH to meet this
amount. The Dai bid is transferred from the Vault Engine to the Collateral
Auction contract. With enough Dai in the Collateral Auction contract to cover
the system's debt plus the Liquidation Penalty, the first phase of the
Collateral Auction is over.

In order to reach the price defined in its bidding model, the Auction Keeper
submits a bid in the second phase of the Collateral Auction. In this phase, the
objective is to return as much of the collateral to the Vault owner as the
market will allow. The bids that the Auction Keepers place are for fixed Dai
amounts and decreasing amounts of ETH. For instance, the bidding model of
the Keeper in this example seeks a bid price of 125 Dai per ETH, so it offers
5000 Dai for 40 ETH. Additional Dai for this bid is transferred from the Vault
Engine to the Collateral Auction contract. After the bid duration limit is
reached and the bid expires, the Auction Keeper claims the winning bid and
settles the completed Collateral Auction by collecting the won collateral.

Key External Actors

In addition to its smart contract infrastructure, the Maker Protocol involves
groups of external actors to maintain operations: Keepers, Oracles, and
Global Settlers (Emergency Oracles), and Maker community members.
Keepers take advantage of the economic incentives presented by the
Protocol; Oracles and Global Settlers are external actors with special
permissions in the system assigned to them by MKR voters; and Maker
community members are individuals and organizations that provide services.

Keepers
A Keeper is an independent (usually automated) actor that is incentivized by
arbitrage opportunities to provide liquidity in various aspects of a
decentralized system. In the Maker Protocol, Keepers are market participants
that help Dai maintain its Target Price ($1): they sell Dai when the market
price is above the Target Price, and buy Dai when the market price is below
the Target Price. Keepers participate in Surplus Auctions, Debt Auctions, and
Collateral Auctions when Maker Vaults are liquidated.

Price Oracles
The Maker Protocol requires real-time information about the market price of
the collateral assets in Maker Vaults in order to know when to trigger
Liquidations.

The Protocol derives its internal collateral prices from a decentralized Oracle
infrastructure that consists of a broad set of individual nodes called Oracle
Feeds. MKR voters choose a set of trusted Feeds to deliver price information
to the system through Ethereum transactions. They also control how many
Feeds are in the set.

To protect the system from an attacker attempting to gain control of a
majority of the Oracles, the Maker Protocol receives price inputs through the
Oracle Security Module (OSM), not from the Oracles directly. The OSM,
which is a layer of defense between the Oracles and the Protocol, delays a
price for one hour, allowing Emergency Oracles or a Maker Governance vote
to freeze an Oracle if it is compromised. Decisions regarding Emergency
Oracles and the price delay duration are made by MKR holders.

Emergency Oracles
Emergency Oracles are selected by MKR voters and act as a last line of
defense against an attack on the governance process or on other Oracles.
Emergency Oracles are able to freeze individual Oracles (e.g., ETH and BAT
Oracles) to mitigate the risk of a large number of customers trying to
withdraw their assets from the Maker Protocol in a short period of time, as
they have the authority to unilaterally trigger an Emergency Shutdown.

DAO Teams
DAO teams consist of individuals and service providers, who may be
contracted through Maker Governance to provide specific services to
MakerDAO. Members of DAO teams are independent market actors and are
not employed by the Maker Foundation.

The flexibility of Maker Governance allows the Maker community to adapt the
DAO team framework to suit the services needed by the ecosystem based on
real-world performance and emerging challenges.

Examples of DAO team member roles are the Governance Facilitator, who
supports the communication infrastructure and processes of governance,
and Risk Team members, who support Maker Governance with financial risk

research and draft proposals for onboarding new collateral and regulating
existing collateral.

While the Maker Foundation has bootstrapped Maker Governance to date, it
is anticipated that the DAO will take full control, conduct MKR votes, and fill
these varied DAO team roles in the near future.

The Dai Savings Rate

The Dai Savings Rate (DSR) allows any Dai holder to earn savings
automatically and natively by locking their Dai into the DSR contract in the
Maker Protocol. It can be accessed via the Oasis Save portal or through
various gateways into the Maker Protocol. Users aren’t required to deposit a
minimum amount to earn the DSR, and they can withdraw any or all of their
Dai from the DSR contract at any time.

The DSR is a global system parameter that determines the amount Dai
holders earn on their savings over time. When the market price of Dai
deviates from the Target Price due to changing market dynamics, MKR
holders can mitigate the price instability by voting to modify the DSR
accordingly:

● If the market price of Dai is above 1 USD, MKR holders can choose to
gradually decrease the DSR, which will reduce demand and should
reduce the market price of Dai toward the 1 USD Target Price.

● If the market price of Dai is below 1 USD, MKR holders can choose to
gradually increase the DSR, which will stimulate demand and should
increase the market price of Dai toward the 1 USD Target Price.

Initially, adjustment of the DSR will depend on a weekly process, whereby
MKR holders first evaluate and discuss public market data and proprietary
data provided by market participants, and then vote on whether an
adjustment is necessary or not. The long-term plan includes implementation
of the DSR Adjustment Module, an Instant Access Module that directly
controls both the DSR and the Base Rate. This module allows for easy
adjustment of the DSR (within strict size and frequency boundaries set by
MKR holders) by an MKR holder on behalf of the larger group of MKR
holders. The motivation behind this plan is to enable nimble responses to

rapidly changing market conditions, and to avoid overuse of the standard
governance process ofExecutive Voting and Governance Polling.

Governance of the Maker Protocol

Use of the MKR Token in Maker Governance
The MKR token—the governance token of the Maker Protocol—allows those
who hold it to vote on changes to the Maker Protocol. Note that anyone, not
only MKR holders, can submit proposals for an MKR vote.

Any voter-approved modifications to the governance variables of the Protocol
will likely not take effect immediately in the future; rather, they could be
delayed by as much as 24 hours if voters choose to activate the Governance
Security Module (GSM). The delay would give MKR holders the opportunity to
protect the system, if necessary, against a malicious governance proposal
(e.g., a proposal that alters collateral parameters contrary to established
monetary policies or that allows for security mechanisms to be disabled) by
triggering a Shutdown.

Polling and Executive Voting
In practice, the Maker Governance process includes proposal polling and
Executive Voting. Proposal polling is conducted to establish a rough
consensus of community sentiment before any Executive Votes are cast. This
helps to ensure that governance decisions are considered throughtfully and
reached by consensus prior to the voting process itself. Executive Voting is
held to approve (or not) changes to the state of the system. An example of an
Executive Vote could be a vote to ratify Risk Parameters for a newly accepted
collateral type.

At a technical level, smart contracts manage each type of vote. A Proposal
Contract is a smart contract with one or more valid governance actions
programmed into it. It can only be executed once. When executed, it
immediately applies its changes to the internal governance variables of the
Maker Protocol. After execution, the Proposal Contract cannot be reused.

Any Ethereum Address can deploy valid Proposal Contracts. MKR token
holders can then cast approval votes for the proposal that they want to elect

as the Active Proposal. The Ethereum address that has the highest number of
approval votes is elected as the Active Proposal. The Active Proposal is
empowered to gain administrative access to the internal governance
variables of the Maker Protocol, and then modify them.

The MKR Token’s Role in Recapitalization
In addition to its role in Maker Governance, the MKR token has a
complementary role as the recapitalization resource of the Maker Protocol. If
the system debt exceeds the surplus, the MKR token supply may increase
through a Debt Auction (see above) to recapitalize the system. This risk
inclines MKR holders to align and responsibly govern the Maker ecosystem
to avoid excessive risk-taking.

MKR Holder Responsibilities
MKR holders can vote to do the following:

● Add a new collateral asset type with a unique set of Risk Parameters.
● Change the Risk Parameters of one or more existing collateral asset

types, or add new Risk Parameters to one or more existing collateral
asset types.

● Modify the Dai Savings Rate.
● Choose the set of Oracle Feeds.
● Choose the set of Emergency Oracles.
● Trigger Emergency Shutdown.
● Upgrade the system.

MKR holders can also allocate funds from the Maker Buffer to pay for various
infrastructure needs and services, including Oracle infrastructure and
collateral risk management research. The funds in the Maker Buffer are
revenues from Stability Fees, Liquidation Fees, and other income streams.

The governance mechanism of the Maker Protocol is designed to be as
flexible as possible, and upgradeable. Should the system mature under the
guidance of the community, more advanced forms of Proposal Contracts
could, in theory, be used, including Proposal Contracts that are bundled. For
example, one proposal contract may contain both an adjustment of a Stability
Fee and an adjustment of the DSR. Nonetheless, those revisions will remain
for MKR holders to decide.

Risk Parameters Controlled by Maker Governance
Each Maker Vault type (e.g., ETH Vault and BAT Vault) has its own unique set
of Risk Parameters that enforce usage. The parameters are determined
based on the risk profile of the collateral, and are directly controlled by MKR
holders through voting.

The Key Risk Parameters for Maker Vaults are:

● Debt Ceiling: A Debt Ceiling is the maximum amount of debt that can
be created by a single collateral type. Maker Governance assigns every
collateral type a Debt Ceiling, which is used to ensure sufficient
diversification of the Maker Protocol collateral portfolio. Once a
collateral type has reached its Debt Ceiling, it becomes impossible to
create more debt unless some existing users pay back all or a portion
of their Vault debt.

● Stability Fee: The Stability Fee is an annual percentage yield
calculated on top of how much Dai has been generated against a
Vault’s collateral. The fee is paid in Dai only, and then sent into the
Maker Buffer.

● Liquidation Ratio: A low Liquidation Ratio means Maker Governance
expects low price volatility of the collateral; a high Liquidation Ratio
means high volatility is expected.

● Liquidation Penalty: The Liquidation Penalty is a fee added to a
Vault’s total outstanding generated Dai when a Liquidation occurs. The
Liquidation Penalty is used to encourage Vault owners to keep
appropriate collateral levels.

● Collateral Auction Duration: The maximum duration of Collateral
auctions is specific to Maker Vaults. Debt and Surplus auction
durations are global system parameters.

● Auction Bid Duration: Amount of time before an individual bid expires
and closes the auction.

● Auction Step Size: This Risk Parameter exists to incentivize early
bidders in auctions, and prevent abuse by bidding a tiny amount above
an existing bid.

Risk and Mitigation Responsibilities of Governance

The successful operation of the Maker Protocol depends on Maker
Governance taking necessary steps to mitigate risks. Some of those risks are
identified below, each followed by a mitigation plan.

A malicious attack on the smart contract infrastructure by a bad actor.
One of the greatest risks to the Maker Protocol is a malicious actor—a
programmer, for example, who discovers a vulnerability in the deployed
smart contracts, and then uses it to break the Protocol or steal from it.

In the worst-case scenario, all decentralized digital assets held as collateral in
the Protocol are stolen, and recovery is impossible.

Mitigation: The Maker Foundation's highest priority is the security of the
Maker Protocol, and the strongest defense of the Protocol is Formal
Verification. The Dai codebase was the first codebase of a decentralized
application to be formally verified.

In addition to formal system verification, contracted security audits by the
best security organizations in the blockchain industry, third-party
(independent) audits, and bug bounties are part of the Foundation’s security
roadmap. To review the formal verification report and various Maker Protocol
audits, visit Maker’s Multi-Collateral Dai Security Github repository.

These security measures provide a strong defense system; however, they are
not infallible. Even with formal verification, the mathematical modeling of
intended behaviors may be incorrect, or the assumptions behind the intended
behavior itself may be incorrect.

A black swan event
A black swan event is a rare and critical surprise attack on a system. For the
Maker Protocol, examples of a black swan event include:

● An attack on the collateral types that back Dai.
● A large, unexpected price decrease of one or more collateral types.
● A highly coordinated Oracle attack.

● A malicious Maker Governance proposal.

Please note that this list of potential "black swans" is not exhaustive and not
intended to capture the extent of such possibilities.

Mitigation: While no one solution is failsafe, the careful design of the Maker
Protocol (the Liquidation Ratio, Debt Ceilings, the Governance Security
Module, the Oracle Security Module, Emergency Shutdown, etc.) in
conjunction with good governance (e.g., swift reaction in a crisis, thoughtful
risk parameters, etc.) help to prevent or mitigate potentially severe
consequences of an attack.

Unforeseen pricing errors and market irrationality
Oracle price feed problems or irrational market dynamics that cause
variations in the price of Dai for an extended period of time can occur. If
confidence in the system is lost, rate adjustments or even MKR dilution could
reach extreme levels and still not bring enough liquidity and stability to the
market.

Mitigation: Maker Governance incentivizes a sufficiently large capital pool to
act as Keepers of the market in order to maximize rationality and market
efficiency, and allow the Dai supply to grow at a steady pace without major
market shocks. As a last resort, Emergency Shutdown can be triggered to
release collateral to Dai holders, with their Dai claims valued at the Target
Price.

User Abandonment for Less Complicated Solutions
The Maker Protocol is a complex decentralized system. As a result of its
complexity, there is a risk that inexperienced cryptocurrency users will
abandon the Protocol in favor of systems that may be easier to use and
understand.

Mitigation: While Dai is easy to generate and use for most crypto enthusiasts
and the Keepers that use it for margin trading, newcomers might find the
Protocol difficult to understand and navigate. Although Dai is designed in
such a way that users need not comprehend the underlying mechanics of the
Maker Protocol in order to benefit from it, the documentation and numerous

resources consistently provided by the Maker community and the Maker
Foundation help to ensure onboarding is as uncomplicated as possible.

Dissolution of The Maker Foundation
The Maker Foundation currently plays a role, along with independent actors,
in maintaining the Maker Protocol and expanding its usage worldwide, while
facilitating Governance. However, the Maker Foundation plans to dissolve
once MakerDAO can manage Governance completely on its own. Should
MakerDAO fail to sufficiently take the reins upon the Maker Foundation's
dissolution, the future health of the Maker Protocol could be at risk.

Mitigation: MKR holders are incentivized to prepare for the Foundation's
dissolution after it completes "gradual decentralization" of the project.
Moreover, successful management of the system should result in sufficient
funds for governance to allocate to the continued maintenance and
improvement of the Maker Protocol.

General Issues with Experimental Technology

Users of the Maker Protocol (including but not limited to Dai and MKR
holders) understand and accept that the software, technology, and technical
concepts and theories applicable to the Maker Protocol are still unproven and
there is no warranty that the technology will be uninterrupted or error-free.
There is an inherent risk that the technology could contain weaknesses,
vulnerabilities, or bugs causing, among other things, the complete failure of
the Maker Protocol and/or its component parts.

Mitigation: See “A malicious attack on the smart contract infrastructure by a
bad actor” above. The Mitigation section there explains the technical auditing
in place to ensure the Maker Protocol functions as intended.

Price Stability Mechanisms

The Dai Target Price
The Dai Target Price is used to determine the value of collateral assets Dai
holders receive in the case of an Emergency Shutdown. The Target Price for
Dai is 1 USD, translating to a 1:1 USD soft peg.

Emergency Shutdown
Emergency Shutdown (or, simply, Shutdown) serves two main purposes.
First, it is used during emergencies as a last-resort mechanism to protect the
Maker Protocol against attacks on its infrastructure and directly enforce the
Dai Target Price. Emergencies could include malicious governance actions,
hacking, security breaches, and long-term market irrationality. Second,
Shutdown is used to facilitate a Maker Protocol system upgrade. The
Shutdown process can only be controlled by Maker Governance.

MKR voters are also able to instantly trigger an Emergency Shutdown by
depositing MKR into the Emergency Shutdown Module (ESM), if enough MKR
voters believe it is necessary. This prevents the Governance Security Module
(if active) from delaying Shutdown proposals before they are executed. With
Emergency Shutdown, the moment a quorum is reached, the Shutdown
takes effect with no delay.

There are three phases of Emergency Shutdown:

1. The Maker Protocol shuts down; Vault owners withdraw assets.
When initiated, Shutdown prevents further Vault creation and
manipulation of existing Vaults, and freezes the Price Feeds. The frozen
feeds ensure that all users are able to withdraw the net value of assets
to which they are entitled. Effectively, it allows Maker Vault owners to
immediately withdraw the collateral in their Vault that is not actively
backing debt.

2. Post-Emergency Shutdown auction processing
After Shutdown is triggered, Collateral Auctions begin and must be
completed within a specific amount of time. That time period is
determined by Maker Governance to be slightly longer than the
duration of the longest Collateral Auction. This guarantees that no
auctions are outstanding at the end of the auction processing period.

3. Dai holders claim their remaining collateral
At the end of the auction processing period, Dai holders use their Dai
to claim collateral directly at a fixed rate that corresponds to the
calculated value of their assets based on the Dai Target Price. For
example, if the ETH/USD Price Ratio is 200, and a user holds 1000 Dai
at the Target Price of 1 USD when Emergency Shutdown is activated,

The user will be able to claim exactly 5 ETH from the Maker Protocol
after the auction processing period. There is no time limit for when a
final claim can be made. Dai holders will get a proportional claim to
each collateral type that exists in the collateral portfolio. Note that Dai
holders could be at risk of a haircut, whereby they do not receive the
full value of their Dai holdings at the Target Price of 1 USD per Dai. This
is due to risks related to declines in collateral value and to Vault owners
having the right to retrieve their excess collateral before Dai holders
may claim the remaining collateral. For more detailed information on
Emergency Shutdown, including the claim priorities that would occur
as a result, see the published community documentation.

The Future of the Maker Protocol: Increased
Adoption and Full Decentralization

Addressable Market
A cryptocurrency with price stability serves as an important medium of
exchange for many decentralized applications. As such, the potential market
for Dai is at least as large as the entire decentralized blockchain industry. But
the promise of Dai extends well beyond that into other industries.

The following is a non-exhaustive list of current and immediate markets for
the Dai stablecoin:

● Working capital, hedging, and collateralized leverage. Maker Vaults
allow for permissionless trading by users, who can use the Dai
generated against Vault collateral for working capital. To date, there
have been numerous instances where Vault owners use their Dai to buy
additional ETH (same asset as their collateral), thereby creating a
leveraged but fully collateralized position.

● Merchant receipts, cross-border transactions, and remittances.
Foreign exchange volatility mitigation and a lack of intermediaries mean
the transaction costs of international trade are significantly reduced
when using Dai.

● Charities and NGOs when using transparent distributed ledger
technology.

● Gaming. For blockchain game developers, Dai is the currency of
choice. With Dai, game developers integrate not only a currency, but
also an entire economy. The composability of Dai allows games to
create new player behavior schemes based around decentralized
finance.

● Prediction markets. Using a volatile cryptocurrency when making an
unrelated prediction only increases one’s risk when placing the bet.
Long-term bets become especially infeasible if the bettor must also
gamble on the future price of the volatile asset used to place the bet.
That said, the Dai stablecoin would be a natural choice for use in
prediction markets.

Asset Expansion
Should MKR holders approve new assets as collateral, those assets will be
subject to the same risk requirements, parameters, and safety measures as
Dai (e.g., Liquidation Ratios, Stability Fees, Savings Rates, Debt Ceilings,
etc.).

Evolving Oracles
MakerDAO was the first project to run reliable Oracles on the Ethereum
blockchain. As a result, many decentralized applications use MakerDAO
Oracles to ensure the security of their systems and to provide up-to-date
price data in a robust manner. This confidence in MakerDAO and the Maker
Protocol means that Maker Governance can expand the core Oracle
infrastructure service to better suit the needs of decentralized applications.

Conclusion

The Maker Protocol allows users to generate Dai, a stable store of value that
lives entirely on the blockchain. Dai is a decentralized stablecoin that is not
issued or administered by any centralized actor or trusted intermediary or
counterparty. It is unbiased and borderless —available to anyone, anywhere.

All Dai is backed by a surplus of collateral that has been individually
escrowed into audited and publicly viewable Ethereum smart contracts.

Anyone with an internet connection can monitor the health of the system
anytime at daistats.com.

With hundreds of partnerships and one of the strongest developer
communities in the cryptocurrency space, MakerDAO has become the engine
of the decentralized finance (DeFi) movement. Maker is unlocking the power
of the blockchain to deliver on the promise of economic empowerment today.

For more information, visit the MakerDAO website.

APPENDIX

Dai Use-Case Benefits and Examples

The Maker Protocol can be used by anyone, anywhere, without any
restrictions or personal-information requirements. Below are a few examples
of how Dai is used around the world:

Dai Offers Financial Independence to All

According to the World Bank’s Global Findex Database 2017, about 1.7
billion adults around the world are unbanked. In the US alone, according to a 5

2017 survey by the FDIC, around 32 million American households are either
unbanked or underbanked, meaning that they either have no bank account 6

at all or they regularly use alternatives to traditional banking (e.g., payday or
pawn shop loans) to manage their finances. Dai can empower every one of
those people; all they need is access to the internet.

As the world’s first unbiased stablecoin, Dai allows anyone to achieve
financial independence, regardless of their location or circumstances. For
example, in Latin America, Dai has provided an opportunity for individuals
and families to hedge against the devaluation of the Argentine peso and the 7

Venezuelan bolívar. On the islands of Vanuatu in the South Pacific, where
residents pay very high money transfer fees, Oxfam International, a
U.K.-based non-profit; Australian startup, Sempo; and Ethereum startup

5 https://globalfindex.worldbank.org/
6https://www.fdic.gov/householdsurvey/
7 https://slideslive.com/38920018/living-on-defi-how-i-survive-argentinas-50-inflation

ConsenSys have successfully piloted a cash-assistance program through
which 200 residents on the island of Efate were each given 50 Dai to pay a
local network of vendors. 8

Self-Sovereign Money Generation

Oasis Borrow allows users to access the Maker Protocol and generate Dai by
locking their collateral in a Maker Vault. Notably, users do not need to access
any third-party intermediary to generate Dai. Vaults offer individuals and
businesses opportunities to create liquidity on their assets simply, quickly,
and at relatively low cost.

Savings Earned Automatically

Dai holders everywhere can better power their journeys to financial inclusion
by taking advantage of the Dai Savings Rate, which, as detailed earlier, builds
on the value of Dai by allowing users to earn on the Dai they hold and protect
their savings from inflation.

For example, if Bob has100,000 Dai locked in the DSR contract, and the DSR
set by Maker Governance is 6% per year, Bob will earn savings of 6,000 Dai
over 12 months. Additionally, because exchanges and blockchain projects
can integrate the DSR into their own platforms, it presents new opportunities
for cryptocurrency traders, entrepreneurs, and established businesses to
increase their Dai savings and Dai operating capital. Due to this attractive
mechanism, Market Makers, for example, may choose to hold their idle
inventory in Dai and lock it in the DSR.

Fast, Low-cost Remittances

Cross-border remittances, whether for the purchase of goods or services or
to simply send money to family and friends, can mean high service and
transfer fees, long delivery timelines, and frustrating exchange issues due to
inflation. The Dai stablecoin is used around the world as a medium of
exchange because people have confidence in its value and efficiency.

Remittance users benefit from Dai in the following ways:

8 https://www.coindesk.com/oxfam-trials-delivery-of-disaster-relief-using-ethereum-stablecoin-dai

● Low-cost domestic and international transfers. Dai provides
immediate cost savings, as low gas fees replace high bank and wire
service fees. Low cost allows for more frequent transactions.

● Anytime service. Dai doesn’t rely on bank-like hours of operation. The
Maker Protocol can be accessed 24/7/365.

● Convenient on/off ramps. Users can take advantage of the many fiat
on and off ramps that exchange fiat currencies to Dai. These options
allow users to bridge the gap between the fiat and cryptocurrency
world, and easily cash out Dai holdings in their local currencies.

● Increased security and confidence. The blockchain offers high levels
of security and consumer trust.

Stability in Volatile Markets

As noted above, Dai is both a readily accessible store of value and a powerful
medium of exchange. As such, it can help protect traders from volatility. For
example, it provides traders with a simple way to maneuver between
positions smoothly and remain active in the market without having to cash
out and repeat an on-ramp/off-ramp cycle.

Dai as an Ecosystem Driver and DeFi Builder

As more and more users become aware of Dai’s value as a stablecoin, more
developers are integrating it into the dapps they build on the Ethereum
blockchain. As such, Dai is helping to power a more robust ecosystem. In
short, Dai allows dapp developers to offer a stable method of exchange to
their users who would rather not buy and sell goods and services using
speculative assets.

Additionally, because Dai can be used to pay for gas in the Ethereum
ecosystem, by creating DeFi dapps that accept Dai instead of ETH,
developers offer users a smoother onboarding experience and a better
overall experience.

Glossaries

● MakerDAO Glossary of Terms

● Maker Protocol Glossary (terms, variables, functions, and more)

System and Community Resources

● MakerDAO on GitHub
● MakerDAO Documentation
● MakerDAO.com
● The MakerDAO Blog
● The MakerDAO Forum
● The MakerDAO Chat
● MakerDAO on Reddit
● MakerDAO on Twitter

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 1/8

Compound:
The Money Market Protocol

Version 1.0

February 2019

Authors

Robert Leshner, Geoffrey Hayes
https://compound.finance

Abstract

In this paper we introduce a decentralized protocol which establishes money markets with
algorithmically set interest rates based on supply and demand, allowing users to frictionlessly
exchange the time value of Ethereum assets.

Contents

1 Introduction 2

2 The Compound Protocol 2

2.1 Supplying Assets 3
2.1.1 Primary Use Cases 3

2.2 Borrowing Assets 3
2.2.1 Collateral Value 3
2.2.2 Risk & Liquidation 4
2.2.3 Primary Use Cases 4

2.3 Interest Rate Model 4
2.3.1 Liquidity Incentive Structure 5

3 Implementation & Architecture 5

3.1 cToken Contracts 5
3.2 Interest Rate Mechanics 6

3.2.1 Market Dynamics 6
3.2.2 Borrower Dynamics 7

3.3 Borrowing 7
3.4 Liquidation 7
3.5 Price Feeds 7
3.6 Comptroller 7
3.7 Governance 8

4 Summary 8

References 8

1

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 2/8

1 Introduction
The market for cryptocurrencies and digital blockchain assets has developed into a vibrant
ecosystem of investors, speculators, and traders, exchanging thousands [1] of blockchain assets.
Unfortunately, the sophistication of financial markets hasn’t followed: participants have little
capability of trading the time value of assets.

Interest rates fill the gap between people with surplus assets they can’t use, and people without
assets (that have a productive or investment use); trading the time value of assets benefits both
parties, and creates non-zero-sum wealth. For blockchain assets, two major flaws exist today:

● Borrowing mechanisms are extremely limited, which contributes to mispriced assets (e.g.
“scamcoins” with unfathomable valuations, because there’s no way to short them).

● Blockchain assets have negative yield, resulting from significant storage costs and risks (both
on-exchange and off-exchange), without natural interest rates to offset those costs. This
contributes to volatility, as holding is disincentivized.

Centralized exchanges (including Bitfinex, Poloniex...) allow customers to trade blockchain assets
on margin, with “borrowing markets” built into the exchange. These are trust-based systems (you
have to trust that the exchange won’t get hacked, abscond with your assets, or incorrectly close out
your position), are limited to certain customer groups, and limited to a small number of (the most
mainstream) assets. Finally, balances and positions are virtual; you can’t move a position on-chain,
for example to use borrowed Ether or tokens in a smart contract or ICO, making these facilities
inaccessible to dApps [2].

Peer to peer protocols facilitate collateralized and uncollateralized loans between market
participants directly. Unfortunately, decentralization forces significant costs and frictions onto
users; in every protocol reviewed, lenders are required to post, manage, and (in the event of
collateralized loans) supervise loan offers and active loans, and loan fulfillment is often slow &
asynchronous (loans have to be funded, which takes time) [3-6].

In this paper, we introduce a decentralized system for the frictionless borrowing of Ethereum
tokens without the flaws of existing approaches, enabling proper money markets to function, and
creating a safe positive-yield approach to storing assets.

2 The Compound Protocol
Compound is a protocol on the Ethereum blockchain that establishes money markets, which are
pools of assets with algorithmically derived interest rates, based on the supply and demand for the
asset. Suppliers (and borrowers) of an asset interact directly with the protocol, earning (and paying)
a floating interest rate, without having to negotiate terms such as maturity, interest rate, or
collateral with a peer or counterparty.

2

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 3/8

Each money market is unique to an Ethereum asset (such as Ether, an ERC-20 stablecoin such as
Dai, or an ERC-20 utility token such as Augur), and contains a transparent and publicly-inspectable
ledger, with a record of all transactions and historical interest rates.

2.1 Supplying Assets

Unlike an exchange or peer-to-peer platform, where a user’s assets are matched and lent to another
user, the Compound protocol aggregates the supply of each user; when a user supplies an asset, it
becomes a fungible resource. This approach offers significantly more liquidity than direct lending;
unless every asset in a market is borrowed (see below: the protocol incentivizes liquidity), users can
withdraw their assets at any time, without waiting for a specific loan to mature.

Assets supplied to a market are represented by an ERC-20 token balance (“cToken”), which entitles
the owner to an increasing quantity of the underlying asset. As the money market accrues interest,
which is a function of borrowing demand, cTokens become convertible into an increasing amount
of the underlying asset. In this way, earning interest is as simple as holding a ERC-20 cToken.

2.1.1 Primary Use Cases

Individuals with long-term investments in Ether and tokens (“HODLers”) can use a Compound
money market as a source of additional returns on their investment. For example, a user that owns
Augur can supply their tokens to the Compound protocol, and earn interest (denominated in
Augur) without having to manage their asset, fulfill loan requests or take speculative risks.

dApps, machines, and exchanges with token balances can use the Compound protocol as a source of
monetization and incremental returns by “sweeping” balances; this has the potential to unlock
entirely new business models for the Ethereum ecosystem.

2.2 Borrowing Assets

Compound allows users to frictionlessly borrow from the protocol, using cTokens as collateral, for
use anywhere in the Ethereum ecosystem. Unlike peer-to-peer protocols, borrowing from
Compound simply requires a user to specify a desired asset; there are no terms to negotiate,
maturity dates, or funding periods; borrowing is instant and predictable. Similar to supplying an
asset, each money market has a floating interest rate, set by market forces, which determines the
borrowing cost for each asset.

2.2.1 Collateral Value

Assets held by the protocol (represented by ownership of a cToken) are used as collateral to borrow
from the protocol. Each market has a collateral factor, ranging from 0 to 1, that represents the
portion of the underlying asset value that can be borrowed. Illiquid, small-cap assets have low
collateral factors; they do not make good collateral, while liquid, high-cap assets have high collateral

3

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 4/8

factors. The sum of the value of an accounts underlying token balances, multiplied by the collateral
factors, equals a user’s borrowing capacity .

Users are able to borrow up to, but not exceeding, their borrowing capacity, and an account can
take no action (e.g. borrow, transfer cToken collateral, or redeem cToken collateral) that would
raise the total value of borrowed assets above their borrowing capacity; this protects the protocol
from default risk.

2.2.2 Risk & Liquidation

If the value of an account’s borrowing outstanding exceeds their borrowing capacity, a portion of
the outstanding borrowing may be repaid in exchange for the user’s cToken collateral, at the
current market price minus a liquidation discount ; this incentives an ecosystem of arbitrageurs to
quickly step in to reduce the borrower’s exposure, and eliminate the protocol’s risk.

The proportion eligible to be closed, a close factor , is the portion of the borrowed asset that can be
repaid, and ranges from 0 to 1, such as 25%. The liquidation process may continue to be called until
the user’s borrowing is less than their borrowing capacity.

Any Ethereum address that possesses the borrowed asset may invoke the liquidation function,
exchanging their asset for the borrower’s cToken collateral. As both users, both assets, and prices
are all contained within the Compound protocol, liquidation is frictionless and does not rely on any
outside systems or order-books.

2.2.3 Primary Use Cases

The ability to seamlessly hold new assets (without selling or rearranging a portfolio) gives new
superpowers to dApp consumers, traders and developers:

● Without having to wait for an order to fill, or requiring off-chain behavior, dApps can
borrow tokens to use in the Ethereum ecosystem, such as to purchase computing power on
the Golem network

● Traders can finance new ICO investments by borrowing Ether, using their existing
portfolio as collateral

● Traders looking to short a token can borrow it, send it to an exchange and sell the token,
profiting from declines in overvalued tokens

2.3 Interest Rate Model

Rather than individual suppliers or borrowers having to negotiate over terms and rates, the
Compound protocol utilizes an interest rate model that achieves an interest rate equilibrium, in
each money market, based on supply and demand. Following economic theory, interest rates (the
“price” of money) should increase as a function of demand; when demand is low, interest rates

4

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 5/8

should be low, and vise versa when demand is high. The utilization ratio U for each market a unifies
supply and demand into a single variable:

orrows (Cash orrows) U a = B a / a + B a

The demand curve is codified through governance and is expressed as a function of utilization. As
an example, borrowing interest rates may resemble the following:

orrowing Interest Rate 2.5% 0% B a = + U a * 2

The interest rate earned by suppliers is implicit , and is equal to the borrowing interest rate,
multiplied by the utilization rate.

2.3.1 Liquidity Incentive Structure

The protocol does not guarantee liquidity; instead, it relies on the interest rate model to incentivize
it. In periods of extreme demand for an asset, the liquidity of the protocol (the tokens available to
withdraw or borrow) will decline; when this occur, interest rates rise, incentivizing supply, and
disincentivizing borrowing.

3 Implementation & Architecture
At its core, a Compound money market is a ledger that allows Ethereum accounts to supply or
borrow assets, while computing interest, a function of time. The protocol’s smart contracts will be
publicly accessible and completely free to use for machines, dApps and humans.

3.1 cToken Contracts

Each money market is structured as a smart contract that implements the ERC-20 token
specification. User’s balances are represented as cToken balances; users can mint(uint

amountUnderlying) cTokens by supplying assets to the market, or redeem(uint amount) cTokens
for the underlying asset. The price (exchange rate) between cTokens and the underlying asset
increases over time, as interest is accrued by borrowers of the asset, and is equal to:

xchangeRate e = cTokenSupplya
underlyingBalance +totalBorrowBalance − reserves a a

As the market’s total borrowing balance increases (as a function of borrower interest accruing), the
exchange rate between cTokens and the underlying asset increases.

Function ABI Description

mint(uint256 amountUnderlying) Transfers an underlying asset into the market, updates
msg.sender’s cToken balance.

5

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 6/8

redeem(uint256 amount)
redeemUnderlying(uint256
amountUnderlying)

Transfers an underlying asset out of the market, updates
msg.sender’s cToken balance.

borrow(uint amount) Checks msg.sender collateral value, and if sufficient,
transfers the underlying asset out of the market to
msg.sender, and updates msg.sender’s borrow balance.

repayBorrow(uint amount)
repayBorrowBehalf(address
account, uint amount)

Transfers the underlying asset into the market, updates
the borrower’s borrow balance.

liquidate(address borrower,
address collateralAsset, uint
closeAmount)

Transfers the underlying asset into the market, updates
the borrower’s borrow balance, then transfers cToken
collateral from the borrower to msg.sender

Table 2. ABI and summary of primary cToken smart contract functions

3.2 Interest Rate Mechanics

Compound money markets are defined by an interest rate, applied to all borrowers uniformly,
which adjust over time as the relationship between supply and demand changes.

The history of each interest rate, for each money market, is captured by an Interest Rate Index , which
is calculated each time an interest rate changes, resulting from a user minting, redeeming,
borrowing, repaying or liquidating the asset.

3.2.1 Market Dynamics

Each time a transaction occurs, the Interest Rate Index for the asset is updated to compound the
interest since the prior index, using the interest for the period, denominated by r * t, calculated
using a per-block interest rate:

ndex ndex 1) I a,n = I a,(n−1) * (+ r * t

The market’s total borrowing outstanding is updated to include interest accrued since the last index:

otalBorrowBalance otalBorrowBalance 1) t a,n = t a,(n−1) * (+ r * t

And a portion of the accrued interest is retained (set aside) as reserves, determined by a
reserveFactor , ranging from 0 to 1:

eserves eserves otalBorrowBalance r eserveFactor) r a = r a,(n−1) + t a,(n−1) * (* t * r

3.2.2 Borrower Dynamics

A borrower’s balance, including accrued interest, is simply the ratio of the current index divided by
the index when the user’s balance was last checkpointed.

6

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 7/8

The balance for each borrower address in the cToken is stored as an account checkpoint . An account
checkpoint is a Solidity tuple <uint256 balance, uint256 interestIndex> . This tuple describes the balance
at the time interest was last applied to that account.

3.3 Borrowing

A user who wishes to borrow and who has sufficient balances stored in Compound may call
borrow(uint amount) on the relevant cToken contract. This function call checks the user’s account
value, and given sufficient collateral, will update the user’s borrow balance, transfer the tokens to
the user’s Ethereum address, and update the money market’s floating interest rate.

Borrows accrue interest in the exact same fashion as balance interest was calculated in section 3.2; a
borrower has the right to repay an outstanding loan at any time, by calling repayBorrow(uint

amount) which repays the outstanding balance.

3.4 Liquidation

If a user’s borrowing balance exceeds their total collateral value (borrowing capacity) due to the
value of collateral falling, or borrowed assets increasing in value, the public function
liquidate(address target, address collateralAsset, address borrowAsset, uint

closeAmount) can be called, which exchanges the invoking user’s asset for the borrower’s collateral,
at a slightly better than market price.

3.5 Price Feeds

A Price Oracle maintains the current exchange rate of each supported asset; the Compound protocol
delegates the ability to set the value of assets to a committee which pools prices from the top 10
exchanges. These exchange rates are used to determine borrowing capacity and collateral
requirements, and for all functions which require calculating the value equivalent of an account.

3.6 Comptroller

The Compound protocol does not support specific tokens by default; instead, markets must be
whitelisted. This is accomplished with an admin function, supportMarket(address market,

address interest rate model) that allows users to begin interacting with the asset. In order to
borrow an asset, there must be a valid price from the Price Oracle; in order to use an asset as
collateral, there must be a valid price and a collateralFactor.

Each function call is validated through a policy layer, referred to as the Comptroller ; this contract
validates collateral and liquidity, before allowing a user action to proceed.

7

6/14/2019 Compound Whitepaper - Google Docs

https://docs.google.com/document/d/1KoXEEYg4YAaPacS4dudPuFZwgAX0Swv9Yi7-iE4C5JU/edit# 8/8

3.7 Governance

Compound will begin with centralized control of the protocol (such as choosing the interest rate
model per asset), and over time, will transition to complete community and stakeholder control.
The following rights in the protocol are controlled by the admin:

● The ability to list a new cToken market
● The ability to update the interest rate model per market
● The ability to update the oracle address
● The ability to withdraw the reserve of a cToken
● The ability to choose a new admin, such as a DAO controlled by the community; because

this DAO can itself choose a new admin, the administration has the ability to evolve over
time, based on the decisions of the stakeholders

4 Summary
● Compound creates properly functioning money markets for Ethereum assets
● Each money market has interest rates that are determined by the supply and demand of the

underlying asset; when demand to borrow an asset grows, or when supply is removed,
interest rates increase, incentivizing additional liquidity

● Users can supply tokens to a money market to earn interest, without trusting a central party
● Users can borrow a token (to use, sell, or re-lend) by using their balances in the protocol as

collateral

References
[1] Cryptocurrency Market Capitalizations. https://coinmarketcap.com/
[2] Bitfixex Margin Funding Guide. https://support.bitfinex.com/
[3] ETHLend White Paper. https://github.com/ETHLend
[4] Ripio White Paper. https://ripiocredit.network/
[5] Lendroid White Paper. https://lendroid.com/
[6] dYdX White Paper. https://whitepaper.dydx.exchange/
[7] Fred Ehrsam: The Decentralized Business Model. https://blog.coinbase.com/

8

Protocol Whitepaper

V1.0

wow@aave.com

January 2020

Abstract

This document describes the definitions and theory behind the Aave Protocol explaining the different aspects
of the implementation.

Contents

1 Introduction 1
1.1 Basic Concepts . 1
1.2 Formal Definitions . 3

2 Protocol Architecture 5
2.1 Lending Pool Core . 5
2.2 Lending Pool Data Provider . 5
2.3 Lending Pool . 6
2.4 Lending Pool Configurator . 6
2.5 Interest Rate Strategy . 6
2.6 Governance . 7

3 The LendingPool Contract 8
3.1 Deposit . 9
3.2 Redeem . 10
3.3 Borrow . 11
3.4 Repay . 12
3.5 Swap Rate . 13
3.6 Liquidation Call . 14
3.7 Flash Loans . 15
3.8 Tokenization . 16

3.8.1 Limitations of the tokenization model . 16

4 Stable Rate Theory 17
4.1 Lending Rate Oracle . 17
4.2 Current Stable Borrow Rate Rs . 18
4.3 Limitations on Stable Rate Positions . 18
4.4 Stable Rate Rebalancing . 18
4.5 The Rebalancing Process . 19

5 Conclusion 21

1 Introduction

The birth of the Aave Protocol marks Aave’s shift from a decentralized P2P lending strategy (direct loan relationship
between lenders and borrowers, like in ETHLend) to a pool-based strategy. Lenders provide liquidity by depositing
cryptocurrencies in a pool contract. Simultaneously, in the same contract, the pooled funds can be borrowed by
placing a collateral. Loans do not need to be individually matched, instead they rely on the pooled funds, as well as
the amounts borrowed and their collateral. This enables instant loans with characteristics based on the state of the
pool. A simplified scheme of the protocol is presented in figure 1 below.

Figure 1: The Aave Protocol

The interest rate for both borrowers and lenders is decided algorithmically:

• For borrowers, it depends on the cost of money - the amount of funds available in the pool at a specific time.
As funds are borrowed from the pool, the amount of funds available decreases which raises the interest rate.

• For lenders, this interest rate corresponds to the earn rate, with the algorithm safeguarding a liquidity reserve
to guarantee withdrawals at any time.

1.1 Basic Concepts

Figure 2: Lending Pool Basics

At the heart of a lending pool is the concept of reserve: every pool holds reserves in multiple currencies, with
the total amount in Ethereum defined as total liquidity. A reserve accepts deposits from lenders. Users can

1

borrow these funds, granted that they lock a greater value as collateral, which backs the borrow position.
Specific currencies in the pooled reserves can be configured as collateral or not for borrow positions, only low risk
tokens should be considered. The amount one can borrow depends on the currencies deposited still available in the
reserves. Every reserve has a specific Loan-To-Value (LTV), calculated as the weighted average of the different
LTVs of the currencies composing the collateral, where the weight for each LTV is the equivalent amount of the
collateral in ETH; figure 3 shows an example of parameters.

Every borrow position can be opened with a stable or variable rate. Borrows have infinite duration, and there is
no repayment schedule: partial or full repayments can be made anytime.

Figure 3: Lending Pool Parameters

In case of price fluctuations, a borrow position might be liquidated. A liquidation event happens when the price of
the collateral drops below the threshold, LQ, called liquidation threshold. Reaching this ratio channels a liquida-
tion bonus, which incentivizes liquidators to buy the collateral at a discounted price. Every reserve has a specific
liquidation threshold, following the same approach as for the LTV. Calculation of the average liquidation threshold La

Q

is performed dynamically, using the weighted average of the liquidation thresholds of the collateral’s underlying assets.

At any point in time, a borrow position is characterized by its health factor Hf , a function for the total col-
lateral and the total borrows which determines if a loan is undercollateralized:

Hf =
TotalCollateralETH∗La

Q

TotalBorrowsETH+TotalFeesETH when Hf < 1, a loan is considered undercollateralized and can be liquidated

Further details on liquidation can be found in section 3.6.

2

1.2 Formal Definitions

Variable Description

T , current times-
tamp

Current number of seconds defined by block.timestamp.

Tl, last updated
timestamp

Timestamp of the last update of the reserve data. Tl is updated every time a
borrow, deposit, redeem, repay, swap or liquidation event occurs.

∆T , delta time ∆T = T − Tl

Tyear, seconds Number of seconds in a year. Tyear = 31536000

∆Tyear, yearly pe-
riod

∆Tyear = ∆T
Tyear

Lt, total liquidity Total amount of liquidity available in the reserve. The decimals of this value
depend on the decimals of the currency.

Bs, total stable bor-
rows

Total amount of liquidity borrowed at a stable rate. The decimals of this value
depend on the decimals of the currency.

Bv, total variable
borrows

Total amount of liquidity borrowed at a variable rate. The decimals of this value
depend on the decimals of the currency.

Bt, total borrows Total amount of liquidity borrowed. The deci-
mals of this value depend on the decimals of the
currency.

Bt = Bs + Bv

U , utilization rate Representing the utilization of the deposited
funds.

U =

0, if Lt = 0

Bt

Lt
, if Lt > 0

Uoptimal, target uti-
lization rate

The utilization rate targeted by the model, beyond the variable interest rate rises
sharply.

Rv0 , base variable
borrow rate

Constant for Bt = 0. Expressed in ray.

Rslope1, interest rate
slope below Uoptimal

Constant representing the scaling of the interest rate versus the utilization, when
U < Uoptimal. Expressed in ray.

Rslope2, interest rate
slope above Uoptimal

Constant representing the scaling of the interest rate versus the utilization, when
U ≥ Uoptimal. Expressed in ray.

Rv, variable borrow
rate

Rv =

Rv0 + U

Uoptimal
Rslope1, if U ≤ Uoptimal

Rv0 + Rslope1 +
U−Uoptimal

1−Uoptimal
Rslope2, if U > Uoptimal

Rs, stable rate Implemented in section 4.2. Expressed in ray.

Mr, average market
lending rate

Base stable borrow rate, defined for i platforms
with P r

i the lending rate and P v
i the borrowing

volume. Expressed in ray.

Mr =
∑n

i=1 P i
rP

i
v∑n

i=1 P i
v

3

Variable Description

Rt
sa, average stable

rate borrow rate

When a stable borrow of amount Bnew is issued
at rate Rs:

Rt
sa =

BsR
t−1
sa +BnewRs

Bs+Bnew

When a user repays an amount Bx at stable rate
Rsx:

Rt
sa =

0, if Bs −Bx = 0

BsR
t−1
sa −BxRsx

Bs−Bx
, if Bs −Bx > 0

Check the methods decreaseTotalBorrowsStableAndUpdateAverageRate()

and increaseTotalBorrowsStableAndUpdateAverageRate(). Expressed in ray.

RO, overall borrow
rate

Overall borrow rate of the reserve, calculated as
the weighted average between the total variable
borrows Bv and the total stable borrows Bs.

RO =
0, if Bt = 0

BvRv+BsRsa

Bt
, if Bt > 0

Rl, current liquidity
rate

Function of the overall borrow rate RO and the
utilization rate U .

Rl = ROU

Ct
i , cumulated liq-

uidity index

Interest cumulated by the reserve during the time
interval ∆T , updated whenever a borrow, deposit,
repay, redeem, swap, liquidation event occurs.

Ct
i = (Rl∆Tyear + 1)Ct−1

i

C0
i = 1× 1027 = 1 ray

Itn, reserve normal-
ized income

Ongoing interest cumulated by the reserve. Itn = (Rl∆Tyear + 1)Ct−1
i

Bt
vc, cumulated vari-

able borrow index

Interest cumulated by the variable borrows Bv, at
rate Rv, updated whenever a borrow, deposit, repay,
redeem, swap, liquidation event occurs.

Bt
vc = (1 + Rv

Tyear
)∆TxBt−1

vc

B0
vc = 1× 1027 = 1 ray

Bt
vcx, user cumu-

lated variable bor-
row index

Variable borrow index of the specific user, stored
when a user opens a variable borrow position.

Bt
vcx = Bt

vc

Bx, user principal
borrow balance

Balance stored when a user opens a borrow position. In case of multiple borrows,
the compounded interest is cumulated each time and it becomes the new principal
borrow balance.

Bxc, user com-
pounded borrow
balance

Principal Bx plus the cumulated interests.

For a variable position: Bxc = Bvc

Bvcx
(1 + Rv

Tyear
)∆TxBx

For a stable position: Bxc = (1 + Rs

Tyear
)∆TxBx

Hf , health factor when Hf < 1, a loan is considered undercollater-
alized and can be liquidated

Hf =
TotalCollateralETH∗La

Q

Bt+TotalFeesETH

4

2 Protocol Architecture

The current implementation of the protocol is as follows:

Figure 4: Protocol Architecture

2.1 Lending Pool Core

The LendingPoolCore contract is the center of the protocol, it:

• holds the state of every reserve and all the assets deposited,

• handles the basic logic (cumulation of the indexes, calculation of the interest rates...).

2.2 Lending Pool Data Provider

The LendingPoolDataProvider contract performs calculations on a higher layer of abstraction than the LendingPoolCore
and provides data for the LendingPool; specifically:

• Calculates the ETH equivalent a user’s balances (Borrow Balance, Collateral Balance, Liquidity Balance) to
assess how much a user is allowed to borrow and the health factor.

• Aggregates data from the LendingPoolCore to provide high level information to the LendingPool.

• Calculate of the Average Loan to Value and Average Liquidation Ratio.

5

2.3 Lending Pool

The LendingPool contract uses the LendingPoolCore and LendingPoolDataProvider to interact with the reserves
through the actions:

• Deposit

• Redeem

• Borrow

• Repay

• Rate swap

• Liquidation

• Flash loan

One of the advanced features implemented in the LendingPool contract is the tokenization of the lending position.
When a user deposits in a specific reserve, he receives a corresponding amount of aTokens, tokens that map the
liquidity deposited and accrue the interests of the deposited underlying assets. Atokens are minted upon deposit,
their value increases until they are burned on redeem or liquidated. Whenever a user opens a borrow position, the
tokens used as collateral are locked and cannot be transferred. Further details on the tokenization are in section 3.8.

2.4 Lending Pool Configurator

The LendingPoolConfigurator provides main configuration functions for LendingPool and LendingPoolCore:

• Reserve initialization

• Reserve configuration

• Enable/disable borrowing on a reserve

• Enable/disable the usage of a specific reserve as collateral.

The LendingPoolConfigurator contract will be integrated in Aave Protocol governance.

2.5 Interest Rate Strategy

The InterestRateStrategy contract holds the information needed to update the interest rates of a specific reserve
and implements the update of the interest rates. Every reserve has a specific InterestRateStrategy contract.
Specifically, within the base strategy contract DefaultReserveInterestRateStrategy the following are defined:

• Base variable borrow rate Rv0

• Interest rate slope below optimal utilisation Rslope1

• Interest rate slope beyond optimal utilisation Rslope2

The current variable borrow rate is:

Rv =

{
Rv0 + U

Uoptimal
Rslope1, if U ≤ Uoptimal

Rv0 + Rslope1 +
U−Uoptimal

1−Uoptimal
Rslope2, if U > Uoptimal

This interest rate model allows for calibration of key interest rates:

• At U = 0, Rv = Rv0

• At U = Uoptimal, Rv = Rv0 + Rslope1

• Above Uoptimal, the interest rate rises sharply to take into account the cost of capital.

The stable borrow rate follows the same model described in section 4.2.

6

2.6 Governance

The rights of the protocol are controlled by the LEND token. Initially, the Aave Protocol will be launched with
a decentralized on-chain governance based on the DAOStack framework which will evolve to a fully autonomous
protocol. On-chain implies all votes are binding: actions that follow a vote are hard-coded and must be executed.

To understand the scope of the governance it’s important to make the distinction:

• The Aave Protocol is bound to evolve and will allow the creation of multiple lending pools with segregated
liquidity, parameters, permissions, and type of assets.

• The Aave Lending Pool is the first pool of the Aave protocol until the Pool Factory Update is released and
anyone can create their own pool.

Within the Aave Protocol, the governance will take place at two level :

1. The Protocol’s Governance voting is weighted by LEND for decisions related to protocol parameters and
upgrades of the smart contract. It can be compared to MakerDAO’s governance where stakeholders vote on
current and future parameters of the protocol.

2. The Pool’s Governance where your vote is weighted based on your share of pool liquidity expressed in
aTokens. The votes cover pool specific parameters such as assets used as collateral or to be borrowed.

Each Pool will have its own governance, under the umbrella of the Protocol’s Governance.

More details on the Governance will be published in a Governance Proposal to the community.

7

3 The LendingPool Contract

The actions implemented within LendingPool allow users to interact with the reserve. All the actions follow this
specific sequence:

Figure 5: The LendingPool Contract

8

3.1 Deposit

The deposit action is the simplest one and does not have any particular state check. The sequence of action is:

Figure 6: Deposit funds

9

3.2 Redeem

The redeem action allows users to exchange an amount of aTokens for the underlying asset. The actual amount
to redeem is calculated using the aToken/underlying exchange rate Ei in section 3.8. The action is defined as follows:

Figure 7: Redeem funds

10

3.3 Borrow

The borrow action transfers to the user a specific amount of underlying asset, in exchange of a collateral that remains
locked. The flow of action can be described as follows:

Figure 8: Borrow funds

11

3.4 Repay

The repay action allows the user to repay completely or partially the borrowed amount plus the origination fee and
the accrued interest.

Figure 9: Repay a loan

12

3.5 Swap Rate

The swap rate action allows a user with a borrow in progress to swap between variable and stable borrow rate.

Figure 10: Swap Rate

13

3.6 Liquidation Call

The liquidationcall contract allows any external actor to purchase part of a collateral at a discounted price. In
case of a liquidation event, a maximum of 50% of the loan can be liquidated, which will bring the health factor back
above 1.

Figure 11: Liquidation

14

3.7 Flash Loans

The flash loan action will allow users to borrow from the reserves within a single transaction, as long as the user
returns more liquidity that has been taken.

Figure 12: Flash Loan

Flash loans temporarily transfer the funds to a smart contract that respects the IFlashLoanEnabledContract.sol

interface. The address of the contract is a parameter of the action. After the funds are transferred, the method
executeOperation() is executed on the external contract. The contract can do whatever action is needed with the
borrowed funds. After the method executeOperation() is completed, a check is performed to verify that the funds
plus fee have been returned to the LendingPool contract. The fee is then accrued to the reserve, and the state of
the reserve is updated. If less funds than what was borrowed have been returned to the reserve, the transaction is
reverted.

15

3.8 Tokenization

The Aave protocol implements a tokenization strategy for liquidity providers. Upon deposit, the depositor receives a
corresponding amount of derivative tokens, called Aave Tokens (aTokens for short) that map 1:1 the underlying
assets. The balance of aTokens of every depositor grows over time, driven by the perpetual accrual of interest of
deposits. aTokens are fully ERC20 compliant.

aTokens also natively implement the concept of interest rate redirection. Indeed, the value accrued over time by
the borrowers’ interest rate payments is distinct from the principal value. Once there is a balance of aTokens, the
accrued value can be redirected to any address, effectively splitting the balance and the generated interest. We call
the continuous flow of accumulated interest over time the interest stream.

To implement this tokenization strategy, Aave introduced the following concepts in the aToken contract:

1. User x balance index Itx: Is the value of the reserve normalized income Itx at the moment of execution of
the last action by the user.

2. Principal balance Bp: Is the balance stored in the balances mapping of the ERC20 aToken contract. The
principal balance gets updated on every action that the user executes on the aToken contract (deposit, redeem,
transfer, liquidation, interest rate redirection)

3. Redirection address Ar: When a user decides to redirect his interest stream to another address, a new
redirection address Ar is provided. If no redirection of the interest stream is performed, Ar is 0

4. Redirected Balance Bx
r : Whenever a user redirects his interest stream, the balance of user redirecting is

added to the redirected balance Br of the address specified by Br. Defined as follows:

Bx
r =

∑
X Bp

Where X is the set of users redirecting the interest stream to the user x

The redirected balance decreases whenever a user x0 ∈ X redeems or transfers his aTokens to another user
that is not redirecting to x.

5. Current balance Bc: Is the balance returned by the balanceOf() function of the aToken contract. Defined
as follows:

Bx
c =

0, if Bx

p = 0 and Bx
r = 0

Bx
p + Bx

r (In
Ix
− 1), if Ar <> 0

Bx
p
In
Ix

+ Bx
r (In

Ix
− 1), if Ar = 0

3.8.1 Limitations of the tokenization model

The described tokenization model has many advantages compared to the widely used, exchange rate based approach,
but also some drawbacks, specifically:

1. It’s impossible to transfer the whole balance at once: Given the perpetual accrual of the interest rate,
there is no way to specify the exact amount to transfer, since the interest will keep accruing even while the
transfer transaction is being confirmed. This means that having exactly 0 balance after a transfer is impossible,
rather, a very small balance (dust balance) will be left to the from account executing the transfer. Note that
this could have been avoided by adding specific logic to handle this particular edge case, but this would have
meant adding a non standard behavior to the ERC20 transfer function, and for this reason we avoided it. Even
though this is not a relevant issue, it’s important to note that is possible to completely clear the remaining
balance by either 1. execute another transfer, which will most likely transfer the remaining dust balance as it
would be too small to accrue interest in a reasonably short amount of time, or 2. redeem the dust balance and
transfer the underlying asset.

2. Interest stream can only be redirected if there is a principal balance: This means that only accounts
that have a principal balance Bp can redirect their interest. If users redeem or transfer everything, their
interest redirection is reset. As a side effect of this, interest generated only by the redirected balance Br cannot
be redirected.

16

4 Stable Rate Theory

The following chapter explains how the stable rates are applied to the system and the limitations.

Implementation of a fixed rate model on top of a pool is complicated. Indeed, fixed rates are hard to handle
algorithmically, as the cost of borrowing money varies with market conditions and the liquidity available. There
might therefore be situations (sudden market changes, bank runs ...) in which handling stable rate borrow positions
would need using specific heuristics based on time or economical constraints. Following this reasoning, we identified
two possible ways of handling fixed rates:

1. Imposing time constraints: fixed rates might work perfectly fine in a time constrained fashion. If a loan
has a stable duration, it should survive extreme market conditions, as the borrower must repay at the end of
the loan period. Unfortunately, time constrained fixed rate loans aren’t suitable for our specific use case of
open ended loan. It would require a certain degree of UX friction where users would need to create and handle
multiple loans with different times constraints.

2. Imposing rates constraints: An interest rate calculated at the beginning of a loan might be impacted by
market conditions, keeping it from staying fixed. If the rate diverges too much from the market, it can be
readjusted. This would not be a pure fixed rate, open term loan - as the rate might vary throughout the loan
duration – yet users will experience actual fixed rates during specific time periods, or when there is enough
liquidity available. This particular implementation has been chosen to be integrated into Aave’s Protocol
under the name stable rate.

4.1 Lending Rate Oracle

Figure 13: Lending Rate Oracle

The first component to be integrated into the Protocol protocol is a Lending Rate Oracle, which will provide
information to the contracts on the actual market rates that other lending platforms, both centralized and
decentralized, are providing. The average market lending rate Mr is defined for i platforms with P i

r the lending rate
and P i

v the borrowing volume:

Mr =
∑n

i=1 P i
rP

i
v∑n

i=1 P i
v

The market rate will be updated daily, initially by Aave.

17

4.2 Current Stable Borrow Rate Rs

The current stable borrow rate is calculated as follows:

Rt
s =

{
Mr + U

Uoptimal
Rslope1, if U ≤ Uoptimal

Mr + Rslope1 +
U−Uoptimal

1−Uoptimal
Rslope2, if U > Uoptimal

With:
- Mr the average market lending rate.
- Rslope1 the interest rate slope below Uoptimal, increases the rate as U increases.
- Rslope2 the interest rate slope beyond Uoptimal, increases as the difference between U and Uoptimal increases.
- U is the utilization rate.

Note: Rs does NOT impact existing stable rates positions – this is applied only to new opened positions.

4.3 Limitations on Stable Rate Positions

To avoid abuses on stable rate loans, the following limitations have been applied to the stable rate borrowing model:

1. Users cannot deposit as collateral more liquidity than what they are trying to borrow. Eg. a user deposits 10
million DAI collateral, tries to borrow 1 million DAI. This is to prevent the following attack vector:

Given: Bs = 18%APR, Mr = 9%APR, Rl = 12%APR

Users might try to artificially lower Bs to the value of Mr by depositing a huge amount of liquidity which
would cause Bs to drop, then borrow from the same liquidity at a lower rate, withdraw the liquidity previously
deposited to cause Bs and the liquidity rate Rl to raise again; then finally deposit the amount borrowed to
earn interest on the previously borrowed funds. Although this attack can still be carried out using multiple
accounts, this particular constraint makes the attack more complicated as it requires more money (and a
different collateral currency). This works well in combination with the interest rate rebalancing in the next
section.

2. Borrowers will only be able to borrow up to Tr of the available liquidity at the current borrow rate. So, for
every specific value of Bs, there is only up to Tr of liquidity available for a single borrower. This is to avoid
that a specific borrower would borrow too much available liquidity at a too competitive rate.

4.4 Stable Rate Rebalancing

The last and perhaps most important constraint of the stable rate model is the rate rebalancing. This is to work
around changes in market conditions or increased cost of money within the pool.
The stable rate rebalancing will happen in two specific situations:

1. Rebalancing up. The stable rate of a user x is rebalanced to the most recent value of Bs when a user could
earn interest by borrowing:

Bx
s < Rl with Bx

s the stable borrow rate of user x

2. Rebalancing down. The stable rate of a user x is rebalanced to the most recent value of Bs, if:

Bx
s > Bs(1 + ∆Bs)

with ∆Bs a rate delta established by governance which defines the window above Bs to rebalance interest
rates. If a user pays too much interest beyond that range, the rate is balanced down.

18

4.5 The Rebalancing Process

The LendingPool contract exposes a function rebalanceStableBorrowRate(address reserve, address user)

which allows to rebalance the stable rate interest of a specific user. Anybody can call this function: however, there
isn’t any direct incentive for the caller to rebalance the rate of a specific user. For this reason, Aave will provide
an agent that will periodically monitor all the stable rates positions and rebalance the ones that will be deemed
necessary. The rebalance strategy will be decided offchain by the agent, this means that users that satisfy the
rebalance conditions may not be rebalanced immediately. Since those conditions depend on the liquidity avail-
able and the state of market, there might be some transitory situations in which an immediate rebalance is not needed.

This does not add any element of centralization to the protocol. Even if the agent stops working, anybody can call
the rebalance function of the LendingPool contract. Although there isn’t any direct incentive in doing it (“why
should I do it?”) there is an indirect incentive for the ecosystem. In fact, even if the agent should cease to exist,
depositors might still want to trigger a rebalance up of the lowest borrow rate positions, to increase the liquidity
rate and/or force borrowers to close up their positions, increasing the available liquidity. In case of a rescale down,
instead, borrowers have a direct incentive in performing a rebalance of their positions to lower the interest rate.

The following flowchart explains the sequence of actions of the function rebalanceStableBorrowRate(). The
compounded balance that is accumulated until the instant at which the rebalance happens, is not affected by the
rebalance.

19

Figure 14: Rebalancing

20

5 Conclusion

The Aave Protocol relies on a lending pool model to offer high liquidity. Loans are backed by collateral and
represented by aTokens, derivative tokens which accrue the interests. The parameters such as interest rate and
Loan-To-Value are token specific.

Aave improves Decentralized Finance’s current offering, bringing two key innovations to the lending ecosystem:

• Stable Rates to help borrowers’ financial planning;

• Flash Loans to borrow without collateral during a single transaction.

Following the launch of the mainnet, Aave will uphold its commitment to decentralization through additional features.
The Pool Factory will allow anyone to launch their own lending pool based on our smart-contracts. Governance will
be on-chain with rights represented by:

• The LEND token at Protocol level for updates of the smart contract;

• aTokens at Pool level for pool specific parameters.

21

Curve DAO

Curve DAO consists of multiple smart contracts connected by Aragon. Apart
from that, standard Aragon’s 1 token = 1 vote method is replaced with the
voting weight proportional to locktime, as will be described below.

Figure 1: Curve DAO contracts managed by Aragon

Curve DAO has a token CRV which is used for both governance and value
accrual.

Time-weighted voting. Vote-locked tokens in VotingEscrow

Instead of voting with token amount a, in Curve DAO tokens are lockable in a
VotingEscrow for a selectable locktime tl, where tl < tmax, and tmax = 4 years.
After locking, the time left to unlock is t ≤ tl. The voting weight is equal to:

w = a
t

tmax
.

In other words, the vote is both amount- and time-weighted, where the time
counted is how long the tokens cannot be moved in future.

The account which locks the tokens cannot be a smart contract (because can be
tradable and/or tokenized), unless it is one of whitelisted smart contracts (for
example, widely used multi-signature wallets).

1

VotingEscrow tries to resemble Aragon’s Minime token. Most importantly,
balanceOf() / balanceOfAt() and totalSupply() / totalSupplyAt() re-
turn the time-weighted voting weight w and the sum of all of those weights
W =

∑
wi respectively. Aragon can interface VotingEscrow as if it was a typical

governance token.

Figure 2: Voting weight of vote-locked tokens

Locks can be created with create_lock(), extended in time with
increase_unlock_time() or token amount with increase_amount(),
and withdraw() can remove tokens from the escrow when the lock is expired.

Implementation details

User voting power wi is linearly decreasing since the moment of lock. So does the
total voting power W . In order to avoid periodic check-ins, every time the user
deposits, or withdraws, or changes the locktime, we record user’s slope and bias
for the linear function wi(t) in user_point_history. We also change slope and
bias for the total voting power W (t) and record in point_history. In addition,
when user’s lock is scheduled to end, we schedule change of slopes of W (t) in
the future in slope_changes. Every change involves increasing the epoch by 1.

This way we don’t have to iterate over all users to figure out, how much should
W (t) change by, neither we require users to check in periodically. However, we
limit the end of user locks to times rounded off by whole weeks.

Slopes and biases change both when a user deposits and locks governance tokens,
and when the locktime expires. All the possible expiration times are rounded to
whole weeks to make number of reads from blockchain proportional to number
of missed weeks at most, not number of users (which can be potentially large).

Inflation schedule. ERC20CRV

Token ERC20CRV is an ERC20 token which allows a piecewise linear inflation
schedule. The inflation is dropping by 21/4 every year. Only Minter contract

2

can directly mint ERC20CRV, but only within the limits defined by inflation.

Each time the inflation changes, a new mining epoch starts.

Figure 3: CRV token inflation schedule

Initial supply of CRV is 1.273 billion tokens, which is 42% of the eventual
(t→∞) supply of ≈ 3.03 billion tokens. All of those initial tokens tokens are
gradually vested (with every block). The initial inflation rate which supports
the above inflation schedule is r = 22.0% (279.6 millions per year). All of the
inflation is distributed to users of Curve, according to measurements taken by
gauges. During the first year, the approximate inflow into circulating supply is 2
millions CRV per day, starting from 0.

System of Gauges. LiquidityGauge and GaugeController

In Curve, inflation is going towards users who use it. The usage is measured
with Gauges. Currently there is just LiquidityGauge which measures, how much
liquidity does the user provide. The same type of gauge can be used to measure
“liquidity” provided for insurance.

For LiquidityGauge to measure user liquidity over time, the user deposits his LP
tokens into the gauge using deposit() and can withdraw using withdraw().

Coin rates which the gauge is getting depends on current inflation rate, and gauge
type weights (which get voted on in Aragon). Each user gets inflation proportional
to his LP tokens locked. Additionally, the rewards could be boosted by up to
factor of 2.5 if user vote-locks tokens for Curve governance in VotingEscrow.

The user does not require to periodically check in. We describe how this is
achieved in technical details.

GaugeController keeps a list of Gauges and their types, with weights of each
gauge and type.

Gauges are per pool (each pool has an individual gauge).

3

LiquidityGauge implementation details

Suppose we have the inflation rate r changing with every epoch (1 year), gauge
weight wg and gauge type weight wt. Then, all the gauge handles the stream
of inflation with the rate r′ = wgwtr which it can update every time wg, wt, or
mining epoch changes.

In order to calculate user’s fair share of r′, we essentially need to calculate the
integral:

Iu =
∫

r′(t) bu(t)
S(t) dt,

where bu(t) is the balance supplied by user (measured in LP tokens) and S(t) is
total liquidity supplied by users, depending on the time t; the value Iu gives the
amount of tokens which user has to have minted to him. The user’s balance bu

changes every time user u makes a deposit or withdrawal, and S changes every
time any user makes a deposit or withdrawal (so S can change many times in
between two events for the user u). In LiquidityGauge contract, the vaule of Iu

is recorded in the integrate_fraction map, per-user.

In order to avoid all users to checkpoint periodically, we keep recording values
of the following integral (named integrate_inv_supply in the contract):

Iis(t) =
∫ t

0

r′(t)
S(t) dt.

The value of Iis is recorded at any point any user deposits or withdraws, as
well as every time the rate r′ changes (either due to weight change or change of
mining epoch).

When a user deposits or withdraws, the change in Iu can be calculated as the
current (before user’s action) value of Iis multiplied by the pre-action user’s
balance, and sumed up across user’s balances:

Iu(tk) =
∑

k

bu(tk) [Iis(tk)− Iis(tk−1)] .

The per-user integral is possible to repalce with this sum because bu(t) is
unchanged for all times between tk−1 and tk.

In order to incentivize users to participate in governance, and additionally create
stickiness for liquidity, we implement the following mechanism. User’s balance
counted in the LiquidityGauge gets boosted by users locking CRV tokens in
VotingEscrow, depending on their vote weight wi:

b∗u = min
(

0.4 bu + 0.6 S
wi

W
, bu

)
.

The value of wi is taken at the time user performs any action (deposit, withdrawal,
withdrawal of minted CRV tokens) and is applied until the next action this user
performs.

4

If no users vote-lock any CRV (or simply don’t have any), the inflation will
simply be distributed proportionally to the liquidity bu each one of them provided.
However, if a user stakes much enough CRV, he is able to boost his stream of
CRV by up to factor of 2.5 (reducing it slightly for all users who are not doing
that).

Implementation details are such that a user gets the boost actual at the time
of the last action or checkpoint. Since the voting power decreases with time,
it is favorable for users to apply a boost and do no further actions until they
vote-lock more tokens. However, once vote-lock expires, everyone can “kick” the
user by creating a checkpoint for that user and, essentially, resetting the user to
no boost if he/she has no voting power at that point already.

Finally, the gauge is supposed to not miss a full year of inflation (e.g. if there
were no interactions with the guage for the full year). If that ever happens, the
abandoned gauge gets less CRV.

Weight voting for gauges

Instead of simply voting for weight change in Aragon, users can allocate their
vote-locked tokens towards one or other Gauge (pool). That pool will be getting
a fraction of CRV tokens minted proportional to how much vote-locked tokens
are allocated to it. Eeach user with tokens in VotingEscrow can change his/her
preference at any time.

When a user applies a new weight vote, it gets applied only in the beginning of
the next whole week (this is done for scalability reasons). The weight vote for
the same gauge can be changed not more often than once in 10 days.

GaugeController implementation details

In order to implement weight voting, GaugeController has to include parameters
handling linear character of voting power each user has.

Similarly to how it is done in VotingEscrow, GaugeController records points
(bias+slope) per gauge in vote_points, scheduled changes in biases and slopes
for those points in vote_bias_changes and vote_slope_changes, with those
changes happening every round week, as well as current slopes for every user
per-gauge in vote_user_slopes, along with the power the user has used and
the time their vote-lock ends. The totals for slopes and biases for vote weight
per gauge, and sums of those per type, get scheduled / recorded for the next
week, as well as the points when voting power gets to 0 at lock expiration for
some of users.

When user changes his preferences, the change of the gauge weight is scheduled
for the next round week, not immediately. This is done in order to reduce the

5

number of blockchain reads which need to be performed by each user: that will
be proportional to the number of weeks since the last change instead of the
number of interactions other users did.

GaugeController is one of the most central pieces to the system, so it must
be controlled by the DAO. No centralized admin should control it, to not give
anyone powers to change type weights unilaterally.

Fee burner

Every pool allows the admin to collect fees using withdraw_admin_fees. Aragon
should be able to collect those fees to the admin account and use them to buy
and burn CRV on a free market once that free market exists. That should be
possible to be done by anyone without a vote.

Instead of burning, there could be different mechanisms working with the same
interface. In any case, this will not be immediately applied.

Gauges to rewards trading volume and governance votes

Both votes and trades are discrete events, so they can use the same sort of gauge.
The idea is that each event has a weight which exponentially decays over time.

It should be possible to call a gauge contract every time a user votes in Aragon.

6

Uniswap v3 Core
March 2021

Hayden Adams
hayden@uniswap.org

Noah Zinsmeister
noah@uniswap.org

Moody Salem
moody@uniswap.org

River Keefer
river@uniswap.org

Dan Robinson
dan@paradigm.xyz

ABSTRACT
Uniswap v3 is a noncustodial automated market maker imple-
mented for the Ethereum Virtual Machine. In comparison to earlier
versions of the protocol, Uniswap v3 provides increased capital
efficiency and fine-tuned control to liquidity providers, improves
the accuracy and convenience of the price oracle, and has a more
flexible fee structure.

1 INTRODUCTION
Automated market makers (AMMs) are agents that pool liquidity
and make it available to traders according to an algorithm [5]. Con-
stant function market makers (CFMMs), a broad class of AMMs of
which Uniswap is a member, have seen widespread use in the con-
text of decentralized finance, where they are typically implemented
as smart contracts that trade tokens on a permissionless blockchain
[2].

CFMMs as they are implemented today are often capital inef-
ficient. In the constant product market maker formula used by
Uniswap v1 and v2, only a fraction of the assets in the pool are
available at a given price. This is inefficient, particularly when
assets are expected to trade close to a particular price at all times.

Prior attempts to address this capital efficiency issue, such as
Curve [3] and YieldSpace [4], have involved building pools that use
different functions to describe the relation between reserves. This
requires all liquidity providers in a given pool to adhere to a single
formula, and could result in liquidity fragmentation if liquidity
providers want to provide liquidity within different price ranges.

In this paper, we present Uniswap v3, a novel AMM that gives
liquidity providers more control over the price ranges in which
their capital is used, with limited effect on liquidity fragmentation
and gas inefficiency. This design does not depend on any shared
assumption about the price behavior of the tokens. Uniswap v3
is based on the same constant product reserves curve as earlier
versions [1], but offers several significant new features:

• Concentrated Liquidity: Liquidity providers (LPs) are given
the ability to concentrate their liquidity by “bounding" it
within an arbitrary price range. This improves the pool’s
capital efficiency and allows LPs to approximate their pre-
ferred reserves curve, while still being efficiently aggregated
with the rest of the pool. We describe this feature in section
2 and its implementation in Section 6.

• Flexible Fees: The swap fee is no longer locked at 0.30%.
Rather, the fee tier for each pool (of which there can be
multiple per asset pair) is set on initialization (Section 3.1).
The initially supported fee tiers are 0.05%, 0.30%, and 1%.
UNI governance is able to add additional values to this set.

• Protocol Fee Governance: UNI governance has more flexibility
in setting the fraction of swap fees collected by the protocol
(Section 6.2.2).

• Improved Price Oracle: Uniswap v3 provides a way for users
to query recent price accumulator values, thus avoiding the
need to checkpoint the accumulator value at the exact be-
ginning and end of the period for which a TWAP is being
measured. (Section 5.1).

1

Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

• Liquidity Oracle: The contracts expose a time-weighted av-
erage liquidity oracle (Section 5.3).

The Uniswap v2 core contracts are non-upgradeable by de-
sign, so Uniswap v3 is implemented as an entirely new set of
contracts, available here. The Uniswap v3 core contracts are also
non-upgradeable, with some parameters controlled by governance
as described in Section 4.

2 CONCENTRATED LIQUIDITY
The defining idea of Uniswap v3 is that of concentrated liquidity:
liquidity bounded within some price range.

In earlier versions, liquidity was distributed uniformly along the

𝑥 · 𝑦 = 𝑘 (2.1)

reserves curve, where 𝑥 and 𝑦 are the respective reserves of two
assets X and Y, and 𝑘 is a constant [1]. In other words, earlier ver-
sions were designed to provide liquidity across the entire price
range (0,∞). This is simple to implement and allows liquidity to
be efficiently aggregated, but means that much of the assets held in
a pool are never touched.

Having considered this, it seems reasonable to allow LPs to
concentrate their liquidity to smaller price ranges than (0,∞). We
call liquidity concentrated to a finite range a position. A position
only needs to maintain enough reserves to support trading within
its range, and therefore can act like a constant product pool with
larger reserves (we call these the virtual reserves) within that range.

𝑎

𝑏

𝑐
𝑦real

𝑥real

X Reserves

Y
Re

se
rv
es

virtual reserves

Figure 1: Simulation of Virtual Liquidity

Specifically, a position only needs to hold enough of asset X to
cover price movement to its upper bound, because upwards price
movement1 corresponds to depletion of the X reserves. Similarly,
it only needs to hold enough of asset Y to cover price movement
to its lower bound. Fig. 1 depicts this relationship for a position on
a range [𝑝𝑎, 𝑝𝑏] and a current price 𝑝𝑐 ∈ [𝑝𝑎, 𝑝𝑏]. 𝑥real and 𝑦real
denote the position’s real reserves.

When the price exits a position’s range, the position’s liquidity
is no longer active, and no longer earns fees. At that point, its
1We take asset Y to be the unit of account, which corresponds to token1 in our
implementation.

liquidity is composed entirely of a single asset, because the reserves
of the other asset must have been entirely depleted. If the price ever
reenters the range, the liquidity becomes active again.

The amount of liquidity provided can be measured by the value
𝐿, which is equal to

√
𝑘 . The real reserves of a position are described

by the curve:

(𝑥 + 𝐿
√
𝑝𝑏

) (𝑦 + 𝐿
√
𝑝𝑎) = 𝐿2 (2.2)

This curve is a translation of formula 2.1 such that the position is
solvent exactly within its range (Fig. 2).

𝑎

𝑏

X Reserves

Y
Re

se
rv
es

virtual reserves (2.1)
real reserves (2.2)

Figure 2: Real Reserves

Liquidity providers are free to create as many positions as they
see fit, each on its own price range. In this way, LPs can approximate
any desired distribution of liquidity on the price space (see Fig. 3
for a few examples). Moreover, this serves as a mechanism to let
the market decide where liquidity should be allocated. Rational LPs
can reduce their capital costs by concentrating their liquidity in
a narrow band around the current price, and adding or removing
tokens as the price moves to keep their liquidity active.

2.1 Range Orders
Positions on very small ranges act similarly to limit orders—if the
range is crossed, the position flips from being composed entirely
of one asset, to being composed entirely of the other asset (plus
accrued fees). There are two differences between this range order
and a traditional limit order:

• There is a limit to how narrow a position’s range can be.
While the price is within that range, the limit order might
be partially executed.

• When the position has been crossed, it needs to be with-
drawn. If it is not, and the price crosses back across that
range, the position will be traded back, effectively reversing
the trade.

2

Uniswap v3 Core

0 ∞
Price

Li
qu

id
ity

(I) Uniswap v2

𝑝𝑎 𝑝𝑏

Price

Li
qu

id
ity

(II) A single position on [𝑝𝑎, 𝑝𝑏]

Price

Li
qu

id
ity

(III) A collection of custom positions

Figure 3: Example Liquidity Distributions

3 ARCHITECTURAL CHANGES
Uniswap v3 makes a number of architectural changes, some of
which are necessitated by the inclusion of concentrated liquidity,
and some of which are independent improvements.

3.1 Multiple Pools Per Pair
In Uniswap v1 and v2, every pair of tokens corresponds to a single
liquidity pool, which applies a uniform fee of 0.30% to all swaps.
While this default fee tier historically worked well enough for many
tokens, it is likely too high for some pools (such as pools between
two stablecoins), and too low for others (such as pools that include
highly volatile or rarely traded tokens).

Uniswap v3 introduces multiple pools for each pair of tokens,
each with a different swap fee. All pools are created by the same
factory contract. The factory contract initially allows pools to be
created at three fee tiers: 0.05%, 0.30%, and 1%. Additional fee tiers
can be enabled by UNI governance.

3.2 Non-Fungible Liquidity
3.2.1 Non-Compounding Fees. Fees earned in earlier versions were
continuously deposited in the pool as liquidity. This meant that
liquidity in the pool would grow over time, even without explicit
deposits, and that fee earnings compounded.

In Uniswap v3, due to the non-fungible nature of positions, this
is no longer possible. Instead, fee earnings are stored separately
and held as the tokens in which the fees are paid (see Section 6.2.2).

3.2.2 Removal of Native Liquidity Tokens. In Uniswap v1 and v2,
the pool contract is also an ERC-20 token contract, whose tokens
represent liquidity held in the pool. While this is convenient, it
actually sits uneasily with the Uniswap v2 philosophy that any-
thing that does not need to be in the core contracts should be in the
periphery, and blessing one “canonical" ERC-20 implementation
discourages the creation of improved ERC-20 token wrappers. Ar-
guably, the ERC-20 token implementation should have been in the
periphery, as a wrapper on a single liquidity position in the core
contract.

The changes made in Uniswap v3 force this issue by making
completely fungible liquidity tokens impossible. Due to the custom
liquidity provision feature, fees are now collected and held by the

pool as individual tokens, rather than automatically reinvested as
liquidity in the pool.

As a result, in v3, the pool contract does not implement the
ERC-20 standard. Anyone can create an ERC-20 token contract in
the periphery that makes a liquidity position more fungible, but
it will have to have additional logic to handle distribution of, or
reinvestment of, collected fees. Alternatively, anyone could create
a periphery contract that wraps an individual liquidity position
(including collected fees) in an ERC-721 non-fungible token.

4 GOVERNANCE
The factory has an owner, which is initially controlled by UNI
tokenholders.2 The owner does not have the ability to halt the
operation of any of the core contracts.

As in Uniswap v2, Uniswap v3 has a protocol fee that can be
turned on by UNI governance. In Uniswap v3, UNI governance has
more flexibility in choosing the fraction of swap fees that go to the
protocol, and is able to choose any fraction 1

𝑁
where 4 ≤ 𝑁 ≤ 10,

or 0. This parameter can be set on a per-pool basis.
UNI governance also has the ability to add additional fee tiers.

When it adds a new fee tier, it can also define the tickSpacing
(see Section 6.1) corresponding to that fee tier. Once a fee tier is
added to the factory, it cannot be removed (and the tickSpacing
cannot be changed). The initial fee tiers and tick spacings supported
are 0.05% (with a tick spacing of 10, approximately 0.10% between
initializable ticks), 0.30% (with a tick spacing of 60, approximately
0.60% between initializable ticks), and 1% (with a tick spacing of
200, approximately 2.02% between ticks.

Finally, UNI governance has the power to transfer ownership to
another address.

5 ORACLE UPGRADES
Uniswap v3 includes three significant changes to the time-weighted
average price (TWAP) oracle that was introduced by Uniswap v2.

Most significantly, Uniswap v3 removes the need for users of
the oracle to track previous values of the accumulator externally.
Uniswap v2 requires users to checkpoint the accumulator value
at both the beginning and end of the time period for which they
2Specifically, the owner will be initialized to the Timelock contract from UNI gover-
nance, 0x1a9c8182c09f50c8318d769245bea52c32be35bc.

3

Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

wanted to compute a TWAP. Uniswap v3 brings the accumulator
checkpoints into core, allowing external contracts to compute on-
chain TWAPs over recent periods without storing checkpoints of
the accumulator value.

Another change is that instead of accumulating the sum of prices,
allowing users to compute the arithmetic mean TWAP, Uniswap
v3 tracks the sum of log prices, allowing users to compute the
geometric mean TWAP.

Finally, Uniswap v3 adds a liquidity accumulator that is tracked
alongside the price accumulator. This liquidity accumulator can be
used by other contracts to inform a decision on which of the pools
corresponding to a pair (see section 3.1) will have the most reliable
TWAP.

5.1 Oracle Observations
As in Uniswap v2, Uniswap v3 tracks a running accumulator of
the price at the beginning of each block, multiplied by the number
of seconds since the last block.

A pool in Uniswap v2 stores only the most recent value of this
price accumulator—that is, the value as of the last block in which a
swap occurred. When computing average prices in Uniswap v2, it
is the responsibility of the external caller to provide the previous
value of the price accumulator. With many users, each will have to
provide their own methodology for checkpointing previous values
of the accumulator, or coordinate on a shared method to reduce
costs. And there is no way to guarantee that every block in which
the pool is touched will be reflected in the accumulator.

In Uniswap v3, the pool stores a list of previous values for the
accumulator. It does this by automatically checkpointing the accu-
mulator value every time the pool is touched for the first time in
a block, cycling through an array where the oldest checkpoint is
eventually overwritten by a new one, similar to a circular buffer.
While this array initially only has room for a single checkpoint,
anyone can initialize additional storage slots to lengthen the array,
extending to as many as 65,536 checkpoints.3 This imposes the
one-time gas cost of initializing additional storage slots for this
array on whoever wants this pair to checkpoint more slots.

The pool exposes the array of past observations to users, as well
as a convenience function for finding the (interpolated) accumulator
value at any historical timestamp within the checkpointed period.

5.2 Geometric Mean Price Oracle
Uniswap v2maintains two price accumulators—one for the price of
token0 in terms of token1, and one for the price of token1 in terms
of token0. Users can compute the time-weighted arithmetic mean
of the prices over any period, by subtracting the accumulator value
at the beginning of the period from the accumulator at the end of
the period, then dividing the difference by the number of seconds
in the period. Note that accumulators for token0 and token1 are
tracked separately, since the time-weighted arithmetic mean price
of token0 is not equivalent to the reciprocal of the time-weighted
arithmetic mean price of token1.

3The maximum of 65,536 checkpoints allows fetching checkpoints for at least 9 days
after they are written, assuming 13 seconds pass between each block and a checkpoint
is written every block.

Using the time-weighted geometric mean price, as Uniswap v3
does, avoids the need to track separate accumulators for these
ratios. The geometric mean of a set of ratios is the reciprocal of the
geometric mean of their reciprocals. It is also easy to implement
in Uniswap v3 because of its implementation of custom liquidity
provision, as described in section 6. In addition, the accumulator can
be stored in a smaller number of bits, since it tracks log 𝑃 rather than
𝑃 , and log 𝑃 can represent a wide range of prices with consistent
precision.4 Finally, there is a theoretical argument that the time-
weighted geometric mean price should be a truer representation of
the average price.5

Instead of tracking the cumulative sum of the price 𝑃 , Uniswap
v3 accumulates the cumulative sumof the current tick index (𝑙𝑜𝑔1.0001𝑃 ,
the logarithm of price for base 1.0001, which is precise up to 1 basis
point). The accumulator at any given time is equal to the sum of
𝑙𝑜𝑔1.0001 (𝑃) for every second in the history of the contract:

𝑎𝑡 =

𝑡∑
𝑖=1

log1.0001 (𝑃𝑖) (5.1)

We want to estimate the geometric mean time-weighted average
price (𝑝𝑡1,𝑡2) over any period 𝑡1 to 𝑡2.

𝑃𝑡1,𝑡2 =
©«
𝑡2∏
𝑖=𝑡1

𝑃𝑖
ª®¬

1
𝑡2−𝑡1

(5.2)

To compute this, you can look at the accumulator’s value at 𝑡1
and at 𝑡2, subtract the first value from the second, divide by the
number of seconds elapsed, and compute 1.0001𝑥 to compute the
time weighted geometric mean price.

log1.0001
(
𝑃𝑡1,𝑡2

)
=

∑𝑡2
𝑖=𝑡1

log1.0001 (𝑃𝑖)
𝑡2 − 𝑡1

(5.3)

log1.0001
(
𝑃𝑡1,𝑡2

)
=
𝑎𝑡2 − 𝑎𝑡1

𝑡2 − 𝑡1
(5.4)

𝑃𝑡1,𝑡2 = 1.0001
𝑎𝑡2−𝑎𝑡1
𝑡2−𝑡1 (5.5)

5.3 Liquidity Oracle
In addition to the time weighted average price, Uniswap v3 also
tracks an accumulator of the current value of 𝐿 (the virtual liquidity
currently in range) at the beginning of each block. This can be
used by on-chain contracts to make their oracles stronger (such
as by evaluating which fee-tier pool to use the oracle from). This
liquidity accumulator’s values are checkpointed along with the
price accumulator.

4In order to support tolerable precision across all possible prices, Uniswap v2 repre-
sents each price as a 224-bit fixed-point number. Uniswap v3 only needs to represent
𝑙𝑜𝑔1.0001𝑃 as a signed 24-bit number, and still can detect price movements of one tick,
or 1 basis point.
5While arithmetic mean TWAPs are much more widely used, they should theoretically
be less accurate inmeasuring a geometric Brownianmotion process (which is how price
movements are usuallymodeled). The arithmeticmean of a geometric Brownianmotion
process will tend to overweight higher prices (where small percentage movements
correspond to large absolute movements) relative to lower ones.

4

Uniswap v3 Core

6 IMPLEMENTING CONCENTRATED
LIQUIDITY

The rest of this paper describes how concentrated liquidity provi-
sion works, and gives a high-level description of how it is imple-
mented in the contracts.

6.1 Ticks and Ranges
To implement custom liquidity provision, the space of possible
prices is demarcated by discrete ticks. Liquidity providers can pro-
vide liquidity in a range between any two ticks (which need not be
adjacent).

Each range can be specified as a pair of signed integer tick indices:
a lower tick (𝑖𝑙) and an upper tick (𝑖𝑢). Ticks represent prices at
which the virtual liquidity of the contract can change. We will
assume that prices are always expressed as the price of one of the
tokens—called token0—in terms of the other token—token1. The
assignment of the two tokens to token0 and token1 is arbitrary
and does not affect the logic of the contract (other than through
possible rounding errors).

Conceptually, there is a tick at every price 𝑝 that is an integer
power of 1.0001. Identifying ticks by an integer index 𝑖 , the price at
each is given by:

𝑝 (𝑖) = 1.0001𝑖 (6.1)

This has the desirable property of each tick being a .01% (1 basis
point) price movement away from each of its neighboring ticks.

For technical reasons explained in 6.2.1, however, pools actually
track ticks at every square root price that is an integer power of√
1.0001. Consider the above equation, transformed into square root

price space:

√
𝑝 (𝑖) =

√
1.0001

𝑖
= 1.0001

𝑖
2 (6.2)

As an example,√𝑝 (0)—the square root price at tick 0—is 1,√𝑝 (1)
is
√
1.0001 ≈ 1.00005, and √

𝑝 (−1) is 1√
1.0001

≈ 0.99995.
When liquidity is added to a range, if one or both of the ticks

is not already used as a bound in an existing position, that tick is
initialized.

Not every tick can be initialized. The pool is instantiated with a
parameter, tickSpacing (𝑡𝑠); only ticks with indexes that are divisi-
ble by tickSpacing can be initialized. For example, if tickSpacing
is 2, then only even ticks (...-4, -2, 0, 2, 4...) can be initialized. Small
choices for tickSpacing allow tighter and more precise ranges, but
may cause swaps to be more gas-intensive (since each initialized
tick that a swap crosses imposes a gas cost on the swapper).

Whenever the price crosses an initialized tick, virtual liquidity
is kicked in or out. The gas cost of an initialized tick crossing is
constant, and is not dependent on the number of positions being
kicked in or out at that tick.

Ensuring that the right amount of liquidity is kicked in and out
of the pool when ticks are crossed, and ensuring that each position
earns its proportional share of the fees that were accrued while
it was within range, requires some accounting within the pool.
The pool contract uses storage variables to track state at a global
(per-pool) level, at a per-tick level, and at a per-position level.

6.2 Global State
The global state of the contract includes seven storage variables
relevant to swaps and liquidity provision. (It has other storage
variables that are used for the oracle, as described in section 5.)

Type Variable Name Notation
uint128 liquidity 𝐿

uint160 sqrtPriceX96
√
𝑃

int24 tick 𝑖𝑐
uint256 feeGrowthGlobal0X128 𝑓𝑔,0
uint256 feeGrowthGlobal1X128 𝑓𝑔,1
uint128 protocolFees.token0 𝑓𝑝,0
uint128 protocolFees.token1 𝑓𝑝,1

Table 1: Global State

6.2.1 Price and Liquidity. In Uniswap v2, each pool contract tracks
the pool’s current reserves, 𝑥 and 𝑦. In Uniswap v3, the contract
could be thought of as having virtual reserves—values for 𝑥 and 𝑦
that allow you to describe the contract’s behavior (between two
adjacent ticks) as if it followed the constant product formula.

Instead of tracking those virtual reserves, however, the pool
contract tracks two different values: liquidity (𝐿) and sqrtPrice
(
√
𝑃). These could be computed from the virtual reserves with the

following formulas:

𝐿 =
√
𝑥𝑦 (6.3)

√
𝑃 =

√
𝑦

𝑥
(6.4)

Conversely, these values could be used to compute the virtual
reserves:

𝑥 =
𝐿
√
𝑃

(6.5)

𝑦 = 𝐿 ·
√
𝑃 (6.6)

Using 𝐿 and
√
𝑃 is convenient because only one of them changes

at a time. Price (and thus
√
𝑃) changes when swapping within a

tick; liquidity changes when crossing a tick, or when minting or
burning liquidity. This avoids some rounding errors that could be
encountered if tracking virtual reserves.

You may notice that the formula for liquidity (based on virtual
reserves) is similar to the formula used to initialize the quantity of
liquidity tokens (based on actual reserves) in Uniswap v2. before
any fees have been earned. In some ways, liquidity can be thought
of as virtual liquidity tokens.

Alternatively, liquidity can be thought of as the amount that
token1 reserves (either actual or virtual) changes for a given change
in

√
𝑃 :

𝐿 =
Δ𝑌

Δ
√
𝑃

(6.7)

We track
√
𝑃 instead of 𝑃 to take advantage of this relationship,

and to avoid having to take any square roots when computing
swaps, as described in section 6.2.3.

5

Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

The global state also tracks the current tick index as tick (𝑖𝑐), a
signed integer representing the current tick (more specifically, the
nearest tick below the current price). This is an optimization (and
a way of avoiding precision issues with logarithms), since at any
time, you should be able to compute the current tick based on the
current sqrtPrice. Specifically, at any given time, the following
equation should be true:

𝑖𝑐 =

⌊
log√1.0001

√
𝑃

⌋
(6.8)

6.2.2 Fees. Each pool is initialized with an immutable value, fee
(𝛾), representing the fee paid by swappers in units of hundredths
of a basis point (0.0001%).

It also tracks the current protocol fee, 𝜙 (which is initialized to
zero, but can changed by UNI governance).6 This number gives you
the fraction of the fees paid by swappers that currently goes to the
protocol rather than to liquidity providers. 𝜙 only has a limited set
of permitted values: 0, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, or 1/10.

The global state also tracks two numbers: feeGrowthGlobal0
(𝑓𝑔,0) and feeGrowthGlobal1 (𝑓𝑔,1). These represent the total amount
of fees that have been earned per unit of virtual liquidity (𝐿), over
the entire history of the contract. You can think of them as the total
amount of fees that would have been earned by 1 unit of unbounded
liquidity that was deposited when the contract was first initialized.
They are stored as fixed-point unsigned 128x128 numbers. Note
that in Uniswap v3, fees are collected in the tokens themselves
rather than in liquidity, for reasons explained in section 3.2.1.

Finally, the global state tracks the total accumulated uncollected
protocol fee in each token, protocolFees0 (𝑓𝑝,0) and protocolFees1
(𝑓𝑝,1). This is an unsigned uint128. The accumulated protocol fees
can be collected byUNI governance, by calling the collectProtocol
function.

6.2.3 Swapping Within a Single Tick. For small enough swaps, that
do not move the price past a tick, the contracts act like an 𝑥 · 𝑦 = 𝑘

pool.
Suppose 𝛾 is the fee, i.e., 0.003, and 𝑦𝑖𝑛 as the amount of token1

sent in.
First, feeGrowthGlobal1 and protocolFees1 are incremented:

Δ𝑓𝑔,1 = 𝑦𝑖𝑛 · 𝛾 · (1 − 𝜙) (6.9)

Δ𝑓𝑝,1 = 𝑦𝑖𝑛 · 𝛾 · 𝜙 (6.10)
Δ𝑦 is the increase in 𝑦 (after the fee is taken out).

Δ𝑦 = 𝑦𝑖𝑛 · (1 − 𝛾) (6.11)
If you used the computed virtual reserves (𝑥 and𝑦) for the token0

and token1 balances, then this formula could be used to find the
amount of token0 sent out:

𝑥𝑒𝑛𝑑 =
𝑥 · 𝑦
𝑦 + Δ𝑦

(6.12)

But remember that in v3, the contract actually tracks liquidity (𝐿)
and square root of price (

√
𝑃) instead of 𝑥 and 𝑦. We could compute

𝑥 and 𝑦 from those values, and then use those to calculate the
6Technically, the storage variable called “protocolFee" is the denominator of this
fraction (or is zero, if 𝜙 is zero).

execution price of the trade. But it turns out that there are simple
formulas that describe the relationship between Δ

√
𝑃 and Δ𝑦, for a

given 𝐿 (which can be derived from formula 6.7):

Δ
√
𝑃 =

Δ𝑦

𝐿
(6.13)

Δ𝑦 = Δ
√
𝑃 · 𝐿 (6.14)

There are also simple formulas that describe the relationship
between Δ 1√

𝑃
and Δ𝑥 :

Δ
1
√
𝑃

=
Δ𝑥

𝐿
(6.15)

Δ𝑥 = Δ
1
√
𝑃
· 𝐿 (6.16)

When swapping one token for the other, the pool contract can
first compute the new

√
𝑃 using formula 6.13 or 6.15, and then

can compute the amount of token0 or token1 to send out using
formula 6.14 or 6.16.

These formulas will work for any swap that does not push
√
𝑃

past the price of the next initialized tick. If the computed Δ
√
𝑃

would cause
√
𝑃 to move past that next initialized tick, the contract

must only cross up to that tick—using up only part of the swap—and
then cross the tick, as described in section 6.3.1, before continuing
with the rest of the swap.

6.2.4 Initialized Tick Bitmap. If a tick is not used as the endpoint
of a range with any liquidity in it—that is, if the tick is uninitial-
ized—then that tick can be skipped during swaps.

As an optimization to make finding the next initialized tick more
efficient, the pool tracks a bitmap tickBitmap of initialized ticks.
The position in the bitmap that corresponds to the tick index is set
to 1 if the tick is initialized, and 0 if it is not initialized.

When a tick is used as an endpoint for a new position, and that
tick is not currently used by any other liquidity, the tick is initialized,
and the corresponding bit in the bitmap is set to 1. An initialized
tick can become uninitialized again if all of the liquidity for which
it is an endpoint is removed, in which case that tick’s position on
the bitmap is zeroed out.

6.3 Tick-Indexed State
The contract needs to store information about each tick in order to
track the amount of net liquidity that should be added or removed
when the tick is crossed, as well as to track the fees earned above
and below that tick.

The contract stores a mapping from tick indexes (int24) to the
following four values:

Type Variable Name Notation
int128 liquidityNet Δ𝐿
uint128 liquidityGross 𝐿𝑔
uint256 feeGrowthOutside0X128 𝑓𝑜,0
uint256 feeGrowthOutside1X128 𝑓𝑜,1

Table 2: Tick-Indexed State

6

Uniswap v3 Core

Start

S0. Check input

S1. Swap within current interval

S2. Is there remaining input or output?

S4. Cross next tick

Stop

S5. Execute computed swap

Pass

Fail

Yes

No

Figure 4: Swap Control Flow

Each tick tracks Δ𝐿, the total amount of liquidity that should
be kicked in or out when the tick is crossed. The tick only needs
to track one signed integer: the amount of liquidity added (or, if
negative, removed) when the tick is crossed going left to right. This
value does not need to be updated when the tick is crossed (but
only when a position with a bound at that tick is updated).

We want to be able to uninitialize a tick when there is no longer
any liquidity referencing that tick. Since Δ𝐿 is a net value, it’s
necessary to track a gross tally of liquidity referencing the tick,
liquidityGross. This value ensures that even if net liquidity at
a tick is 0, we can still know if a tick is referenced by at least one
underlying position or not, which tells us whether to update the
tick bitmap.

feeGrowthOutside{0,1} are used to track how many fees were
accumulated within a given range. Since the formulas are the same
for the fees collected in token0 and token1, we will omit that sub-
script for the rest of this section.

You can compute the fees earned per unit of liquidity in token 0
above (𝑓𝑎) and below (𝑓𝑏) a tick 𝑖 with a formula that depends on
whether the price is currently within or outside that range—that is,
whether the current tick index 𝑖𝑐 is greater than or equal to 𝑖:

𝑓𝑎 (𝑖) =
{
𝑓𝑔 − 𝑓𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑓𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.17)

𝑓𝑏 (𝑖) =
{
𝑓𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑓𝑔 − 𝑓𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.18)

We can use these functions to compute the total amount of
cumulative fees per share 𝑓𝑖𝑙 ,𝑖𝑢 in the range between two ticks—a
lower tick 𝑖𝑙 and an upper tick 𝑖𝑢 :

𝑓𝑖𝑙 ,𝑖𝑢 (0) = 𝑓𝑔 − 𝑓𝑏 (𝑖𝑙) − 𝑓𝑎 (𝑖𝑢) (6.19)
𝑓𝑜,1 needs to be updated each time the tick is crossed. Specifically,

as a tick 𝑖 is crossed in either direction, its 𝑓𝑜 (for each token) should
be updated as follows:

𝑓𝑜 (𝑖) := 𝑓𝑔 − 𝑓𝑜 (𝑖) (6.20)
𝑓𝑜 is only needed for ticks that are used as either the lower or

upper bound for at least one position. As a result, for efficiency, 𝑓𝑜 is
not initialized (and thus does not need to be updated when crossed)
until a position is created that has that tick as one of its bounds.
When 𝑓𝑜 is initialized for a tick 𝑖 , the value—by convention—is
chosen as if all of the fees earned to date had occurred below that
tick:

𝑓𝑜 :=

{
𝑓𝑔 𝑖𝑐 ≥ 𝑖

0 𝑖𝑐 < 𝑖
(6.21)

Note that since 𝑓𝑜 values for different ticks could be initialized
at different times, comparisons of the 𝑓𝑜 values for different ticks
are not meaningful, and there is no guarantee that values for 𝑓𝑜
will be consistent. This does not cause a problem for per-position
accounting, since, as described below, all the position needs to know
is the growth in 𝑔 within a given range since that position was last
touched.

Finally, the contract also stores secondsOutside (𝑡𝑜) for each
tick. This can be thought of as the amount of time spent on the
other side of this tick (relative to the current price), and can be used
to compute the number of seconds that have been spend above or
below a tick for a particular range. This value is not used within the
contract, but is tracked for the convenience of external contracts
that want to know how many seconds a given position has been
active.

As with 𝑓𝑎 and 𝑓𝑏 , the time spent above (𝑡𝑎) and below (𝑡𝑏) a
given tick is computed differently based on whether the current
price is within that range, and the time spent within a range (𝑡𝑟)
can be computed using the values of 𝑡𝑎 and 𝑡𝑏

𝑡𝑎 (𝑖) =
{
𝑡 − 𝑡𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑡𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.22)

7

Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson

𝑡𝑏 (𝑖) =
{
𝑡𝑜 (𝑖) 𝑖𝑐 ≥ 𝑖

𝑡 − 𝑡𝑜 (𝑖) 𝑖𝑐 < 𝑖
(6.23)

𝑡𝑟 (𝑖𝑙 , 𝑖𝑢) = 𝑡 − 𝑡𝑏 (𝑖𝑙) − 𝑡𝑎 (𝑖𝑢) (6.24)
The number of seconds spent within a range between two times

𝑡1 and 𝑡2 can be computed by recording the value of 𝑡𝑟 (𝑖𝑙 , 𝑖𝑢) at 𝑡1
and at 𝑡2, and subtracting the former from the latter.

Like 𝑓𝑜 , 𝑡𝑜 does not need to be tracked for ticks that are not
on the edge of any position. Therefore, it is not initialized until a
position is created that is bounded by that tick. By convention, it is
initialized as if every second since the Unix timestamp 0 had been
spent below that tick:

𝑡𝑜 (𝑖) :=
{
𝑡 𝑖𝑐 ≥ 𝑖

0 𝑖𝑐 < 𝑖
(6.25)

As with 𝑓𝑜 values, 𝑡𝑜 values are not meaningfully comparable
across different ticks. 𝑡𝑜 is only meaningful in computing the num-
ber of seconds that liquidity was within some particular range
between some defined start time (which must be after 𝑡𝑜 was ini-
tialized for both ticks) and some end time.

6.3.1 Crossing a Tick. As described in section 6.2.3, Uniswap v3
acts like it obeys the constant product formula when swapping
between initialized ticks. When a swap crosses an initialized tick,
however, the contract needs to add or remove liquidity, to ensure
that no liquidity provider is insolvent. This means the Δ𝐿 is fetched
from the tick, and applied to the global 𝐿.

The contract also needs to update the tick’s own state, in order
to track the fees earned (and seconds spent) within ranges bounded
by this tick. The feeGrowthOutside{0,1} and secondsOutside
values are updated to both reflect current values, as well as the
proper orientation relative to the current tick:

𝑓𝑜 := 𝑓𝑔 − 𝑓𝑜 (6.26)

𝑡𝑜 := 𝑡 − 𝑡𝑜 (6.27)
Once a tick is crossed, the swap can continue as described in

section 6.2.3 until it reaches the next initialized tick.

6.4 Position-Indexed State
The contract has a mapping from user (an address), lower bound
(a tick index, int24), and upper bound (a tick index, int24) to a
specific Position struct. Each Position tracks three values:

Type Variable Name Notation
uint128 liquidity 𝑙

uint256 feeGrowthInside0LastX128 𝑓𝑟,0 (𝑡0)
uint256 feeGrowthInside1LastX128 𝑓𝑟,1 (𝑡0)

Table 3: Position-Indexed State

liquidity (𝑙) means the amount of virtual liquidity that the
position represented the last time this position was touched. Specif-
ically, liquidity could be thought of as √𝑥 · 𝑦, where 𝑥 and 𝑦 are
the respective amounts of virtual token0 and virtual token1 that

this liquidity contributes to the pool at any time that it is within
range. Unlike pool shares in Uniswap v2 (where the value of each
share grows over time), the units for liquidity do not change as fees
are accumulated; it is always measured as √𝑥 · 𝑦, where 𝑥 and 𝑦
are quantities of token0 and token1, respectively.

This liquidity number does not reflect the fees that have been
accumulated since the contract was last touched, which we will
call uncollected fees. Computing these uncollected fees requires
additional stored values on the position, feeGrowthInside0Last
(𝑓𝑟,0 (𝑡0)) and feeGrowthInside1Last (𝑓𝑟,1 (𝑡0)), as described be-
low.

6.4.1 setPosition. The setPosition function allows a liquidity
provider to update their position.

Two of the arguments to setPosition—lowerTick and upperTick—
when combined with the msg.sender, together specify a position.

The function takes one additional parameter, liquidityDelta,
to specify how much virtual liquidity the user wants to add or (if
negative) remove.

First, the function computes the uncollected fees (𝑓𝑢) that the
position is entitled to, in each token.7 The amount collected in fees
is credited to the user and netted against the amount that they
would send in or out for their virtual liquidity deposit.

To compute uncollected fees of a token, you need to know
how much 𝑓𝑟 for the position’s range (calculated from the range’s
𝑖𝑙 and 𝑖𝑟 as described in section 6.3) has grown since the last
time fees were collected for that position. The growth in fees in
a given range per unit of liquidity over between times 𝑡0 and 𝑡1
is simply 𝑓𝑟 (𝑡1) − 𝑓𝑟 (𝑡0) (where 𝑓𝑟 (𝑡0) is stored in the position as
feeGrowthInside{0,1}Last, and 𝑓𝑟 (𝑡1) can be computed from
the current state of the ticks). Multiplying this by the position’s
liquidity gives us the total uncollected fees in token 0 for this
position:

𝑓𝑢 = 𝑙 · (𝑓𝑟 (𝑡1) − 𝑓𝑟 (𝑡0)) (6.28)

Then, the contract updates the position’s liquidity by adding
liquidityDelta. It also adds liquidityDelta to the liquidityNet
value for the tick at the bottom end of the range, and subtracts it
from the liquidityNet at the upper tick (to reflect that this new
liquidity would be added when the price crosses the lower tick
going up, and subtracted when the price crosses the upper tick
going up). If the pool’s current price is within the range of this
position, the contract also adds liquidityDelta to the contract’s
global liquidity value.

Finally, the pool transfers tokens from (or, if liquidityDelta
is negative, to) the user, corresponding to the amount of liquidity
burned or minted.

The amount of token0 (Δ𝑋) or token1 (Δ𝑌) that needs to be
deposited can be thought of as the amount that would be sold from
the position if the price were to move from the current price (𝑃) to
the upper tick or lower tick (for token0 or token1, respectively).
These formulas can be derived from formulas 6.14 and 6.16, and
depend on whether the current price is below, within, or above the
range of the position:

7Since the formulas for computing uncollected fees in each token are the same, we
will omit that subscript for the rest of this section.

8

Uniswap v3 Core

Δ𝑌 =

0 𝑖𝑐 < 𝑖𝑙

Δ𝐿 · (
√
𝑃 −

√
𝑝 (𝑖𝑙)) 𝑖𝑙 ≤ 𝑖𝑐 < 𝑖𝑢

Δ𝐿 · (
√
𝑝 (𝑖𝑢) −

√
𝑝 (𝑖𝑙)) 𝑖𝑐 ≥ 𝑖𝑢

(6.29)

Δ𝑋 =

Δ𝐿 · (1√

𝑝 (𝑖𝑙)
− 1√

𝑝 (𝑖𝑢)
) 𝑖𝑐 < 𝑖𝑙

Δ𝐿 · (1√
𝑃
− 1√

𝑝 (𝑖𝑢)
) 𝑖𝑙 ≤ 𝑖𝑐 < 𝑖𝑢

0 𝑖𝑐 ≥ 𝑖𝑢

(6.30)

REFERENCES
[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.

Retrieved Feb 24, 2021 from https://uniswap.org/whitepaper.pdf
[2] Guillermo Angeris and Tarun Chitra. 2020. Improved Price Oracles: Constant

Function Market Makers. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies (AFT ’20). Association for Computing Machinery, New
York, NY, United States, 80–91. https://doi.org/10.1145/3419614.3423251

[3] Michael Egorov. 2019. StableSwap - Efficient Mechanism for Stablecoin Liquidity.
Retrieved Feb 24, 2021 from https://www.curve.fi/stableswap-paper.pdf

[4] Allan Niemerg, Dan Robinson, and Lev Livnev. 2020. YieldSpace: An Automated
Liquidity Provider for Fixed Yield Tokens. Retrieved Feb 24, 2021 from https:
//yield.is/YieldSpace.pdf

[5] Abraham Othman. 2012. Automated Market Making: Theory and Practice. Ph.D.
Dissertation. Carnegie Mellon University.

DISCLAIMER
This paper is for general information purposes only. It does not
constitute investment advice or a recommendation or solicitation to
buy or sell any investment and should not be used in the evaluation
of the merits of making any investment decision. It should not be
relied upon for accounting, legal or tax advice or investment rec-
ommendations. This paper reflects current opinions of the authors
and is not made on behalf of Uniswap Labs, Paradigm, or their
affiliates and does not necessarily reflect the opinions of Uniswap
Labs, Paradigm, their affiliates or individuals associated with them.
The opinions reflected herein are subject to change without being
updated.

9

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 1/9

DeFi Smart Accounts

Scaling DeFi for users, wallets, developers and protocols

MING

Published on Mar 1
SHARE:

In 2019, Instadapp achieved a position of 3rd in ETH locked value with a deep focus

on improving the usability of DeFi. We did so over many key innovations, including

DeFi smart wallets, simplifying cross-protocol complex transactions, and portability

between protocols and stablecoins.

Moving into 2020 and beyond, we believe that building better user experiences in

DeFi and making it easier for developers to build secure dApps remains the primary

criterion for bringing this space closer to the mainstream. However, there remain

several fundamental challenges on both fronts.

Fundamental UX and Security Challenges

Ethereum accounts and wallets were designed primarily for token assets, while DeFi

assets have a much higher level of complexity in terms of management, admin,

analysis. This requires a completely di�erent approach to UX, portfolio management,

and admin delegation. This problem will only become more severe as the number of

underlying protocols grows exponentially.

When asked to manage all their assets themselves, or under a single account, users

are likely to lose their assets, trust insecure dApps, or provide allowances to many

smart contracts. Developers, particularly those with more frontend and server

experience, are critical for designing the use cases for mainstream users. Still, they

might not have the required expertise to ensure security on on-chain applications.

Instadapp DeFi Accounts

To tackle these issues, we are announcing DeFi Accounts, a platform providing users

and developers with a single point of integration to access all the DeFi protocols. We

aim to make DeFi easier, scalable, and more secure for users, developers, and

protocols alike.

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 2/9

Users Trustlessly manage, delegate, and optimize funds across

any number of protocols.

Developers Innovate interfaces and business models on top of DeFi

accounts. Securely compose complex transactions without

smart contracts.

Protocols Allow your system to be easily accessed by new users and

developers.

We would also like to invite everyone to join our user group or our brand new

developer group. The latter is brand new so that you will get all the attention. 😍

For DeFi Users

1) Ability To Use One Platform For Their DeFi

Needs

Today, smart wallets have the potential to improve the usability of DeFi. However,

they are too limited in scope and usefulness to replace main Ethereum accounts since

customized proxies have to be built for every single new use case.

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 3/9

In contrast, once new protocols are connected to DeFi smart accounts with

connectors, any developer can then easily extend their product to include cross-

protocol transactions for those protocols by writing simple Web2 code without new

smart contracts. This also leads to a much higher level of usability and security for

users.

Building on DeFi smart accounts, developers (including Instadapp and wallets) can

build powerful and secure interfaces that allow users to use one platform for all their

DeFi needs.

2) Set Owners, Managers Or Automation For DeFi

Accounts

One of the biggest barriers to scaling DeFi for users is the di�culty for users to be

able to set owners or delegate managers for specific assets or DeFi use cases

according to the level of trustlessness users are comfortable with.

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 4/9

This is a critical step for DeFi usability since di�erent users will require di�erent

levels of delegation for various use cases. In essence, some might want their private

keys to certain assets to be stored elsewhere, some would want the optimization of

assets to be trustlessly managed by an expert, and others might want to delegate the

staking and voting for rewards.

In the new Instadapp, users will initially be able to set multiple owners for individual

DeFi accounts. Moving forward, you can also add Instadapp as guardian or manager

of your account to help w account recovery, fund management, etc.

Moving forward, developers will be able to set granular permissions for delegation.

These means, building on DeFi accounts, they will be able to execute specific sets of

DeFi actions for users, but they will not be able to transfer out the assets unless the

user provides those permissions as well. This type of granularity is of major

importance towards trustless delegation.

3) Scale DeFi Manageability With Multiple DeFi

Accounts

DeFi assets are fundamentally more complex than traditional token assets to use and

far harder to manage and track in terms of optimization, returns, etc. By managing

everything under one Ethereum account, it becomes impossible to manage over time.

Instadapp and other developers building on top of DeFi Accounts can allow users to

create multiple accounts for di�erent use cases they might have. This will mirror the

current financial world, where users have di�erent accounts for di�erent usage and

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 5/9

investment needs, often managed by completely di�erent people.

Combined with the rest of the features above, this means that users will not just be

able to manage and track funds separately but also use di�erent protocols, run

analytics, or extend with shared ownership and delegation on each separate account.

For DeFi Developers

Ease of Composability

DeFi wizards can build complex cross-protocol transactions for DeFi Account holders

without needing to write any solidity code. Here are some use cases that would

require no or minimal, smart contract experience.

Instadapp's protocol bridge to port assets between Maker and Compound, or

any between other lending protocols.

DeFiZap's composed transactions to deploy across multiple liquidity and lending

protocols.

iEarn's optimizer that automatically maximizes yield across protocols.

DefiSaver's automated CDP saver to save positions when prices fluctuate.

As we add new connectors for new protocols, dApp developers will be able to

compose their services with them without any need for new smart contracts or get

their users to perform complex transactions.

Ease of Innovation

With built-in composability, liquidity bridges, and unlimited options for authorization,

developer building on top of DeFi accounts will be able to easily innovate on new

business and product models with minimal security worries.

New Business Models: Build new revenue streams and networks from automating

or helping users delegate their DeFi activities. Easily include their own set of fees

to be added in the same transaction.

Portability of Funds: With the existence of our liquidity bridge, their users will be

able to easily port their positions or perform complex transactions between

protocols using the connectors and liquidity pool.

Built-in Security: Smart account transactions are secure by default, since no new

smart contracts are deployed, which vastly simplifies and removes attack

vectors.

These features are all designed to make it easy for developers to build products and

use cases that advance the future of programmatic and networked money

management.

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 6/9

For Wallets

Wallets are typically the first and most trusted access points for users, which means

it's the perfect place to introduce DeFi services. DeFi Accounts makes it easy to both

build a DeFi "section" to complement the regular interface and innovate on new

product and business models.

Think of the regular Ethereum account as the checking account, and DeFi accounts as

the savings and investment accounts for the users, which you will be able to both

o�er new seamless use cases easily while being able to generate fees by performing

key actions on behalf of the users.

Implementing extensible DeFi in your wallet becomes very simple since it creates a

clear space for your users to easily store their DeFi assets and experiment with new

use cases while remaining completely trustless and without interfering with their

regular Ethereum account.

Importantly, using DeFi accounts also means that you are never locked into using any

given protocols, and will be able to easily adapt your product based on the latest

innovations or your own business needs.

For DeFi Protocols And Services

We are committed to helping drive awareness and adoption for new innovative

protocols and services.

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 7/9

We would like to collaborate with all protocol developers to create connectors to

extend the use cases for both Instadapp users as well as DeFi account holders. As

discussed earlier, once connectors are created, developers will be able to easily o�er

the protocols as part of their interface or composed transactions.

We are also designing the Instadapp UX to encourage users to try out innovative new

use cases. When they create a new Defi account, they will be encouraged to use the

account to experiment with new DeFi services and protocols.

For Instadapp Users

We will be launching a new Instadapp alongside DeFi Accounts. The initial version of

Instadapp will start simple and be built together with our users and the broader DeFi

community. For current users of Instadapp, there will be a migration tool for

migrating their assets to DeFi accounts.

The trustless nature of Instadapp (and DeFi accounts) means the user's assets will

always belong to the user, and they can easily try out in the new system without any

rush to move their assets over until they are 100% confident. There is no need to

migrate their assets until they want to; the current Instadapp will remain fully

functional.

We are currently brainstorming on exciting new use cases that would not have been

possible using the current Instadapp architecture, including optimization across

protocols, delegated voting, and a lot more - and would love to hear from users.

Talk to us!

Apart from launching the new Instadapp and DeFi Accounts, we will also begin to

incrementally roll out developer docs and examples, as well as developer-focused

communication groups, as we seek to build the future of programmatic money

management together as a community.

We invite everyone interested in this to join us on this journey to create the next

generation of DeFi together:

If you are a DeFi user, tell us what you think of the features and ideas above and

how you would like to expand your usage of DeFi

If you are a developer who wants to leverage DeFi to its full potential for your

users and innovate on new product and business models

If you are a protocol developer who wants to allow Instadapp users and web3

developers to adopt and innovate on your service.

It is very early days for both InstaDApp and DeFi, and we would like to work on it

together with the rest of the ecosystem.

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 8/9

> Instadapp Users Group

> Our Brand New DeFi Developers Group 😍

Summary

One of the main things we realized deeply is how improving the user experience of

DeFi, far from just being an interface issue, involves deeply integrated e�orts across

the stack — from the underlying protocols to the smart contracts that glue it

together, to the interfaces that the vast majority of users will see, to the myriad

manners in delegated managers can take up key roles for the users.

For DeFi to go mainstream and remain open for usage and innovation, we have to

improve the UX in DeFi along these key dimensions for both developers and users,

along these key dimensions:

Simplicity: Ability to manage and delegate their accounts seamlessly.

Freedom: Ability to move, optimize, experiment with new use cases, and port

assets between protocols seamlessly.

Security: Ability for users to use DeFi securely according to their level of

comfort, for most developers to be able to build complex dApps without smart

contracts (and the security holes that might emerge), and allowing protocols to

focus on their core layer.

3/29/2021 DeFi Smart Accounts

https://blog.instadapp.io/defi-smart-accounts/ 9/9

This is an undertaking that has to be taken up as a cohesive e�ort by the ecosystem,

and we are hopeful that DeFi Accounts can contribute our part to building the new

foundation for the user experiences needed to make DeFi mainstream.

Get our stories delivered

Best way to stay connected with our progress.
Enter your email Step Inside

Website • Dashboard • Developers

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 1/12

Litepaper

Version: 1.4 (March 2020)

Abstract
Synthetix is a decentralised synthetic asset issuance protocol built on Ethereum.
These synthetic assets are collateralized by the Synthetix Network Token (SNX)
which when locked in the contract enables the issuance of synthetic assets
(Synths). This pooled collateral model enables users to perform conversions
between Synths directly with the smart contract, avoiding the need for
counterparties. This mechanism solves the liquidity and slippage issues
experienced by DEX’s. Synthetix currently supports synthetic �at currencies,
cryptocurrencies (long and short) and commodities. SNX holders are incentivised to
stake their tokens as they are paid a pro-rata portion of the fees generated through
activity on Synthetix.Exchange, based on their contribution to the network. It is the
right to participate in the network and capture fees generated from Synth
exchanges, from which the value of the SNX token is derived. Trading on
Synthetix.Exchange does not require the trader to hold SNX.

SNX as collateral
How SNX backs Synths

All Synths are backed by SNX tokens. Synths are minted when SNX holders stake
their SNX as collateral using Mintr, a decentralised application for interacting with
the Synthetix contracts. Synths are currently backed by a 750% collateralisation
ratio, although this may be raised or lowered in the future through community

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 2/12

governance mechanisms. SNX stakers incur debt when they mint Synths, and to exit
the system (i.e. unlock their SNX) they must pay back this debt by burning Synths.

Synthetix is also currently trialling Ether as an alternative form of collateral. This
means traders can borrow Synths against their ETH and begin trading immediately,
rather than needing to sell their ETH. Staking ETH requires a collateralisation ratio of
150% and creates a debt denominated in ETH, so ETH stakers mint sETH rather
than sUSD and do not participate in the ‘pooled debt’ aspect of the system. In this
model, ETH stakers do not receive fees or rewards as they take no risk for the debt
pool.

Why SNX holders stake

SNX holders are incentivised to stake their tokens and mint Synths in several ways.
Firstly, there are exchange rewards. These are generated whenever someone
exchanges one Synth to another (i.e. on Synthetix.Exchange). Each trade generates
an exchange fee that is sent to a fee pool, available for SNX stakers to claim their
proportion each week. This fee is between 10-100 bps (0.1% - 1%, though typically
0.3%), and will be displayed during any trade on Synthetix.Exchange. The other
incentive for SNX holders to stake/mint is SNX staking rewards, which comes from
the protocol’s in�ationary monetary policy. From March 2019 to August 2023, the
total SNX supply will increase from 100,000,000 to 260,263,816, with a weekly decay
rate of 1.25% (from December 2019). From September 2023, there will be an annual
2.5% terminal in�ation for perpetuity. These SNX tokens are distributed to SNX
stakers weekly on a pro-rata basis provided their collateralisation ratio does not fall
below the target threshold.

Minting, burning, and the C-Ratio

The mechanisms above ensure SNX stakers are incentivised to maintain their
Collateralisation Ratio (C-Ratio) at the optimal rate (currently 750%). This ensures
Synths are backed by su�cient collateral to absorb large price shocks. If the value
of SNX or Synths �uctuate, each staker’s C Ratio will �uctuate. If it falls below 750%
(although there is a small buffer allowing for minor �uctuations), they will be unable
to claim fees until they restore their ratio. They adjust their ratio by either minting
Synths if their ratio is above 750%, or burning Synths if their ratio is below 750%.

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 3/12

Stakers, debt, and pooled counterparties

SNX stakers incur a ‘debt’ when they mint Synths. This debt can increase or
decrease independent of their original minted value, based on the exchange rates
and supply of Synths within the network. For example, if 100% of the Synths in the
system were synthetic Bitcoin (sBTC), which halved in price, the debt in the system
would halve, and each staker’s debt would also halve. This means in another
scenario, where only half the Synths across the system were sBTC, and BTC
doubled in price, the system’s total debt—and each staker’s debt—would increase by
one quarter. In this way, SNX stakers act as a pooled counterparty to all Synth
exchanges; stakers take on the risk of the overall debt in the system. They have the
option of hedging this risk by taking positions external to the system. By incurring
this risk and enabling trading on Synthetix.Exchange stakers earn a right to fees
generated by the system.

Examples from Delphi Digital demonstrating how debt works in the Synthetix system.

Synth Pegging Mechanism
The Synth peg is critical to a well functioning system, because traders require both
liquidity and stability between a Synth/s and other cryptoassets in order to take

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 4/12

pro�ts from trading. Some Synths trade on the open market, so it is possible for
them to fall below par with the assets they track. Incentives are required to ensure
that deviations from the peg are minimal and that actors are motivated to correct
them.

There are three methods to maintain the Synth peg:

Arbitrage: SNX stakers have created debt by minting Synths, so if the peg drops
they can now pro�t by buying sUSD back below par and burning it to reduce
their debt, as the Synthetix system always values 1 sUSD at $1 USD.

sETH liquidity pool on Uniswap: each week, a portion of the SNX added to the
total supply through the in�ationary monetary policy is distributed as reward to
people providing sETH/ETH liquidity on Uniswap. This has incentivised liquidity
providers to collectively create the largest liquidity pool on Uniswap (at time of
writing), allowing traders to purchase Synths to start trading or sell Synths to
take pro�ts.

SNX auction: Synthetix is currently trialling a new mechanism with the dFusion
protocol (from Gnosis) in which discounted SNX is sold at auction for ETH,
which is then used to purchase Synths below the peg.

Synthetix.Exchange
Why trade synthetic assets?

Synthetic assets provide exposure to an asset without holding the underlying
resource. This has a range of advantages, including reducing the friction when
switching between different assets (e.g. from Apple shares to synthetic gold),
expanding the accessibility of certain assets, and censorship resistance.

Advantages of Synthetix.Exchange

Trading on Synthetix.Exchange provides many advantages over centralised
exchanges and order book based DEX’s. The lack of an order book means all trades
are executed against the contract, known as P2C (peer-to-contract) trading. Assets

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 5/12

are assigned an exchange rate through price feeds supplied by an oracle, and can
be converted using the Synthetix.Exchange dApp. This provides in�nite liquidity up
to the total amount of collateral in the system, zero slippage, and permissionless on-
chain trading.

How Synths work

Synths are synthetic assets that track the price of the underlying asset. They allow
holders to gain exposure on Ethereum to various asset classes without holding the
underlying assets themselves or trusting a custodian. Synths are backed by the
Synthetix Network Token (SNX), which is staked as collateral at a ratio of 750%.

The current Synths

There are currently �ve categories of Synths available: �at currencies, commodities,
cryptocurrencies, inverse cryptocurrencies, and cryptocurrency indexes. Our �at
Synths include sUSD, sEUR, sKRW, and many more; our commodity Synths include
synthetic gold and synthetic silver, both measured per ounce; our cryptocurrencies
include sBTC, sETH, and sBNB, with more to come; and our Inverse Synths inversely
track the price of those available cryptocurrencies, meaning that when BTC’s price
decreases, iBTC’s price increases. Our current cryptocurrency indexes are sDEFI and
sCEX (and their inverses), which respectively track a basket of DeFi assets and a
basket of centralised exchange tokens.

System Architecture
Minting Synths

An SNX holder can mint sUSD by locking their SNX as collateral via the Synthetix
smart contract. The steps involved when an SNX holder mints are:

The Synthetix contract checks that the SNX staker can mint Synths against their
SNX, which requires their Collateralisation Ratio to be below 750%.

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 6/12

Their debt is added to the Debt Register. The debt is the amount of the new
value minted, and is stored in sUSD

With the debt assigned to the staker, the Synthetix contract instructs the sUSD
contract to issue the new amount. It adds it to its total supply and assigns the
newly minted sUSD to the user’s wallet.

If the price of SNX increases, an equivalent portion of a staker’s SNX is
automatically unlocked as collateral. For example, if a user locks $100 of SNX as
collateral, and the value of SNX doubles, then half of their SNX (total value: $200) is
locked and the other half is unlocked. If they wish, that extra unlocked SNX can then
be staked to mint more sUSD.

Exchanges

The steps involved for the smart contracts to process a Synth exchange (from sUSD
to sBTC in this example) are below:

Burn the source Synth (sUSD), which involves reducing that wallet address’s
sUSD balance and updating the total supply of sUSD.

Establish the conversion amount (i.e. the exchange rate, based on the price of
each currency).

Charge an exchange fee, which is currently 0.3% of the converted amount, and
send the fee as sUSD to the fee pool, where it can be claimed by SNX stakers.

The remaining 99.7% is issued by the destination Synth (sBTC) contract and the
wallet address balance is updated

The sBTC total supply is updated.

No counterparty is required to exchange, as the system converts the debt from one
Synth to another. Hence no order books or order matching is required, resulting in
in�nite liquidity between Synths. No debt change is required to be recorded against
the debt pool either, as the same value is burned from the source Synth and minted
from the destination Synth.

Claiming Fees

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 7/12

When Synths are exchanged through the Synthetix contract, a 0.3% fee is extracted
and sent to the fee pool to be claimed by SNX stakers. When claiming fees (also
called Synth exchange rewards) a staker also claims their SNX staking rewards,
which reward them with extra SNX for staking the SNX they currently have. The
smart contracts’ process once a staker requests to claim their fees is as follows:

The fee pool checks whether there are fees currently available and whether the
staker is eligible to receive fees.

The amount of fees in sUSD is sent to the staker’s wallet address and the
balance of the fee pool is updated.

Additionally, a pro-rata amount of escrowed SNX is assigned to the wallet
address from the SNX staking rewards contract.

Fees are allocated based on the proportion of debt each staker has issued. For
example, if a staker has issued 1,000 sUSD in debt, the debt pool is 10,000 sUSD,
and 100 in fees are generated in a fee period, this staker is entitled to 10 sUSD
because their debt represents 10% of the debt pool. The same proportional
distribution mechanism is used for SNX staking rewards.

Burning debt

When an SNX staker wants to exit the system or reduce their debt and unlock
staked SNX, they must pay back their debt. At its simplest: a staker mints 10 sUSD
by locking SNX as collateral, and must burn 10 sUSD to unlock it. But if the debt
pool �uctuates (and therefore their individual debt �uctuates) while they are staked,
they may need to burn more or less debt than they minted. The process for reducing
debt to zero is as follows:

The Synthetix contract determines their debt balance and removes them from
the Debt Register.

The required amount of sUSD is burned, and total supply of sUSD is updated
along with the sUSD balance in the user’s wallet.

Their SNX balance becomes transferrable.

The debt pool

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 8/12

The system tracks the debt pool (as well as each individual staker’s debt) each time
an SNX holder mints or burns Synths. It does this by updating the Cumulative Debt
Delta Ratio. This measures the SNX staker’s proportion of the debt pool at the time
they last minted or burned, as well as the debt change caused by other stakers
entering or leaving the system. The system uses this information to determine the
individual debt of each staker at any time in the future, without having to actually
record the changing debt of each individual staker.

Updating the Cumulative Debt Delta Ratio on the Debt Register allows the system to
track every user’s % of the debt. It calculates the % change the new debt introduces
against the debt pool using the formula below and appends it to the Debt Register:

New Debt Minted (Total Existing Debt + New Debt)

The staker’s last mint/burn action is then recorded in the Debt Register within their
issuance data and the relative index number at which this action happened. The
detail recorded is the percentage of the debt pool they represent, which is
calculated by this formula:

User debt percentage =(New Debt + Existing Debt) (Previous Debt Pool +

New Debt)

The Debt Register holds the Cumulative Debt Delta Ratio, which is the product of the
calculation above, and the relative time (index) the debt was added, so that it can be
used to calculate any user’s % of the debt pool at any index in the future based on
the % shift in the debt pool their last mint/burn caused.

We recalculate the debt pool by summing the number of tokens in each Synth
contract multiplied by the current exchange rates, each time new debt is
issued/burned:

totalDebtIssued = totalIssuedSynths

This enables the calculation of the current debt pool, and is included in the updated
Cumulative Debt Delta Ratio so that we know at each Debt Register entry the size of
the debt (in Synths).

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 9/12

When a staker pays back their debt (i.e. by burning the Synths they minted) to
unlock their SNX collateral the system updates the Cumulative Debt Delta based on
the % shift in the amount of debt to be burned against the total value of the system’s
debt after the reduction in debt.

This is the inverse calculation from when a user mints new debt:

user's new debt percentage =(existing debt - debt to be burned) (debt

pool - debt to be burned)

This is the formula for calculating the updated Cumulative Debt Delta:

delta = debt to be burned (debt pool -debt to be burned)

If a staker burns all their debt, their issuance data in the Debt Register will be set to
0 and they will no longer be part of the debt pool.

The oracle

The value of all synthetic assets in the Synthetix system are currently determined by
oracles that push price feeds on-chain. It uses an algorithm with a variety of sources
to form an aggregate value for each asset. The price feeds are currently supplied by
both Chainlink’s independent node operators and Synthetix, and will soon all be
supplied by Chainlink.

Current Risks and Risk Mitigation Strategies
Current risks

There are several risks in the current architecture, as Synthetix is still an
experimental system and complex systems require both empirical observations and
theoretical analysis. Empirical observation and theoretical analysis ensure the
mechanism design aligns incentives for all players.

One risk involves the debt SNX holders issue when they stake their SNX and mint
Synths. As previously explained, this debt can �uctuate due to exchange rate shifts

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 10/12

within the system. This means that to exit the system and unlock their staked SNX,
they may need to burn more Synths than they originally minted.

Most people in the cryptocurrency space are aware of this risk, but the prices of
most cryptoassets are highly correlated to Bitcoin and/or Ethereum. This means it’s
possible for major price �uctuations in the SNX token to occur for reasons that have
little to do with SNX or the Synthetix system.

Finally, there are a number of aspects of the system that are currently centralised.
This decision has been made to ensure e�cient implementation of the project. One
example of centralisation is the use of proxy contracts across much of the
architecture. This is to ensure the system can be upgraded easily but confers a level
of control to the engineering team which requires trust from users. While these
aspects will be phased out over time, it is important to understand the risks inherent
in the current system architecture.

Risk mitigation strategies

As a decentralised protocol, the Synthetix team is committed to decentralisation
and censorship resistance — this will be a gradual process as the system matures.
This includes crucial areas such as our price feeds. We have previously announced
a partnership with Chainlink, a provider of decentralised oracle solutions.

Another important area is governance, we have recently initiated regular community
governance calls to ensure the project’s goals are aligned with the community.
Another aspect of this process is a move to a formal change management process,
we have introduced SIP’s (Synthetix Improvement Proposals) to allow the
community to introduce change requests and to ensure that any changes to the
system are well understood and considered by all stakeholders.

Future Functionality
Additional Synths

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 11/12

There are many different kinds of Synths that can be added to the system to provide
greater utility to Synthetix.Exchange. These include leveraged assets that are not
available on other platforms as well as indices like the S&P500 and equities like
APPL and TSLA.

Synthetic futures

We expect to launch the ability for traders to take synthetic futures on
Synthetix.Exchange in the near future. Many aspects of this functionality are yet to
be �nalised, but it’s expected it will use a self balancing mechanism similar to the
Uniswap auto market maker algorithm, where the total open interest of each
position and therefore the risk to SNX stakers is capped and borrow rates are
adjusted based on the current open interest. The system will also encourage traders
to balance the risk in the system by paying a percentage of the fees to traders who
rebalance positions, though this feature will not be in the initial release. There are
already a number of derivatives trading platforms for cryptoassets, but they are all
limited by counterparty liquidity. The unique design of the Synthetix system means it
may be able to capture market share in this area, similarly to how Binance captured
market share by listing more cryptoassets than most other centralised exchanges.

Leveraged trading

Leveraged trading drives a signi�cant amount of volume on crypto exchanges, and
while synthetic futures will compete directly with centralised futures platforms,
there is a lot of value in supporting tokenised leverage.

Advanced order types

The current version of Synthetix.Exchange supports only market orders which limits
the usability of the exchange. An advanced order engine will be able to support limit,
stop loss, stop limits, and other advanced order types. This will use a relay network
for processing advanced orders. Advanced order types are critical to reaching
feature parity with centralised exchanges.

3/29/2021 🇦🇺 English - Synthetix System Documentation

https://docs.synthetix.io/litepaper 12/12

Conclusion
Synthetix has already delivered one of the most complex and useful protocols built
on Ethereum to date. But the potential for censorship-resistant synthetic assets is
still largely untapped. Further improvements to the mechanism as well as functional
upgrades and new Synths will vastly increase the utility of the platform. Movement
to a decentralised governance process will also reduce systemic risk and increase
the long term viability of the project.

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 1/12

Whitepaper

A non-custodial portfolio manager, liquidity provider, and price sensor.

by:

Fernando Martinelli

Nikolai Mushegian

v2019-09-19

contact@balancer.�nance (mailto:contact@balancer.�nance)

Introduction
A Balancer Pool is an automated market maker with certain key properties that cause it to function as a self-

balancing weighted portfolio and price sensor.

Balancer turns the concept of an index fund on its head: instead of paying fees to portfolio managers to

rebalance your portfolio, you collect fees from traders, who rebalance your portfolio by following arbitrage

opportunities.

Balancer is based on a particular N-dimensional surface which de�nes a cost function for the exchange of

any pair of tokens held in a Balancer Pool. This approach was �rst described by V. Buterin[0]

(https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/),

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 2/12

generalized by Alan Lu[1] (https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-

eea4e7452d6e), and proven viable for market making by the popular Uniswap[2] (https://uniswap.io) dapp.

We independently arrived at the same surface de�nition by starting with the requirement that any trade

must maintain a constant proportion of value in each asset of the portfolio. We applied an invariant-based

modeling approach described by Zargham et al[3] (https://arxiv.org/pdf/1807.00955.pdf) to construct this

solution. We will prove that these constant-value market makers have this property.

Table of Contents
Introduction

Table of Contents

Present Work

Theory

Value Function

Spot Price

Effective Price

Spot Price Proof

Constant Value Distribution Proof

Trading Formulas

In-Given-Out

Out-Given-In

In-Given-Price

Liquidity Providing Formulas

All-Asset Deposit/Withdrawal

Single-Asset Deposit

Single-Asset Withdrawal

Implementation

License

Releases

Numerical Algorithms

Controlled vs Finalized Pools

Swap and Exit Fees

References

Present Work
Index funds are a common �nancial instrument. The �rst index fund became effective in 1972. Ever since,

investors rely heavily on different portfolio strategies to hedge risk and achieve diversi�cation. Index funds

guarantee investors a constant and controlled exposure to a portfolio. If one of its assets out- or under-

performs, it is respectively sold or bought to keep its value share of the total portfolio constant.

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 3/12

Both in the conventional �nancial system as well as in the blockchain context, index funds and other types of

investment portfolios charge investors fees for managing and holding their funds. These fees are necessary

to pay for the costs of actively rebalancing the index funds, be it by manual traders or automatic bots.

There are many centralized solutions for portfolio management and for investing in index funds. These all

share some form of custodial risk.

We are aware of one decentralized (read: non-custodial) solution that shares all the fundamental

characteristics Balancer was designed to have: Uniswap (https://uniswap.io). This approach was �rst

described by V. Buterin

(https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/)

and generalized by Alan Lu (https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-

eea4e7452d6e).

We independently arrived at the same surface de�nition by starting with the requirement that any trade

must maintain a constant proportion of value in each asset of the portfolio. We applied an invariant-based

modeling approach described by Zargham et al (https://arxiv.org/pdf/1807.00955.pdf) to construct this

solution. We will prove that these constant-value market makers have this property.

Theory
Throughout this paper, we use the term “token” to refer to a generic asset because our �rst implementation

is a contract system that manipulates ERC20 tokens on the Ethereum network. However, there is nothing

fundamental about the Ethereum execution context that enables this market-making algorithm, which could

be offered by a traditional �nancial institution as a centralized (custodial) product.

Value Function
The bedrock of Balancer’s exchange functions is a surface de�ned by constraining a value function — a

function of the pool’s weights and balances — to a constant. We will prove that this surface implies a spot

price at each point such that, no matter what exchanges are carried out, the share of value of each token in

the pool remains constant.

The value function is de�ned as:

Where

 ranges over the tokens in the pool;

 is the balance of the token in the pool;

 is the normalized weight of the token, such that the sum of all normalized weights is 1.

By making constant we can de�ne an invariant-value surface as illustrated in Fig.0.

Spot Price

V

V

V = ∏
t

B
Wt

t (1)

t

Bt

Wt

V

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 4/12

Each pair of tokens in a pool has a spot price de�ned entirely by the weights and balances of just that pair of

tokens. The spot price between any two tokens, , or in short , is the the ratio of the token

balances normalized by their weights:

Where:

 is the balance of token i, the token being sold by the trader which is going into the pool.

 is the balance of token o, the token being bought by the trader which is going out of the pool.

 is the weight of token i

 is the weight of token o

From this de�nition it is easy to see that if weights are held constant, the spot prices offered by Balancer

Pools only change with changing token balances. If the pool owner does not add or remove tokens to/from

the pool, token balances can only change through trades. The constant surface causes the price of tokens

being bought by the trader (token) to increase and price of tokens being sold by the trader (token) to

decrease. One can prove that whenever external market prices are different from those offered by a

Balancer Pool, an arbitrageur will make the most pro�t by trading with that pool until its prices equal those

on the external market. When this happens there is no more arbitrage opportunity. These arbitrage

opportunities guarantee that, in a rational market, prices offered by any Balancer Pool move in lockstep with

the rest of the market.

Effective Price
It is important to bear in mind that is the spot price, which is the theoretical price for in�nitesimal

trades, which would incur no slippage. In reality, the effective price for any trade depends on the amount

being traded, which always causes a price change. If we de�ne as the amount of token being bought by

the trader and as the amount of token being sold by the trader, then we can de�ne the Effective Price as:

And as mentioned above, tends to when traded amounts tend to 0:

Spot Price Proof
Let’s now prove that this choice of entails Eq.2.

First of all, we know that what the trader buys, , is subtracted from the contract’s balance. Therefore

. Likewise, what the trader sells, , is added to the contract’s balance. Therefore .

Substituting in Eq.2 and Eq.3 we get:

SpotPriceo
i

SP o
i

SP o
i

= (2)

Bi

Wi

Bo

Wo

Bi

Bo

Wi

Wo

o i

SP o
i

Ao o

Ai i

EP o
i

= (3)
Ai

Ao

EP SP

SP o
i

= lim
Ao,Ai→0

EP o
i

(4)

V

Ao

Ao = −ΔBo Ai Ai = ΔBi

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 5/12

This limit is, by de�nition, minus the partial derivative of in function of :

From the value function de�nition in Eq.1 we can isolate :

Now we use Eq.7 to expand the partial derivative in Eq.6:

which concludes our proof.

Constant Value Distribution Proof
We will now prove that:

1. Balancer Pools maintain a constant share of value across all tokens in the pool and;

2. These shares of value are equal to the weights associated to each token.

SP o
i

= lim
Ao,Ai→0

EP o
i

= lim
ΔBo,ΔBi→0

(5)
ΔBi

−ΔBo

Bi Bo

SP o
i

= − (6)
∂Bi

∂Bo

Bi

BWi

i
=

V

(∏k≠i,oB
Wk

k
) .BWo

o

Bi =
⎛
⎜
⎝

⎞
⎟
⎠

(7)
V

(∏
k≠i,oB

Wk

k
) .BWo

o

1
Wi

SP o
i = − = −

⎛
⎜ ⎜ ⎜
⎝

⎛
⎜
⎝

⎞
⎟
⎠

⎞
⎟ ⎟ ⎟
⎠

=

−() ⋅ (B
−

o) =

−() ⋅ − ⋅ B
− −1

o =

() ⋅ Bo ⋅ Bi ⋅ ⋅ B
− −1

o =

() ⋅ Bo ⋅ B
−

o ⋅ ⋅ =

∂Bi

∂Bo

∂

∂Bo

V

(∏
k≠i,o(Bk)Wk) ⋅ (Bo)Wo

1
Wi

V

∏k≠i,o(Bk)Wk

1
Wi ∂

∂Bo

Wo

Wi

V

∏k≠i,o(Bk)Wk

1
Wi Wo

Wi

Wo

Wi

V

∏k(Bk)Wk

1
Wi Wo

Wi
Wo

Wi

Wo

Wi

V

V

1
Wi

Wo

Wi

Wo

Wi
Bi

Wi

Wo

Bo

Bi

Wi

Bo

Wo

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 6/12

Let’s calculate , the total pool value in terms of an arbitrary token from the pool. Since we already know

that the pool has tokens , let’s calculate how many tokens all the other remaining tokens are worth. It

does not make sense to use their Effective Price relative to token since we are not going to do any actual

trade. Instead, to calculate the theoretical value we use their Spot Price relative to token .

From Eq.2 we can calculate , i.e how many tokens the balance of each token is worth:

We know that the total pool value in terms of tokens is the sum of the values of each token in terms of

tokens :

Now to calculate , the share of value each token represents in the pool, all we have to do is divide the

value of each token , , by the total pool value, :

which proves both that the share each token represents of the total pool value is constant and also that it is

equal to the weight of that token.

Trading Formulas
Calculating the trade outcomes for any given Balancer Pool is easy if we consider that the Value Function

must remain invariant, i.e. must have the same value before and after any trade.

In reality, will increase as a result of trading fees applied after a trade state transition.

For more details on fees, see Implementation: Swap and Exit Fees

Out-Given-In
When a user sends tokens to get tokens , all other token balances remain the same. Therefore, if we de�ne

 and as the amount of tokens and exchanged, we can calculate the amount a users gets when

sending . Knowing the value function after the trade should be the same as before the trade, we can write:

V t t

Bt t t

t

t

V t
n t n

V t
n = = Bn ⋅ = Bt ⋅ (8)

Bn

SP t
n

Bt

Wt

Bn

Wn

Wn

Wt

t

t

V t = ∑
k

V t
k

= Bt +∑
k≠t

V t
k

= Bt + ⋅∑
k≠t

Wn = ⋅ (Wt +∑
k≠t

Wn) = (9)
Bt

Wt

Bt

Wt

Bt

Wt

Sn n

n V t
n V t

Sn = = Wn (10)
V t
n

V t

V

V

i o

Ai Ao i o Ao

Ai

∏
k≠i,o

(Bk)Wk ⋅ (Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = ∏
k

(Bk)Wk (11)

∏
k≠i,o

(Bk)Wk ⋅ (Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = ∏
k≠i,o

(Bk)Wk ⋅ BWo
o ⋅ BWi

i
 (12)

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 7/12

In-Given-Out
It is also very useful for traders to know how much they need to send of the input token to get a desired

amount of output token . We can calculate the amount as a function of similarly as follows:

Notice that as de�ned by Eq.11 tends to when , as expected. This can be proved by

using L’Hopital’s rule, but this proof is out of the scope of this paper.

In-Given-Price
For practical purposes, traders intending to use our contract for arbitrage will like to know what amount of

tokens – – they will have to send to the contract to change the current spot price to another

desired one . The desired spot price will usually be the external market price and, so long as the

(Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = B
Wo
o ⋅ BWi

i
 (13)

Bo − Ao = (14)
B

i
⋅ Bo

Wi

Wo

(Bi + Ai)
Wi

Wo

Ao = Bo ⋅
⎛
⎝

1–()
⎞
⎠

(15)
Bi

Bi + Ai

Wi

Wo

Ai

Ao Ai Ao

∏
k≠i,o

(Bk)Wk ⋅ (Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = ∏
k

(Bk)Wk (16)

∏
k≠i,o

(Bk)Wk ⋅ (Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = ∏
k≠i,o

(Bk)Wk ⋅ BWo
o ⋅ BWi

i
 (17)

(Bo − Ao)
Wo ⋅ (Bi + Ai)

Wi = B
Wo
o ⋅ BWi

i
 (18)

Bi + Ai = (19)
Bo ⋅ Bi

Wo

Wi

(Bo − Ao)
Wo

Wi

Ai = Bi ⋅
⎛
⎝
() − 1

⎞
⎠

(20)
Bo

Bo − Ao

Wo

Wi

Ao SP o
i

⋅ Ai Ai << Bi

i Ai SP o
i

SP ′o
i

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 8/12

contract spot price differs from that of the external market, any arbitrageur can pro�t by trading with the

contract and bringing the contract price closer to that of the external market.

The highest pro�t possible by an arbitrageur is when they bring the contract spot price exactly to that of the

external market. As already mentioned, this is the main reason why our design is successful in keeping track

of the market prices. This makes it a reliable on-chain price sensor when implemented on a blockchain.

It can be proven that the amount of tokens – – a user needs to trade against tokens so that the pool’s

spot price changes from to is:

Liquidity Providing Formulas
Pool Tokens
Pools can aggregate the liquidity provided by several different users. In order for them to be able to freely

deposit and withdraw assets from the pool, Balancer Protocol has the concept of pool tokens. Pool tokens

represent ownership of the assets contained in the pool. The outstanding supply of pool tokens is directly

proportional to the Value Function of the pool. If a deposit of assets increases the pool Value Function by

10%, then the outstanding supply of pool tokens also increases by 10%. This happens because the depositor

is issued 10% of new pool tokens in return for the deposit.

There are two ways in which one can deposit assets to the pool in return for pool tokens or redeem pool

tokens in return for pool assets:

Weighted-asset deposit/withdrawal

Single-asset deposit/withdrawal

All-Asset Deposit/Withdrawal
An “all-asset” deposit has to follow the distribution of existing assets in the pool. If the deposit contains 10%

of each of the assets already in the pool, then the Value Function will increase by 10% and the depositor will

be minted 10% of the current outstanding pool token supply. So to receive pool tokens given an

existing total supply of , one needs to deposit tokens k for each of the tokens in the pool:

Where is the token balance of token k before the deposit.

Similarly, a weighted-asset withdrawal is the reverse operation where a pool token holder redeems their

pool tokens in return for a proportional share of each of the assets held by the pool. By redeeming

pool tokens given an existing total supply of , one withdraws from the pool an amount of token k

for each of the tokens in the pool:

i Ai o

SP o
i

SP ′o
i

Ai = Bi ⋅
⎛
⎜
⎝

()
()

– 1
⎞
⎟
⎠

(21)
SP ′o

i

SP o
i

Wo

Wo+Wi

Pissued

Psupply Dk

Dk = (− 1) ⋅ Bk (22)
Psupply + Pissued

Psupply

Bk

Predeemed

Psupply Ak

P P

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 9/12

Where is the token balance of token k before the withdrawal.

Single-Asset Deposit/Withdrawal
When a user wants to provide liquidity to a pool because they �nd its distribution of assets interesting, they

may likely not have all of the assets in the right proportions required for a weighted-asset deposit.

Balancer allows anyone to get pool tokens from a shared pool by depositing a single asset to it, provided that

the pool contains that asset.

Depositing a single asset A to a shared pool is equivalent to depositing all pool assets proportionally and

then selling more of asset A to get back all the other tokens deposited. This way a depositor would end up

spending only asset A, since the amounts of the other tokens deposited would be returned through the

trades.

The amount of pool tokens one gets for depositing a single asset to a shared pool can be derived from the

Value Function described above.

Single-Asset Deposit

The increase in the pool token supply proportional to the increase in the Value Function. If we de�ne

as the amount of pool tokens issued in return for the deposit, then:

Where is the Value Function after the deposit and is the Value Function before the deposit.

Considering also the balance of asset k after the deposit and its balance before the deposit, we have:

Let’s say the single-asset deposit was done in asset , then the balances of all other tokens do not change

after the deposit. We can then write:

If we de�ne as the amount deposited in asset , then the new pool balance of asset t is $$B’t = B_t +

A_t$$. We can then substitute and get the �nal formula for the amount of new pool tokens issued $P{issued}

I_t$:

Ak = (1 −) ⋅ Bk (23)
Psupply − Predeemed

Psupply

Bk

Pissued

= =
V ′

V

P ′
supply

Psupply

Psupply + Pissued

Psupply

Pissued = Psupply ⋅ (− 1) (24)
V ′

V

V ′ V

B′
k

Bk

=
V ′

V

∏k(B′
k
)Wk

∏
k
(Bk)Wk

t

= = = ()
Wt

V ′

V

∏k(B′
k
)Wk

∏
k
(Bk)Wk

(B′
t)
Wt

(Bt)Wt

B′
t

Bt

At t

inreturnforasinge − assetdeposit

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 10/12

Single-Asset Withdrawal

When a pool token holder wants to redeem their pool tokens in return for a single asset , the

amount withdrawn in asset , , is:

Where is the pool balance of asset before the withdrawal.

Indeed, using the formulas of deposit and withdrawal de�ned above, not considering any fees, if one deposits

 asset for pool tokens and then redeems that same amount of pool tokens for asset , they will

get the same initial back.

Trading Fees for Single-Asset Deposit Withdrawal
Depositing or withdrawing to/from a shared pool in a single asset is equivalent to trading of the

amount deposited for all the other assets in the pool. of the amount deposited is held by the pool already

in the form of asset , so charging a trading fee on that share would be unfair.

Indeed, if we disregard any possible pool exit fees, depositing only asset and instantly withdrawing asset

will incur in the same trading fees as doing the trade from to using the trade function the pool offers.

Implementation
There are a few initial notes regarding the �rst release of Balancer. We will release a much more detailed

explanation of the system at the same time that the source code is released.

Free Software on Ethereum
Balancer is implemented as a GPL3-licensed Ethereum smart contract system.

Releases
The Bronze Release is the �rst of 3 planned releases of the Balancer Protocol. Bronze emphasizes code

clarity for audit and veri�cation, and does not go to great lengths to optimize for gas.

The Silver Release will bring many gas optimizations and architecture changes that will reduce

transaction overhead and enable more �exibility for controlled pools.

The Golden Release will introduce several new features to tie the whole system together.

Numerical Algorithms

Pissued = Psupply ⋅ ((1 +)
Wt

− 1) (25)
At

Bt

Predeemed t

t At

At = Bt ⋅ (1 − (1 −)) (26)
Predeemed

Psupply

1
Wt

Bt t

At t Pissued t

At

t (1 − Wt)

Wt

t

i o

i o

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 11/12

The formulas in the Theory section are suf�cient to describe the functional speci�cation, but they are not

straightforward to implement for the EVM, in part due to a lack of mature �xed-point math libraries.

Our implementation uses a combination of a few algebraic transformations, approximation functions, and

numerical hacks to compute these formulas with bounded maximum error and reasonable gas cost.

The rest of this section will be released at the same time as the Bronze release source code.

Controlled vs Finalized Pools
The Bronze Release allows two basic tiers of trust with respect to pools:

1. Controlled pools are con�gurable by a “controller” address. Only this address can add or remove

liquidity to the pool (call join or exit). This type of pool allows the change of pool assets types and

their weights. Note that since the controller is an address, this could in principle implement arbitrary

logic, like managing public deposits in a manner similar to a �nalized pool. The key difference is that

of�cial tooling will not recognize it as a “trustless” pool. Controlled pools with increased trust

requirements will be possible with the Silver Release .

2. Finalized pools have �xed pool asset types, weights, and fees. Crucially, this enables join and exit to

be publicly accessible in a safe, trustless manner while keeping a minimal implementation.

Swaps and Exit Fees
The Bronze Release charges fees in two situations: When traders exchange tokens (via swap and its

variants), and when liquidity providers remove their liquidity from the pool (via exit and its variants).

Both of these fees are con�gurable by the controller, but they are also �xed when the pool becomes

�nalized.

100% of the swap fee goes to the liquidity providers — the amount of the underlying token that can be

redeemed by each pool token increases.

Most of the exit fee is returned to the liquidity providers who remain in the pool.

This is similar in spirit to a swap fee charged for exchanging pool tokens with underlying tokens.

The rest of the exit fee is transferred to an account controlled by Balancer Labs, Inc, for the development of

Future Releases .

References
[0] Vitalik Buterin: Let’s run on-chain decentralized exchanges the way we run prediction markets

(https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/)

[1] Alan Wu: Building a Decentralized Exchange in Ethereum (https://blog.gnosis.pm/building-a-

decentralized-exchange-in-ethereum-eea4e7452d6e)

[2] https://uniswap.io/ (https://uniswap.io)

3/29/2021 Whitepaper - Balancer

https://balancer.finance/whitepaper/ 12/12

[3] Zargham, M., Zhang, Z., Preciado, V.: A State-Space Modeling Framework for Engineering Blockchain-

Enabled Economic Systems. New England Complex Systems Institute (2018)

(https://arxiv.org/pdf/1807.00955.pdf)

 (mailto:contact@balancer.�nance) (https://twitter.com/BalancerLabs)
(https://medium.com/balancer-protocol) (https://discord.gg/ARJWaeF) (https://github.com/balancer-

labs/) (https://de�pulse.com)

© Balancer Labs

Bancor Protocol
Continuous Liquidity and Asynchronous Price
Discovery for Tokens through their Smart Contracts;
aka “Smart Tokens”

Eyal Hertzog, Guy Benartzi & Galia Benartzi

May 30, 2017

Draft Version 0.99

The phrase "double coincidence of wants" was coined by Jevons (1875). "The first difficulty in
barter is to find two persons whose disposable possessions mutually suit each other's wants.
There may be many people wanting, and many possessing those things wanted; but to allow of
an actual act of barter there must be a double coincidence, which will rarely happen."

Table of Contents

Table of Contents 1

The Bancor Protocol 2

Background 2

Introducing Smart Tokens: A Solution to the Liquidity Problem 2

A New Method for Price Discovery 3

Use-Cases for Smart Tokens 4

The Long Tail of User-Generated Currencies 4

Crowdfunding a Project 4

Token Changers 5

Decentralized Token Baskets 5

Network Tokens 6

Advantages of Smart Tokens 6

The Bancor Protocol Ecosystem 7

A Solution to the Coincidence of Wants Problem 7

Smart Token Initiation and Customization 7

The Bprotocol Foundation 8

Bancor Network Token (BNT) - The First Smart Token 8

BNT Crowdsale Objectives 8

Examples and Illustrations 9

Example #1: Smart Token Transaction Flows 9

Example #2: Token Changer Transaction Flows 10

Illustrative Map of a Potential Bancor Network 11

Price Calculation Per Transaction 12

Summary 12

Acknowledgements 12

1

The Bancor Protocol
Abstract: The Bancor protocol enables built-in price discovery and a liquidity mechanism for 1

tokens on smart contract blockchains. These “smart tokens” hold one or more other tokens in
reserve, and enable any party to instantly purchase or liquidate the smart token in exchange for
one of its reserve tokens, directly through the smart token’s contract, at a continuously
calculated price, according to a formula which balances buy and sell volumes.

The Bancor protocol is named in honor of the Keynesian proposal to introduce a supranational 2

reserve currency called Bancor to systematize international currency conversion after WWII.

Background
We live in a world where anyone can publish an article, song or video, create a discussion group
and even run an online marketplace. We are now beginning to witness the emergence of
user-generated currencies. Different types of stored-value (“currencies” hereafter) have been
issued and circulated for centuries in the form of bank notes, bonds, equity, gift cards, loyalty
points, community currencies and others. Bitcoin was the first decentralized digital currency, 3

followed by a wave of new cryptocurrencies that have been issued since, and recently we’ve
seen the rise of a new asset class of “tokens” that are typically issued in crowdsales (“ICOs”)
through smart contracts.

However, currencies, which are essentially networks of value, do not connect to each other in the
same way that information networks do. While the switches on Internet exchange points (IXs)
interlink information networks, active traders on exchanges are effectively interlinking currencies.

The current exchange model for currencies/assets has a critical barrier, requiring a certain
volume of trading activity to achieve market-liquidity. This inherent barrier makes it nearly
impossible for small-scale currencies (such as community currencies, loyalty points or other
custom tokens) to be linked (exchangeable) to other popular currencies using a
market-determined exchange rate.

In the age of smart contract blockchains, tokens can be automatically managed by immutable
code which controls their issuance and behavior. We realized this could mean allowing tokens to
hold balances of other tokens (i.e. “reserves”), directly through their smart contracts, that could
be designed by their creators and managed programmatically. These new technological
capabilities warrant rethinking of the possible solutions for converting one currency to another
and determining market prices.

Introducing Smart Tokens: A Solution to the Liquidity Problem
Smart tokens are standard ERC20 tokens which implement the Bancor protocol, providing
continuous liquidity while automatically facilitating price-discovery. The smart token’s contract

1 https://en.wikipedia.org/wiki/Price_discovery
2 https://en.wikipedia.org/wiki/Bancor
3 https://en.wikipedia.org/wiki/Community_currency

2

instantly processes buy and sell orders, which drive the price-discovery process. Due to this
capability, smart tokens do not need to be traded in an exchange in order to become liquid.

A smart token holds a balance of least one other reserve token, which (currently) can be a
different smart token, any ERC20 standard token or Ether. Smart tokens are issued when
purchased and destroyed when liquidated, therefore it is always possible to purchase a smart
token with its reserve token, as well as to liquidate a smart token to its reserve token, at the
current price.

A New Method for Price Discovery
A smart token utilizes a novel method for price-discovery which is based on a “Constant Reserve
Ratio” (CRR). The CRR is set by the smart token creator, for each reserve token, and used in price
calculation, along with the smart token’s current supply and reserve balance, in the following way:

riceP = Balance
Supply × CRR

This calculation ensures that a constant ratio is kept between the reserve token balance and the
smart token’s market cap, which is its supply times its price. Dividing the market cap by the
supply produces the price according to which the smart token can be purchased and liquidated
through the smart contract. The smart token’s price is denominated in the reserve token and
readjusted by the smart contract per each purchase or liquidation, which increases or decreases
the reserve balance and the smart token supply (and thus the price) as detailed below.

When smart tokens are purchased (in any of their reserve currencies) the payment for the
purchase is added to the reserve balance, and based on the calculated price, new smart tokens
are issued to the buyer. Due to the calculation above, a purchase of a smart token with a less
than 100% CRR will cause its price to increase, since both the reserve balance and the supply are
increasing, while the latter is multiplied by a fraction.

Similarly, when smart tokens are liquidated, they are removed from the supply (destroyed), and
based on the current price, reserve tokens are transferred to the liquidator. In this case, for a
smart token with a CRR less than 100%, any liquidation will trigger a price decrease.

This asynchronous price-discovery model works by constantly readjusting the current price
toward an equilibrium between the purchase and liquidation volumes. While in the classic
exchange model price is determined by two matched orders in real-time, smart token prices are
calculated over-time, following every order.

The above formula calculates the current price, however, when a purchase or liquidation is
executed, the effective price is calculated as a function of the transaction size. The calculation
can be described as if every transaction is broken up into infinitely small increments, where each
increment is changing the smart token’s supply, reserve balance, and thus its price. This ensures
that purchasing the same amount of smart tokens in a single or multiple transactions would yield
the same total price. Additionally, this method ensures that the CRR will be kept constant and the
reserve can never be drained. Essentially, the effect of the transaction size on the price (due to its

3

changing the smart token’s supply and reserve balance) is incorporated into the effective price
for any transaction. The mathematical functions for calculating price per transaction size are
presented further in this document.

Using this method, the Bancor protocol can enable liquidity and asynchronous price discovery for
existing standard tokens -- through smart tokens holding them in reserve, enabling backward
compatibility. This use-case and others are described in detail below.

Use-Cases for Smart Tokens

The Long Tail of User-Generated Currencies 4

The long tail phenomena can be observed in many different online ecosystems such as
publishing (blogs), videos (YouTube), discussion forums (Reddit, Facebook Groups) and more. In
each of these examples, the long tail has become significantly larger in scale than everything that
preceded it. The forming of a long tail begins as soon as the barriers to its existence are removed
(e.g. YouTube making it simple for anyone to upload and share user-generated videos).

There are many examples of user-generated currencies, such as group currencies (community
oriented currencies), loyalty points (business oriented currencies), and the most recent being
hundreds of cryptocurrencies (protocol oriented currencies). However, the need to achieve and
maintain liquidity for these small or new currencies remains a significant barrier for their viability.

Smart tokens are unique in that they can be purchased or liquidated by a single party, using the
calculated price, removing the need for two opposite wants to be simultaneously matched. This
effectively means that by using the Bancor protocol, small-scale currencies with a low expected
trade volume can offer continuous liquidity, thus, removing the barrier for them to be linked to the
global economy.

Enabling the long tail of currencies is likely to bring about a new generation of creative
use-cases. Though it’s improbable to predict all of them, some of the more likely use-cases are
listed below.

Crowdfunding a Project
The crowdfunding space has been growing rapidly. Smart tokens can be used for crypto
crowdfunding initiatives, where the participants receive tokens which are liquid and
market-priced. For example, a musician may collect funds to record an album, which would be
sold online exclusively in exchange for the issued tokens. A successful album would generate
high demand for the tokens, driving up their price and rewarding those holding them. Many other
examples exist such as crowdfunding a venture capital fund or raising initial capital for a
credit-creating neighborhood currency.

4 https://en.wikipedia.org/wiki/Long_tail

4

Token Changers
Token changers are smart tokens that hold multiple reserve tokens, with a total CRR of 100% and
can be used to exchange between any standard ERC20 tokens they hold in reserve. A token
changer is designed to provide an exchange service between its reserve tokens through a
two-step process of purchasing the smart token with one reserve token, and immediately
liquidating it for another.

Due to the price calculation formula, each time reserve token X is converted to reserve token Y --
the price of X decreases, while the price of Y increases. Larger transactions will move the price
more sharply, however, a higher reserve balance would reduce price volatility.

As noted, any standard ERC20 token can be used as a reserve-token even if it is already traded
in other exchanges. In such a scenario, a gap may open between the calculated price of a
reserve token and its price in an outside exchange. This situation creates an arbitrage
opportunity which incentivizes arbitrageurs to restore economic equilibrium, thus keeping the
token changer prices in sync with the prices at which their reserve tokens are traded in other
exchanges.

A token changer’s creator may set a conversion fee that would apply on each
purchase/liquidation. Fees can be accumulated in the reserves and thus increase the smart
token’s price with every token conversion taking place, increasing the smart token’s value. This
increase will benefit the holders of the smart token, who may have deposited the original
reserves when the smart token was created, or purchased it with any of its reserve token’s at any
time after that.

Popular exchanges such as MtGox and Bitfinex have been hacked with hundreds of millions of
dollars worth of assets stolen from their accounts. Converting one token to another using a token
changer does not require depositing funds in an exchange and thus removes the counterparty
risk from the process. Another important benefit is that no transaction limits need to be applied,
as is the case with other instant trading solutions, due to the decentralized nature of the token
changer. While decentralized exchanges offer this benefit as well, smart tokens do not rely on
trade volume to provide liquidity.

Decentralized Token Baskets
Smart tokens can be used as decentralized token baskets, which function similarly to ETFs or
index funds, simply by holding a portfolio of reserve tokens with a total CRR of 100%. As prices of
any of the reserve tokens rise or fall, so does the value of the smart token. Similar to token
changers, here as well arbitrageurs are incentivized to realign the conversion rates with market
prices which ensures the proper ratios are kept between the reserves according to their real-time
market value. These smart tokens enable users to directly hold asset baskets, without a financial
services provider as an intermediary.

5

Network Tokens
A collection of smart tokens that use the same reserve token form a network of tokens. The
common reserve token can be described as a network token which captures the combined value
of the network of tokens which hold it in reserve. Increased demand for any of the smart tokens
in the network would increase demand for the network token, since it is required for purchasing
these tokens, and then held in their reserves. Increased demand drives up the price of the
network token, which benefits the entire network since the value of the tokens’ reserves
increases, thus to maintain the CRR, the value of the smart tokens also increases. The network
token also functions as a “token for tokens”, rendering all the smart tokens in the network
inter-changeable.

Network tokens can be useful for those who wish to create multiple and related smart tokens for
different purposes (e.g. regional network of community currencies, a video game studio with
multiple game credits, a group of independant businesses issuing a joint loyalty program). The
network token model creates synergetic relationships between the member smart tokens,
comparable to the way any single successful Ethereum service can drive up the value of Ether,
benefiting all of its holders.

An additional network token use-case is to interlink a set of token changers, each holding a
reserve in the network token and a second reserve in another, standard token. This structure
would enable exchanging any token in the network to another, while increasing the demand for
the network token whenever a new token changer is created or appreciates.

Advantages of Smart Tokens
Smart tokens introduce multiple advantages over the traditional exchange model:

1. Continuous Liquidity - Since purchasing and liquidating is done through the smart
contract, smart tokens are always liquid, irrespective of their trading volume.

2. No Extra Fees - The only mandatory fees applied by a smart token are the blockchain
platform fees (gas) which are relatively low.

3. No Spread - Since the price calculation is done algorithmically by the smart token, the
same price applies for purchasing and liquidating the smart tokens.

4. Predictable Price Slippage - Smart tokens allow pre-calculation of the precise price
slippage, based on the transaction size, before it is executed.

5. Lower Volatility - A smart token with a 10% CRR (for example) is comparable to an
exchange with 10% of the entire supply of a token in its order-book at all times, forming
substantial market depth. In a typical crypto-exchange, the share of the supply in the
market depth at any given moment is well below 1%. The higher the CRR, the lower the
smart token’s price volatility. The lower the CRR, the more “new credit” is created relative
to the original reserve amount.

6

The Bancor Protocol Ecosystem
Different parties can take on different roles in the Bancor network ecosystem. The primary forms
of participation are as follows:

● End-Users can receive, hold, transfer, request, purchase and liquidate smart tokens.
● Smart Token Creators can issue new, always liquid smart tokens, that may be used for

trading, token changing, as token baskets or as network tokens.
● Asset Tokenizers (e.g. Tether-USD, Digix-Gold) can issue ERC20 tokens representing

external assets, thus enabling smart tokens to use these assets as reserve tokens.
(Existing crypto-exchanges that operate under their local KYC regulations are well
positioned to provide asset tokenization services.)

● Arbitrageurs are organically incentivized to constantly reduce gaps between prices on
crypto-exchanges and the Bancor network. Smart tokens work similarly to exchanges in
that purchasing them increases their price and selling them decreases it, so that the same
arbitrage mechanics and incentives apply.

A Solution to the Coincidence of Wants Problem
The coincidence of wants problem , in the current asset exchange model, creates a situation 5

where assets are required to be traded at a certain minimal volume or else face liquidity risk . 6

The cause for this limitation is that the chance of finding a second party with opposite wants to
exchange with, correlates to the asset’s trading activity level. Smart tokens solve this problem
through the use of reserve tokens which embed market depth directly into the smart token’s
smart contract.

Smart tokens are a technological solution to the coincidence of wants problem for asset
exchange, rather than a labor-based solution as used in traditional (or decentralized) exchanges.
The current laborers in asset exchange are the professional market-makers who provide liquidity
and facilitate collaborative price discovery. In the domains of information exchange and trade, the
technologies of writing and currency replaced labor-intensive solutions (speaking and barter) with
technological ones, creating mass efficiencies for societies and unlocking collaboration on a
global and intergenerational level. The Bancor protocol proposes to similarly advance the domain
of asset exchange by replacing the need for labor with a technological solution to the existing
coincidence of wants problem.

Smart Token Initiation and Customization
New smart tokens can be created simply by depositing an initial reserve/s and issuing the initial
token supply. Alternatively smart tokens can be initiated through a crowdsale, where a part of the
proceeds is allocated as the initial reserve.

5 https://en.wikipedia.org/wiki/Coincidence_of_wants
6 https://en.wikipedia.org/wiki/Liquidity_risk

7

The Bprotocol Foundation
Bprotocol is a Swiss nonprofit foundation whose core objective is the establishment of the
Bancor protocol as a global standard for intrinsically tradeable currencies.

By contributing to the Bprotocol Foundation, users will generate BNT - the first smart token to be
deployed using the Bancor protocol, establishing the BNT network. The Foundation will
collaborate with different contractors to achieve its goals, as well as governments, businesses,
academia and NGOs committed to realizing collaboration potential in communities around the
world.

Bancor Network Token (BNT) - The First Smart Token
The BNT will hold a single reserve in Ether. Other smart tokens, by using BNT as (one of) their
reserve(s), connect to the BNT network using the price discovery method outlined in this paper.
The BNT network will include user-generated smart tokens, token changers (forming a global
decentralized, highly liquid exchange), decentralized token baskets as well as subnetworks.

The BNT establishes network dynamics where increased demand for any of the network’s smart
tokens increases demand for the common BNT, benefiting all other smart tokens holding it in
reserve. Naturally, it is also susceptible to decreased demand. The BNT will be sold in a
fundraiser scheduled for June, 12, 2017 10:00 GMT.

BNT Crowdsale Objectives
● A portion of the funds raised will be used as the Ether reserve for BNT (details on the CRR

will be outlined in the crowdsale launch announcement), enabling continuous liquidity to
Ether for any BNT holder, as well as any holder of a smart token using BNT as a reserve.

● A portion of the funds will be used to develop, promote and support the open-sourced,
blockchain-agnostic, Bancor protocol implementations, and support related technologies
and applications such as an open-source, user-friendly web service (desktop and mobile)
to provide wallet, marketplace, token-conversion, new smart token creation and
crowdsale solutions.

● A portion of the funds will be used to set-up and propel the first batch of token changers
for popular ERC20 tokens, which function as a decentralized solution for token exchange
between all the included tokens. This model introduces key advantages, incentivizing
asset tokenizers to represent additional real-world assets as Ethereum tokens.

● A portion of the funds will be used to participate in and support innovative and promising
future smart token crowdsales in the BNT network. These may include new,
location-based and vertical-specific smart token initiatives such as regional token
networks, community currencies, crowdfunded projects and other online or offline
token-based ecosystems.

8

Examples and Illustrations

Example #1: Smart Token Transaction Flows
In this example, a crowdsale for a new token (BNT) has collected 300,000 ETH.

300,000 BNT are issued at a 1:1 ratio and transferred to the
crowdsale participants. 240,000 ETH were directed towards
funding the BNT project’s development and 60,000 (20%
CRR) were kept in the BNT smart contract as a reserve.

● Purchasing and liquidating BNT becomes possible as
soon as the crowdsale is completed. The opening
price is the last crowdsale price, in this example 1
ETH for the first BNT.

● BNT liquidators get ETH from the reserve of BNT, the

liquidated BNT are destroyed, and the BNT price
decreases respectively.

● BNT buyers get newly minted BNT, their payment in
ETH is added to the smart contract reserve and the
BNT price increases.

The ETH reserve always remains 20% of the BNT market
cap.

Link to Spreadsheet

9

Example #2: Token Changer Transaction Flows
In this example, a “BNTGNO” smart token is created to function as a token changer between BNT
and GNO (Gnosis), holding both in reserve with a 50% CRR each, for a total of a 100% CRR.

Assuming a current market price of 1
BNT = 2 GNO, the contract can
define the initial prices as 1 BNT = 2
GNO = 1 BNTGNO and in this
example, 10,000 BNTGNO are issued
to the depositors of the initial
reserves.

● The opening prices are 1
BNTGNO = 1 BNT = 2 GNO as
was set in the contract.

● The BNTGNO can be
purchased with BNT or GNO.
The BNTGNO price will increase for the reserve token it was purchased with (BNT or
GNO), and decrease in the uninvolved reserve token (due to the increase in the BNTGNO
supply).

● BNTGNO can be liquidated back to BNT or GNO, decreasing the BNTGNO price in the
liquidated reserve token, and increasing it in the uninvolved reserve token.

This scenario demonstrates how a 100% backed smart token with two 50% CRR reserve tokens
can function as a decentralized token changer, open for anyone to use, with its prices organically
balanced by arbitrageurs. Both the token changer and the token basket automatically maintain
their CRR ratios.

Link to Spreadsheet

10

Illustrative Map of a Potential Bancor Network

● BNT - The BNT, backed by Ether
● ETH, DGD, DGX, REP and GNT are standard Ethereum-tokens
● NEW - New smart tokens created (e.g. crowdfunding campaign, a community currency,

etc.)
● Smart tokens hold reserves (arrows point to the reserve tokens)
● Token changers are 100% backed, and hold two or more reserves

11

Price Calculation Per Transaction
The actual price of a smart token is calculated as a function of the transaction size.

R - Reserve Token Balance
S - Smart Token Supply
F - Constant Reserve Ratio (CRR)

● = Smart tokens received in exchange for E (reserve tokens), given R, S and FT

((1))T = S + R
E F − 1

● = Reserve tokens received in exchange for T (smart tokens), given R, S and FE

(1) E = R − √F 1 − S
T

Mathematical proof available 7

Summary
The Bancor protocol standardizes smart tokens, enabling asynchronous price discovery and
continuous liquidity for cryptocurrencies using constant ratios of reserve tokens held through
smart contracts, acting as automated market makers. The Bancor protocol enables the creation
of hierarchical monetary systems with no liquidity risk. The BNT will be used to establish the first
decentralized interconnected currency exchange system which does not rely on matching bid
and ask orders, thus remaining liquid irrespective of its trading volume. This system proposes the
first technological solution for the Coincidence of Wants Problem in asset exchange, enabling the
long tail of user-generated currencies to emerge.

Acknowledgements
We would like to express our gratitude to the many people who supported us as we wrote this
paper. A special thanks to Meni Rosenfeld, Yudi Levi, Amatzia Benartzi, Ron Gross, Assaf Bahat,
Sefi Golan, Joshua Alliance, Brian Singerman, Adi Scope, Dory Asher, Tal Keinan, Wings.ai,
TheFloor, Arie Ben-David from the Israel Monetary Change Movement, Scott Morris of Ithacash
and the Bancor team, Ilana, Asaf, Or, Omry, Itay and Mati. Your support and feedback were truly
important to us in improving this document. Thank you.

7 The mathematical proof is available online at https://goo.gl/HXQBUr

12

Vesper Documentation

Introduction

Vesper provides a platform for easy-to-use Decentralized Finance (DeFi) products.

Vesper's DeFi products deliver ease-of-use in achieving your crypto-finance objectives. The
Vesper token (VSP) is the core economic engine that facilitates the building and expansion
of Vesper’s capabilities and its community.

The Vesper project rests on three pillars:

Vesper Products: At launch, Vesper offers a variety of interest-yielding "Grow Pools" that
enable users to passively increase their crypto holdings by simply selecting the desired
aggressiveness of their strategy and the digital asset held. The Vesper Grow Pools
represent the first product on the Vesper platform. More will be developed and presented
over time.

Vesper Token: VSP incentivizes participation, facilitates governance, and catalyzes user
contribution. Users earn VSP through pool participation and, later, participating in Vesper's
continuous improvement.

Vesper Community: Vesper is building a user community that sustains and grows the
product portfolio, facilitates progressive decentralization, and enables users to build new
products while earning a share of that product's fees.

Medium is best for news and insights. Twitter and Telegram serve as our primary
notification channels. Discord is where most interactions around governance, community,
and development (by the team and community members) will take place.

Vesper Features

Features reflecting the cryptocurrency category's accepted standard and that enable proper
interoperability between our platform and others.

Non-Custodial: Assets are deposited to and deployed automatically via smart
contracts. Users always maintain 100% ownership of their funds and can retrieve them
at any time.
Trustless: Assets are algorithmically deployed through the specifications laid out by
Vesper pool strategy smart contracts.
Permissionless: No signup, whitelisting, account verification, or otherwise is required to
participate in the Vesper ecosystem.
Censorship Resistant: Users can always interact with the smart contracts directly,
which fundamentally cannot be taken down or tampered with.
Open Source: Any developer is welcome to build with Vesper. In fact, it's highly
encouraged and heavily incentivized.
Fraud Resistant: The qualities listed above position Vesper's ecosystem to minimize
the risk of fraudulent activity typically associated with bordered, custodial, trusted,
permissioned, closed source, and censored platforms.
Simple, Easy-to-use: Vesper's user interface was designed to be as seamless as
possible. One-click deposit and withdrawals plus mechanisms to reinvest, stake, and
harvest.
On Ethereum, 'Layer 2 Positive': The Vesper ecosystem is deployed on the base ('Layer
1') Ethereum blockchain, where it can interact with existing DeFi protocols for yield
farming. Layer 2 solutions are under active consideration as potential ways to improve
the efficiency of the platform.

DeFi Primitives

Features representing the mechanics of the DeFi products offered as part of Vesper.

Grow Pools: Grow Pools collect a particular asset (ETH, WBTC, USDC, others) via user
deposits and deploy the capital to other DeFi platforms as outlined by the Grow pool's
active strategies. Yield accrued by these strategies are used to buy back more of the
deposit asset, which is delivered to pool participants.

Staking Pool (planned): Token holders can deposit VSP to the vVSP Staking Pool.
Revenue generated across all Vesper products is used to buyback VSP from the open
market. These tokens are delivered to the staking pool, where depositors earn VSP
interest proportionate to the size of their deposit.
Earn Pools (planned): Mechanically, Directed Pools operate the same as Grow Pools:
deploy deposited assets to defined strategy. However, the yield accrued by Directed
Pools is allocated to some other purpose. Some examples include:

Charity Pools: Yield is delivered to a charitable cause.
VC Pools: Yield is delivered as venture capital to a startup (likely in exchange for
the project's token).
Growth Pools: Yield from deposit token x is used to purchase token y.
Income Pools: Similar to Investment Pools, but yield is converted to stablecoin and
delivered as a passive income.

All Tokens

Features reflecting all tokens in the Vesper ecosystem, including the VSP governance token
and the various tokenized pool shares.

ERC20 Standard: Industry standard for tokens on Ethereum, this enables tokens in the
ecosystem to interact with the existing global DeFi ecosystem (Ex: tradeable on
Uniswap).
EIP-712: All tokens support EIP-712 for sharing data via message signing. This is an
important component of gas-less approvals.
EIP-2612 (Gas-less Approvals): All tokens leverage EIP-2612, which enables gas-less
approvals, with the help of EIP-712. Users can send tokens to any contracts after
signing an approval message, rather than having to broadcast a transaction.
Multi-Transfer: Inspired by Metronome, all tokens feature a mass pay functionality that
enables batched payments in a single transaction.

VSP Token

Features of the VSP token that make it the best token to govern the Vesper ecosystem:

Voting Rights: VSP tokens correspond to the voting weight in the Vesper ecosystem,
which includes deployment of reserves and approval of new strategies.

Delegation: Forked from Compound, holders can delegate their VSP voting weight to
other accounts.
Holistic View: Vesper is a single-token ecosystem, with every product (new and future)
interfacing with VSP. VSP grants voting rights that span the entire Vesper umbrella and
revenue generated by all products are used to buy back VSP off the open market.
Time-Locked Mintage: The Administrative "mint" function is locked for the first twelve
months. This prohibits a supply expansion beyond 10 million until a point in the future
where ownership has fully transitioned to the community of VSP holders, where they
can decide for themselves whether or not to extend emissions.

Pool Share Token

Features specific to the various tokenized pool shares that add value + functionality beyond
the immediate purpose of tokenized stake.

"Lego Brick" Modularity: Vesper pool shares are designed as a modular asset that can
be plugged into other DeFi platforms. Vesper participants maintain liquid ownership of
pool shares and can use them for other functionalities while retaining said ownership.
For example:

Collateral: Vesper pool shares can be applied as collateral to create synthetic
assets or to be posted as collateral to take out a loan. This is similar to how yCRV
is backed by Grow pool shares (yUSDC + yDAI + yTUSD + yUSDT).

Backend Maintenance

Features representing the underlying mechanics that ensure Vesper operates as smoothly
and securely as possible.

Sweeping: This is a contract function that swaps non-native ERC20 tokens and
deposits them back into the Grow Pool. For example, if the strategy interfaces with
Compound, and receives Compound's COMP token, sweeping will liquidate the COMP
and reap the profits from it. This also handles any tokens mistakenly sent to the
contract.
Rebalancing: Pool assets are redistributed (or rebalanced) on activity. This includes, for
example, realizing yield and swapping to deposit asset or adjusting strategy positions
on entry to or exit from the pool.

Pool Strategies

Features that guide Vesper Grow Pools to be profitable, secure, and sustainable.

Risk Scoring: Every Vesper Grow Pool has a conservative/aggressive score that reflects
the overall risk of the strategies employed by the pool including the security of third-
party protocols interacted with, number of contract interactions, and collateralization
ratios on loans (if applicable).
Modular: Grow Pool strategies can be modified to integrate additional or alternative
actions as well as swapped altogether for better strategies. No action is required on the
user's end and funds transition to updated strategies automatically.
Upgradeable: As new and better strategies are proposed within the confines of a pool's
defined risk framework, those strategies can be employed without moving funds.
Multi-Pool: Pool assets can be deployed across n strategies, with any chose
percentage allocated to a strategy (e.g. Allocating 90% of your pool to a Conservative
strategy, and 10% to an Aggressive strategy.)

Upgrades: Upgrades utilize the multi-pool feature to execute a rolling transition
from an old strategy to a new one. (Ex: Start with 1%/99% new/old, then 5%/95%,
etc. up the staircase until 100%/0%.)
Developer Strategies: A pool can support an unlimited number of strategies.
Therefore, developers may spread funds across n pools as a way of testing their
strategy.

Web3 UI

Features pertaining to the Vesper frontend to enable a more seamless experience for users.

One-Click Reinvest: Grow Pool users have the option to reinvest their accumulated
yield. This means either swapping accumulated VSP for the pool asset or sending VSP
straight to the vVSP staking pool.
Multi-lingual Support: Like our pool strategies, website content is modular, and users
can interact with Vesper in their native language. As more translations are compiled,
they can similarly be added alongside available translations.

Participation Rewards

Features that guide how VSP token rewards are allocated to participants.

Merkle Tree Reward: ZK-Rollups and Merkle trees are employed for distributing VSP to
recipients. This enables more sophisticated approaches to VSP distribution (weighted
averages, for example) and also eliminates much of the gas burden typically
associated with claiming rewards.

Vesper Participants

The following terms outline the participants in the Vesper ecosystem and the roles that they
play.

Founders

The team that originally created the Vesper platform. They are compensated with a portion
of the originally minted VSP tokens.

Developers

Developers are Vesper community members who contribute strategies to the Vesper
platform. They are compensated with a percentage of the fees generated within the
strategies they author.

VSP Holders

Members of the Vesper community that hold VSP tokens will be able to cast votes on
proposals and receive a share of Vesper revenue by holding and staking VSP tokens.

Pool Participants

Pool participants are Vesper's core users, making them a critical part of the community
from Day 1. They often hold VSP tokens, but regardless they have an important voice in the
community that is expressed through both their capital allocations and their participation in
community conversations.

Multisig Keyholders

At inception, Vesper pool parameters and contract upgrades are managed by multisig
keyholders, whose members include the founding team and external partners. Multisig
keyholders execute the decisions made by the VSP community.

The initial composition of the Vesper multisig includes founding team members, and will
quickly expand to include external partners. You can learn more about Vesper's
decentralization roadmap in the section on the Decentralization Plan.

Cybersecurity auditors

Before new strategies are deployed to the Vesper platform, they will need to undergo
extensive security audits by professional penetration testing firms. There auditors will be
paid with Vesper reserve funds, and will ensure that new contracts are held to the highest
levels of scrutiny before users interact with them.

 Liquidity Providers

Liquidity Providers assist the Vesper community by providing two-sided liquidity to a VSP
pair on the Uniswap platform.

Vesper Grow Pools

About Vesper Grow Pools

IMPORTANT: DO NOT SEND ANY ASSETS DIRECTLY TO
HOLDING/GROW POOL CONTRACTS

Vesper Grow Pools (introduced as "Holding Pools") combine diverse deposits into a unified
strategy that generates interest to buy back more of the pool’s deposit assets and translate
the accumulation into passive returns for pool participants.

Pools are differentiated by deposit asset, strategy type, and risk level. At launch, there are
three pools supporting conservative strategies using ETH, wBTC, and USDC. More pools
and supported assets will emerge over time, which will be presented to the Vesper
community as beta pools prior to their public unveiling on the Vesper website.

The user experience takes what is, as of this writing, a largely manual and time-consuming
process and reduces user-facing complexity to:

1. Select strategy.
2. Select Pool.
3. Deposit crypto asset, such as ETH, wBTC, or USDC.

Understanding Vesper Grow Pools

Unlike other yield farming contracts, Vesper Grow Pools emphasize the deployment of
deposited assets into third-party DeFi products that generate interest with the goal of
growing those deposited assets.

Funds in Vesper pools are used to borrow, lend, and farm yield across various DeFi projects.

Users will select a pool that gives them the asset they want and fits their risk tolerance.

Vesper Pool Mechanics

Vesper Grow Pool Structure

The Grow pool has three main modules: Collateral, Strategy, and Action.

Collateral is where funds are handled when they are deposited and withdrawn. It reflects
the contract calls required to move deposits to where they will earn yield. This may be
lending platforms like Maker, Aave, or Compound. The process of withdrawing funds
through the collateral module can require more effort than depositing them. If the pool is
taking out loans with the pooled asset (ETH for example), a partial refund of its
outstanding loans may be required before a withdrawal can be executed. This may lead to
rebalancing, described below under the heading 'Rebalancing Pools'.

The Strategy module deploys capital to generate interest. Depending on the pool, this
module could look simple (take out a loan and deposit it somewhere else) or complicated
(fractional loans for compounded interest). The strategy might only use the deposit asset
deposited in full to an interest-earning DeFi protocol.

Interest accrued is goes into the Action module. The action module determines how often
to claim interest, and whether to move that interest to the strategy module to be redeployed

for further yield, or to take the deposit asset off the table by feeding it back to the collateral
module to withdraw it.

Using Vesper Pools

Vesper Grow pools are designed for accessibility. Connect your wallet (e.g. MetaMask) with
any of the available deposit assets, and make your deposit through the Vesper web
interface. When you deposit, you’ll receive a vToken that represents your stake in the pool
(e.g., deposit ETH and get vETH). As the pool accrues profit and purchases more of its
asset, that tokenized stake will grant more of the underlying asset.

To exit the pool, simply send your vToken back, and you will receive the underlying asset.
While your funds are in the pool, you are free to move your tokenized stake to other wallets
you control, perhaps to deposit it into another interest-generating strategy.

Fees

The fees work as follows:

There is no fee to deposit into Vesper pools (beyond Ethereum gas fees).
There is a 0.6% withdrawal fee when exiting the pool.
There is a 15% platform fee collected from accumulated yield.
For strategies, 5% of that 0.6% withdrawal fee and 15% platform fee is allocated as the
Developer's Fee. This is paid to whoever built that strategy. (More in "Developer
Incentives.").
95% of the accumulated fees are sent to the Vesper Treasury Box. The treasury will
convert pool shares to buy-back VSP governance tokens off the open market. VSP
tokens that are bought back are distributed to the vVSP vault stakers.

Rebalancing Pools

Certain Vesper Pool strategies take advantage of peer-to-peer lending platforms (Maker,
Aave, or others) which offer over-collateralized loans. Rebalancing maximizes the loans
taken out while remaining within the bounds of safety.

Rebalancing works as follows:

Each pool has a 'high water' and 'low water' collateralization percentage that correlates
to the collateralization requirements enforced by the lending platform.
There is a RebalanceFriction administrative parameter that protects the pools from

excessive rebalance calls.
Any member of the public, user or not, may call the rebalance function every
RebalanceFriction number of seconds. When the rebalance function is called, if the

assets are in 'high water', more loans are taken out. If the pool is at 'low water', some of
the loan will be returned to partially close out the loan.
This rebalance function also claims interest, and swaps interest to collateral tokens.

Collateral Management

In order to maximize profit while avoiding unnecessary liquidation fees, Vesper pools utilize
the rebalancing high water and low water variables to guide collateral management.

When users deposit to the pool, their assets are posted as additional collateral as outlined
by the strategy, enabling the pool to take out more loans. Likewise, withdrawals remove
collateral. Whenever users interact with the pool, or the pool takes profit, it determines the
current collateralization ratio and compares it to ratios marked as the high water and low
water marks.

If the pool's collateral is at or below the 'low water' ratio, some capital is returned in order to
partially close the loan, increasing the collateral relative to the outstanding loan and
reducing risk.

Conversely, if it is at or above the 'high water' level, additional loans are taken out.

Rebalance Mechanics

Users are incentivized to call the rebalance function to maintain the health of the pool's
outstanding loan portfolio (if applicable to the strategy). The initial three conservative pools
use 250% and 275% collateralization benchmarks as the boundaries for low water and high
water variables, respectively.

When the collateral on outstanding loans is >275% at time of call, additional loans are
taken out to bring the collateral ratio back down. If outstanding loans are <250%

collateralized, then the loans will be partially repaid to bump the ratio up into a healthy
midpoint between low water and high water.

Strategies

Each Vesper Grow strategy represents some combination of interactions across various
DeFi platforms. This includes, but is not limited to: MakerDAO, Aave, Compound, and Yearn.

Each strategy is differentiated by:

Deposit asset (that is, the token you can deposit into the pool, such as ETH, wBTC, etc.)
Contract risk level
Susceptibility to realized losses

Strategies are classed as medium-risk or high-risk. The risk level reflects the level of safety
with regards to the underlying contract interactions. Medium-risk strategies have fewer
interactions with safer, audited platforms. (These strategies are considered 'medium' rather
than 'low' risk because nothing within the cryptocurrency or DeFi category is truly low-risk.)
High-risk alternatives may reflect a higher number or more complex interactions as well as
exposure to unaudited contracts, such as Yearn.

Lastly, strategies are classed as Conservative or Aggressive depending on their likelihood of
realizing losses. This primarily refers to the susceptibility of outstanding loans to
liquidation. Conservative strategies use higher collateral ratios on loans to better protect
against 'black swan' events that can jeopardize the loan.

Maker-to-Lending-Platform Strategy

One strategy that may be utilized by the first pools involves MakerDAO plus either Aave or
Compound. This strategy operates as follows:

1. The pooled asset is deposited to a Maker vault as collateral
2. DAI loans are taken out against the collateral
3. DAI is deposited to Aave or Compound, where it generates interest
4. The interest is withdrawn and

1. Swapped on the open market back for the deposit asset
2. Redeposited to Aave/Compound for compounding returns

This strategy is medium-risk. It can be deployed as either aggressive or conservative,
depending on the low-water and high-water collateralization benchmarks. At launch, all
three pools are conservative with a low water mark of 250% and high water mark of 275%.

Direct-to-Lending-Platform

Some assets will earn higher APY if deposited straight to lending platforms (Aave and
Compound) rather than deposited to Maker for a DAI loan.

This more straightforward strategy comprises of the following:

1. Deposit 100% of the pool asset straight to Aave or Compound (wherever yield is
highest)

2. Claim-and-redeposit interest as it is accrued

This is a medium-risk, conservative strategy; the contracts it interacts with are well
audited, and the collateralization ratios are conservative.

It could be used as a launchpad for more aggressive strategies, by using the deposits to
Aave/Compound as collateral for loans which are then deployed in other interest-yielding
platforms.

Audits & Due Diligence

Security Audits

Vesper Pools have undergone two rounds of independent audits from Coinspect and Certik.

Vesper Pool Contracts

Always interact with Vesper via the Vesper web application. Do not attempt to
interact with the Vesper contracts directly.

Vesper pool contract addresses can also be found in our GitHub repository.

Administrative Contracts

Contract Contract Address

VSP Token 0x1b40183EFB4Dd766f11bDa7A7c3AD8982e998421

Collateral Manager 0x8d0b8e2b5584cE1487317f81Da7d97397eF3e899

Controller 0xa4F1671d3Aee73C05b552d57f2d16d3cfcBd0217

Revenue Splitter 0x097ee00F42f9D7512929A6434185Ae94aC6dafD7

Governance and Revenue Pool

Pool Contract Address

vVSP 0xbA4cFE5741b357FA371b506e5db0774aBFeCf8Fc

Grow Pools

Pool Pool Contract Address

vDAI 0xcA0c34A3F35520B9490C1d58b35A19AB64014D80

vETH 0x103cc17C2B1586e5Cd9BaD308690bCd0BBe54D5e

vWBTC 0x4B2e76EbBc9f2923d83F5FBDe695D8733db1a17B

vUSDC 0x0C49066C0808Ee8c673553B7cbd99BCC9ABf113d

Strategies

Pool Strategy Strategy Contract Address

vDAI Compound 0xC80573C8D53Ea1bBa1ED505BBB537DCd4adb9067

vETH Aave-Maker 0x2010741f855d3CF16FD60e9cce14AF6DE9b526ff

vWBTC Aave 0x949424E8ef3A9fB1859e4A2fEA8b891bc4D28385

vWBTC Aave-Maker 0xa3F6Ea08d4083095ec4c363d9cBc629b85029490

vWBTC Compound 0x040865b75B176278857F459E940b1b8dBF02B62f

vUSDC Aave 0x3a51F72104fd7c9257730C437B250E99516202Fc

vVSP vVSP Strategy 0xfd61f9C0796D917466E3aB5f2A40984Fc15794B6

Pool Rewards

Pool Rewards Contract Address

vETH 0x93567318aaBd27E21c52F766d2844Fc6De9Dc738

vWBTC 0x479A8666Ad530af3054209Db74F3C74eCd295f8D

vUSDC 0xd59996055b5E0d154f2851A030E207E0dF0343B0

GYSR Contracts

Platform GYSR Contract Address

SushiSwap 0xE07141Bd2De713dF96EA30bFf73eD64fdE560595

Uniswap 0xFc064D2f178f95C86F0901B1700CD99d01968b44

Discussion of Risk

The primary risk faced by Vesper pools is a 'black swan' event, where a pool's underlying
asset sees a rapid flash crash. In extreme cases, the debtor will not be able to modify their
loan fast enough to avoid liquidation. This is a broader risk that affects DeFi lending
protocols as a whole.

In the worst case scenario, a partial liquidation is enforced by the lending protocol. For
example, Maker currently carries a 13% fee on the capital liquidated. This would reflect a
loss to pool participants.

Vesper pools rebalance their loans algorithmically along parameters specified by each pool.
Conservative and Aggressive pools are differentiated by the benchmarks used to take
additional loans (when sufficient capital is deposited or the underlying asset appreciates)
and partially refund outstanding loans (when capital is removed or the underlying asset
depreciates). In this sense, users can further mitigate the risks outlined above by electing to
participate in Conservative variants of each pool. (Note that only Conservative pools will be
available at the beta launch, with more pools following.)

This risk is further mitigated by the stablecoin offerings. There is no 'volatility' risk with
stablecoins apart from the doomsday scenario in which they lose their peg. Such an event
would be wholly unrelated to the Vesper ecosystem.

Medium-risk pools only interact with Maker and Aave (and possibly Compound), but high-
risk pools may interact with Yearn vaults or directly with other yield farming protocols.
These funds are at risk if those protocols are exploited or hacked.

VSP Economics

VSP Token: Supply, Issuance, & Rewards

In addition to the yields generated by the pools, users can also earn the native VSP token.
Users earn VSP tokens in three ways: participating in Vesper pools, providing liquidity, or
staking VSP. These are described below.

VSP are dripped to users (a little is issued to them every block), and held by the smart
contract until the user withdraws from the pool, which triggers the contract to deliver the
VSP to their address.

Earning VSP: Vesper Grow Pools

Each Vesper Grow pool is assigned an amount of VSP tokens, and these are distributed to
participants proportionate to size of their stake in the pool. Initial pools are incentivized for
twelve months after launch.

These VSP tokens are an extra reward on top of the passive yield the pool generates.

Earning VSP: Staking VSP in the vVSP Pool

Users can deposit their tokens to the VSP treasury pool. Just as depositing your ETH in the
ETH pool creates vETH, depositing VSP tokens in the VSP treasury creates vVSP.

After withdrawal and yield fees are collected in the pool (ETH, BTC, USDC, etc.), they go to
the Treasury Box and are used to buy back VSP on Uniswap. This VSP is delivered to vVSP
pool participants as yield on their deposit.

Earning VSP: Liquidity Provision

In addition to VSP farming on Vesper pools, liquidity providers to VSP-ETH market pairs can
also earn VSP rewards when they stake their tokens into the corresponding Vesper liquidity
pool.

The token pairs will be incentivized for the first twelve months. Any extensions beyond the
first twelve months will be decided upon by VSP holders.

Supply Dynamics

At launch, Vesper will have a total supply of 10,000,000 VSP:

6.5M VSP (65%) goes to the community, which includes 2.55M for the Incentivized
Launch Pools, 1M to incentivize liquidity providers, and 2.95M to the Vesper Reserves.
3.5M VSP (35%) is for Vesper team, advisors, and strategic partners, which is subject to
vesting over twelve months.

The initial policy is to keep the supply at 10 million. Twelve months following public launch
(after open beta), the community may vote on whether to burn the admin keys and fix the
supply at 10 million forever, or, assign minting ability to a DAO for future management. It is
up to the community to decide whether limiting future minting benefits the overall Vesper
project. For the first 12 months, any amount of VSP beyond 10 million is locked.

Beta Program

Before the official Vesper launch, there will be a brief beta program where users can deposit
funds and participate in the initial Vesper pools. There is no active VSP drip during the beta
(as there is after), but average balances across the entire period will be recorded and beta
users will receive VSP proportionate to their deposited assets after the conclusion of beta.

450,000 VSP is allocated as beta rewards to be distributed to early users of Vesper's open
beta. These rewards will be delivered as a multi-send airdrop to each beta participant's
wallet on launch day. No further actions are required for beta participants to be eligible.

Token Emissions

Please note that these emissions are not finalized, and may be subject to change at the
discretion of the community. (For more on Vesper’s governance, refer to the
documentation’s chapter on Vesper’s decentralization plan.)

Launch Pools (2,550,000 VSP)
450,000 allocation to pre-launch Beta participants, airdropped at launch
2,100,000 over twelve months, heavily weighted towards the first three months

Reserves (2,950,000 VSP)
Reserves for ecosystem growth and developer/community incentives, as
determined by VSP voters

Liquidity Providers (1,000,000 VSP)
Incentivization for LPs on Uniswap, SushiSwap, 1inch and Loopring (with
SushiSwap retaining majority)
1,000,000 distribution over 12 months, heavily weighted towards the first month
(and more acutely — the first weeks)

Team and Advisors (2,500,000 VSP)
208,333 (1/12) unlocked at launch
2,291,667 (11/12) vested with streaming unlock (constant drip each block) for
eleven months following launch

Strategic Partners (1,000,000 VSP)
83,333 (1/12) unlocked at launch
916,667 (11/12) vested with streaming unlock (constant drip each block) for
eleven months following launch

Emissions Breakdown

SushiSwap LP rewards for the first month were distributed via Geyser (gysr.io). Months 2-
12 are distributed through a merkle claims process at Pure Finance for liquidity providers
who deposit their LP tokens to SushiSwap Onsen (thus receiving $SUSHI rewards as well).

Uniswap LP rewards are distributed via Geyser for the full twelve month duration following
the schedule below. You can interact with the Uniswap Geyser here.

1inch LP rewards are distributed through 1inch multi-farming support for those who deposit
to 1inch VSP-1inch LP farming. They receive VSP in the same manner as they received
1INCH initially, and 1inch team also has the opportunity to extend their supplied 1inch
rewards as well.

Loopring LP rewards are handled through Loopring directly. VSP is rewarded to market
makers on the orderbook exchange and follows a formula that multiplies the volume of a
user’s buy/sell orders by time-spent within 2% of the market price. You can learn more
about Loopring’s orderbook liquidity mining in the post here.

Additionally, users can earn LRC when they trade across the VSP-ETH AMM. A VSP/DAI
orderbook will be included soon as well.

Note that the sum of SushiSwap and Uniswap LP rewards is 1,000,000. The additional
107,800 VSP across 1inch and Loopring was funded out of the reserves allocation.

Team, Advisor, and Partner tokens are held in a Sablier contract. Recipients can interface
with the contract to claim VSP as frequently or as seldom as they prefer. They receive 1/n
of their total VSP allocation over the entire n blocks of their vesting period.

Below outlines VSP emissions. Several assumptions are made:

All tokens are claimed as soon as they are available.
No additional VSP is granted from reserves.
Existing reserve holdings are not counted towards emissions.

TOTAL Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Team 2000000 333334 166667 166667 166667 166667 166667

Partners &
Advisors

1500000 250000 125000 125000 125000 125000 125000

vETH 700000 125,000 150,000 100,000 60,000 45,000 35,000

vUSDC 700000 125,000 150,000 100,000 60,000 45,000 35,000

vWBTC 700000 125,000 150,000 100,000 60,000 45,000 35,000

Sushi 600000 111000 75000 69000 54000 48000 36000

Beta
Rewards

450000 450000 0 0 0 0 0

Uniswap 400000 74000 50000 46000 36000 32000 24000

1inch 100000 0 16666 16666 16666 16666 16666

Loopring 7800 1300 2600 2600 1300 0 0

Cumulative 7157800 1594634 2480567 3206500 3786133 4309466 4782799

VSP Liquidity Pools

Platform Pool

SushiSwap VSP-ETH

1inch VSP-1INCH

Uniswap VSP-ETH

Loopring VSP/ETH

Revenue Model

Grow Pools

Fees

There is a 0.6% fee on withdrawals, and a 15% platform fee on yield.

For community pools, a 5% share of both of these fees goes to the developer who authored
the strategy. This is paid in the pool’s asset.

The fees are then directed to the Vesper Treasury Box.

Say a community pool has $50 million in total withdrawals and $5 million in accumulated
yield. This pool would pay a 0.6% withdrawal fee ($300,000), and a 15% platform fee
($750,000), for a total of $1,050,000. Of this $1,050,000, the Developer would get five per
cent – $52,500 – and the remaining $997,500 would go to the treasury. That $997,500 is
converted to VSP via open market buy-backs (see the algorithm explained below), and
100% of that VSP is distributed to vVSP pool participants.

Incentives

Any user may trigger a Rebalance-Collateral operation, to address pool-wide systemic risk
and generate additional stablecoin yield. If collateral price falls below Low Water, this
operation will prevent liquidation. If collateral price rises above High Water, this operation
will generate additional DAI, which, in turn, generates more yield for the entire pool. Users
have the incentive to use this to earn maximum yield and avoid liquidation.

Any user may trigger a Rebalance-Earned operation. This operation swaps earned
stablecoin interest for underlying collateral (e.g. DAI to ETH), and adds this collateral to the
pool's holdings. Users have the incentive to not call the operation, as the longer the
collateral stays in there, the more yield it earns. Balancing that, they have the incentive to
call the operation prior to withdrawal, to maximize the amount of collateral in pool, to
maximize their share of collateral withdrawn.

Treasury Income

Summary

The Vesper Treasury earns the 0.6% withdrawal fee and 15% platform fee described above.
Additional income occurs periodically via partnership incentives such as liquidity mining.

All Vesper pools send pool shares to the vVSP pool. These pool shares are distributed
according to an algorithm described below. This algorithm will initially be set by the
founders, and later transitioned to community control.

Current Algorithm

Once a day or more, the vVSP rebalance operation liquidates the next-in-line pool shares to
VSP tokens. One pool's shares are liquidated at a time in a round-robin fashion. The
frequency of conversion is determined by how quickly the treasury grows (more shares =
more frequent conversion). Example: 12.5 vETH tokens unwrap to 15.25 ETH, swapped to
18.9 VSP via Uniswap. Keep in mind that the treasury funds represent the 95% remaining
after 5% to the pool's Developer.

That 18.9 VSP is deposited into the vVSP pool, increasing the total value of all vVSP tokens
by increasing the NAV of the vVSP pool.

Community Growth Engine

The Vesper project and community are tied together by the VSP token.

At launch, 10,000,000 VSP tokens will be minted, and allocated almost entirely to
community-focused efforts. In the short term, 3,400,000 of these funds will be allocated to
product and liquidity provisioning incentives.

In the long term, the community reserves (3,600,000 tokens) combines with community-
defined level of VSP revenue from the VSP vault. These VSP tokens will be held in a
community vault, to be used to create a continuous cycle of bootstrapping new products
with VSP incentives, which in turn benefits the VSP token, which generates funds to
bootstrap yet more products.

Community Participation & Governance

Decentralization Plan

At launch, Vesper network governance relies on a strong social contract between
the founding team and stakeholders. Over time, the Vesper platform will mature
to become entirely community-driven. This means that Vesper stakeholders will
eventually be in total control of the future of the product ecosystem. From Day 1,
the long-term objective is to develop a robust decentralized community of which
the founding Vesper team only accounts for a small minority of the decision-
making authority.

Across all phases of decentralization, we have a firm commitment to engaging
with VSP holders and community members on all major changes and updates.

Overview

VSP is the platform’s governance token, which gives token-holders the ability to participate
in on-chain votes on new pool strategies and other platform decisions. This section
addresses how members of the Vesper community might use their tokens in this manner.

Governance Phases & Rationale

Vesper Governance is derived from the Compound governance module, a tried-and-true
framework that has become familiar to the DeFi community. From Day 1, the founding
team will begin relinquishing control over Vesper operations through phases of progressive
decentralization, and will strive for the highest standards of communication and
transparency.

Transitioning to Community Governance

Many DeFi projects have experienced early 'growing pains' when initiating community
governance. We hope to mitigate this friction with an iterative transition to community
governance.

1. For the first 2-6 months, ownership functionalities will be retained by the team’s
multisig in order to upgrade strategies, introduce new pools, allocate VSP rewards, and
so on.

2. After 2-6 months, governance responsibilities will be transferred in full to holders of
vVSP in the vVSP vault.

3. At the end of that 2-6 month period, the Founding Team will stake 1,000,000 VSP from
the community reserve to the vault. This will mint vVSP 'receipt tokens' as a
'governance bootstrap' to ensure quorum and good governance principles are met. The
voting power of those tokens will be initially delegated to the Founding Team's multisig.
As the 1,000,000 VSP that created these voting tokens are unstaked, they will be
deposited back into the vault for the benefit of the other vVSP holders.

4. Over the course of one year after the governance module is launched, vVSP delegated
to the Founding Team will be forfeited quarterly, so that 100% of the control will be in
the hands of the community at the end of this one-year period.

We expect the community’s voting power to exceed that of the team by Month Six.

The revenue generated by the reserve fund is 'community property' and is sent back to the
other vVSP holders. The flow of assets will be very visible/auditable to the community.

Votes can only be cast by vVSP token-holders. The vote passage/approval requirements
are as follows:

Action Threshold

Bring a proposal
to vote

Submitters must have the delegation of at least 1% of the
outstanding vVSP supply.

Voting - Reach
Quorum

4% of the outstanding vVSP supply must vote ‘Yes’ on the proposal.

Voting - Vote
Passes

A minimum of 50%+1 of votes cast with a minimum of 4% of vVSP
supply as ‘YES’ votes .

Voting & Participation

Participants can engage with the Vesper community by proposing, developing and
assisting Vesper Improvement Proposals [VIPs], casting votes on VIPs, and sharing their
opinion in our community chats. (See "The Voting Process.")

The Voting Process

All vVSP tokens are eligible to participate in Vesper governance votes. VSP stakeholders
can acquire vVSP by staking their tokens in the vVSP Vault.

Vesper Improvement Proposals (VIPs) are submitted by community members. One function
of VIPs will be for adding new, community-built strategies to the platform.

 Every Vesper Improvement Proposal must be accompanied by executable code and framed
in a Yes/No format. It may include no more than 10 contract actions.

 In order for a Vesper Improvement Proposal (VIP) to be brought to an on-chain vote, the
proposer must either hold 1% of the vVSP in existence, or get others to delegate their vVSP
to reach the 1% necessary.

 When a proposal vote is formally initiated, the voting period will begin. The voting period
will last for 17,280 blocks, which is roughly 3 days.

 In order for a Vesper Improvement Proposal to succeed, it must meet thresholds for
quorum and passage:

1. For a proposal to reach quorum, 4% of the outstanding vVSP supply must vote 'Yes' on
the proposal.

2. For a proposal to pass, after reaching quorum, at least 50%+1 of votes cast must vote
‘Yes’ on the proposal, and the 'Yes' votes must total a minimum of 4% of the vVSP
supply.

Below are examples of different governance scenarios to further illustrate the process:

If 5% of the outstanding vVSP supply votes 'Yes', and 6% of the outstanding supply
votes 'No' (meaning 11% of the outstanding supply participated), the vote would fail
because, while quorum was met, there were more 'No' votes than 'Yes' votes.
If 4% of the outstanding vVSP supply votes 'Yes', and 3.5% of the outstanding supply
votes 'No' (meaning 7.5% of the outstanding supply participated), the vote would pass
because quorum was met, and there were more 'Yes' votes than 'No' votes.
If 3% of the outstanding vVSP supply votes 'Yes', and 2% of the outstanding supply
votes 'No' (meaning 5% of the outstanding supply participated), the vote would fail

because, while there were more 'Yes' votes than 'No' votes, the quorum requirement of
4% 'Yes' votes was not met.

vVSP tokens can be delegated to another account, lending their voting power to that
account.

Governance Principles

The founding team will always provide the community answers to these basic questions
for every material decision the team makes:

What decision has been made?
Why was that decision made?
Who is impacted by the decision?
When is the decision going into effect?
How can the community provide feedback and voice their opinion?

Founding Principles

As with other projects in the DeFi space, Vesper's governance will emerge from community
collaboration and participation. We begin the project with a few simple governance
principles:

Any and all material changes to Vesper products and VSP should be proposed in
public, with code, with appropriate time for community feedback.
We believe that a responsible yield farming network can remain in the founding team's
hands for the initial phase only, until power can be transferred to the community. Our
roadmap for progressive decentralization outlines our strategy for transitioning to fully
autonomous and decentralized decision-making.
We believe a successful governance system should minimize the time and cost
necessary for a person or entity to participate in governance. We will explore gas-
efficient methods of voting like Layer 2 scaling solutions to reduce costs associated
with voting.

Vesper Developers

Developer Incentives

Any member of the community can create and propose new Earn pool strategies and earn
revenue for life in doing so. We refer to these people as Developers.

The process works as follows:

1. The Developer creates their pool strategy
2. They propose the strategy to the Vesper DAO
3. The strategy is approved and implemented by the DAO
4. The Developer who authored the strategy earns a cut of the revenue (forever)

When the pool goes live, 5% of all revenue it generates goes to the Developer as a reward.
Revenue is made up of the 0.6% withdrawal fee and 15% platform fee on yield accrued on
assets deployed by the strategy. More detail under Revenue Model.

Vesper Improvement Proposal Template

Vesper Improvement Proposals (VIPs) can be submitted at [GitHub Link].

VIP-000: Title

A VIP number, like VIP-001 , will be assigned and the proposal author should give it a

short, descriptive title.

Summary

In easy-to-understand language, describe the purpose of your proposal and what it intends
to achieve for the Vesper network.

Abstract

Briefly describe what the proposed change will do.

Expectations

Detail the expectations and assumptions behind the VIP's proposed contract. This is the
qualitative and quantitative rationale behind the contract's strategy.

Specification

In detailed, technical language, describe the inner workings of your proposed contract.

Test Cases

Describe how other implementations or back-tests of this contract performed.

FAQ

What is Vesper?

Vesper is a platform of DeFi products designed for ease-of-use, longevity, and scale. It is a
comprehensive ecosystem governed by the VSP token.

Vesper Grow

What are Vesper Grow Pools?

Vesper Grow Pools are algorithmic DeFi lending strategies. They pool capital from a group
of users and deploy it to generate interest across various DeFi protocols. Accrued interest is
used to buy back the pool's deposit asset (which may be ETH, BTC, USDC, or something
else), and award it as interest to participants.

How do I interact with Grow Pools?

All you have to do is choose the pool you are interested in and deposit your asset. One
transaction, and the pool does the rest. Similarly, you can withdraw your funds and claim
your interest with one transaction.

What Grow Pools are available today?

As of the launch there are three pools: ETH, BTC, and USDC. We will frequently offer trial
pools to the community before they go prime-time on the Vesper website.

Has the code been audited?

Yes. The code has undergone two independent audits by Coinspect and Certik. See the
Audits and Due Diligence section for more details.

What is the benefit to depositing my funds in an Grow Pool?

Grow Pools deploy your assets into DeFi lending strategies. You can choose a pool based
on your risk tolerance and desired token. This reduces a process that typically comprises
more than a dozen fee-extracting transactions, hours of research, and constant monitoring
down to a one-time deposit and withdrawal.

Additionally, Grow pool participants farm VSP tokens, further rewarding users with even
greater passive returns, catalyzing participation, and forming the basis for progressively
decentralized governance.

What happens to my funds after I deposit them in a Grow pool?

Deposits are pooled and deployed through the strategy outlined by the particular Grow pool.
See the Strategies page for more information on what that strategy may look like.

Is there any risk associated with Vesper Grow pools?

Grow pools that interface with loans are at risk in the event of a so-called black swan event,
such as when a pool asset sees a flash crash in a short amount of time. In this event, the
pool's outstanding debt position may become under-collateralized, leaving the lender
insolvent, and the pooled funds may be hit with a liquidation fee, which could translate into
a loss to the participant.

Each token supported offers a pool that pursues conservative and aggressive strategies.
Conservative pools use higher collateralization ratios and are therefore less vulnerable to
such a risk – but not completely immune.

Additionally, Grow pool strategies are only as safe as the platforms they interact with.
Medium-risk pools only interact with blue-chip DeFi protocols like Maker, Aave, and
Compound, but high-risk pools may interface with newer and less established alternatives.

What are the fees?

There is a 0.6% fee on withdrawal from Vesper Grow pools, and a 15% platform fee on yield
generated by the deposited assets.

Where do the fees go?

The platform fee and withdrawal fee are both taken in the form of pool shares, and
delivered to the Treasury Box. They continue to earn yield as any pool share would, until
they are converted to VSP tokens by selling them on the open market via an AMM like
Uniswap or SushiSwap. These VSP go to the vVSP pool to be distributed to vVSP holders.

VSP Token

What is the VSP token?

VSP is the governance token that serves as the basis for the Vesper ecosystem. VSP
holders can vote on proposals, and additionally deposit their tokens to passively
accumulate more VSP.

How do I earn VSP tokens?

There are three ways to earn VSP tokens:

Participating in Vesper pools. Each pool is assigned an amount of VSP tokens that are
distributed to participants proportionate to size of stake. Initial Grow pools are
incentivized for three months after launch.
Providing liquidity. Liquidity Providers to the VSP-ETH Uniswap pair are incentivized
with VSP similarly to the Grow pools. The trading pair is incentivized for one year after
launch.
Staking your VSP. Users can deposit their tokens to the VSP treasury pool. A small
percentage of withdrawals are allocated to the treasury box, and those funds are used
to buy back VSP and award to pool depositors.

How will I receive my VSP tokens?

VSP tokens are 'dripped' to pool participants, and held by the smart contract until they
broadcast a transaction to exit the pool, whereupon the VSP is delivered to their address.

What is the vVSP Pool?

The vVSP pool is a revenue-sharing mechanism. It rewards VSP holders with additional
VSP when they deposit their tokens in it.

Just like the other pools, where you deposit ETH to get vETH, or USDC to get vUSDC, you
can stake VSP and you will get vVSP, a tokenized share of the vVSP pool.

After withdrawal and yield fees are collected in the pool (ETH, BTC, USDC, etc.), they go to
the Treasury Box and are used to buy back VSP on Uniswap. Of this VSP, 5% goes to the
project's founders, and the rest is delivered to vVSP pool participants as yield on their
deposit.

Governance

Who makes decisions about what happens with Vesper?

Initially, the founding team will govern the project. This is a hard decision to make, but
seeing how other tokens have had widespread difficulties with community governance on
Day One, the safest route seems to be keeping Vesper under our wing immediately after
launch. As the Vesper ecosystem matures, governance will soon be turned completely over
to the community. See the Decentralization Plan and Roadmap page to learn more.

Who governs the Treasury Box?

Just like other Vesper pools, the Treasury Box has an algorithmically-enforced strategy. At
launch, the multisig signers from the Vesper team have jurisdiction to make changes to the
treasury strategy. As Vesper transitions to community governance, changes to the strategy
are proposed and deployed in the same manner as any of the Vesper pools.

Can I propose new products or strategies to be added to Vesper?

New products and strategies can be proposed by any holder with 1% of the issued vVSP
supply. You can hold these VSP tokens yourself, have other VSP holders delegate tokens to
table your proposal, or a combination of both.

On day 1, before any meaningful portion of the supply has been issued, proposals will be
initiated by the Vesper team. We are eager to transition to community governance, at which
point VSP community members will be able to create a formal proposal for a new strategy,
product, or change to the ecosystem. The sky's the limit to how many assets and strategies
can be deployed, and we are excited to see what the community comes up with.

How do I vote?

All vVSP tokens are eligible to vote. Users can acquire vVSP tokens by staking their VSP in
the vVSP Vault. All Vesper Improvement Proposals (VIPs) that are backed by 1% of the total
vVSP supply will be voted upon by the the community of vVSP holders. You can learn more
about the voting process in the Voting and Participation section.

Glossary of Terms

Medium-Risk/High-Risk – Refers to the security of the Vesper Grow Pool strategies.
Medium-risk strategies have less steps and fewer asset conversions. Additionally, medium-
risk strategies only interact with audited and highly secure third party contracts.
Alternatively, high-risk strategies are more complex in terms of the underlying contract calls
and may interact with unaudited protocols, such as Yearn vaults. (There is no 'low-risk'
designation because we believe that labeling anything as low-risk in crypto is
disingenuous.)

Conservative/Aggressive – Refers to how prone a Vesper Pool strategy is to realizing
losses due to partial liquidation. Conservative pools adhere to higher collateralization ratios
than aggressive pools, and as such are better protected in the event that the pool's deposit
asset sees a rapid loss in value (thus putting the outstanding loan underwater and in
danger of liquidation).

Low Water/High Water – Vesper Pools that deposit assets to MakerDAO in order to
withdraw DAI loans adhere to low-and-high water collateralization targets. If the ratio of
collateral to the outstanding DAI loan falls below "low water", the loan will be partially
refunded to increase the ratio. If the ratio is above the high water benchmark, additional DAI
will be taken out to shift the ratio below "high water".

Black Swan Event – Extenuating circumstance where a drastic "flash crash" in the price of
an asset causes financial products interfacing with the asset to breakdown. In the world of
cryptocurrency, this looks like a substantial crash in Ethereum, BTC, or other collateral asset
that leads to mass liquidations. The danger is compounded with low scalability making it
difficult or impossible for debtors to service their loans in order to avoid liquidation.
Vesper's additional low/high water mechanism further insulates Grow Pools from the
detriments of a potential Black Swan.

Rebalance-Collateral – Any user may trigger this operation to address pool-wide systemic
risk and generate additional stablecoin yield. If collateral price falls below Low Water, this
operation will prevent liquidation. If collateral price rises above High Water, this operation
will generate additional DAI, which, in turn, generates more yield for the entire pool. Users
have the incentive to use this to earn maximum yield and avoid liquidation.

Rebalance-Earned – Any user may trigger this operation to swap earned stablecoin interest
for underlying collateral (e.g. DAI to ETH), and add the purchased collateral (e.g. ETH) to the
total pool holdings. Users have the incentive to not call the operation, to maximize
stablecoin deployed earning yield. Users have the incentive to call this operation prior to
withdrawal, to maximize amount of collateral in pool, to maximize share of collateral
withdrawn.

Rebalance – Every six hours, the vVSP operation chooses the largest-valued pool shares in
its inventory, and liquidates that to VSP tokens. Example: 12.5 vETH tokens unwrap to
15.25 ETH, swapped to 18.9 VSP via Uniswap. The VSP tokens acquired during the
rebalance operation are then split.

Developer's Fee – The 5% share of the fees taken by pools (as withdrawal fees and
platform fees) that is allocated to the author of the strategy.

vVSP Pool – VSP holders deposit their tokens to the vVSP Pool in order to "stake" VSP.
Revenue generated by Vesper products is used to buy-back VSP from the open market,
where it is delivered to stakers as deposits to the vVSP Pool, where it is distributed to
stakers in proportion to their tokens staked versus total pool size.

Treasury Box – Fees taken from Vesper products (pools or otherwise) are taken as
tokenized shares. The treasury box converts these tokenized shares back to the underlying
assets then swaps the assets for VSP on Uniswap, where 95% of it is given to stakers and
5% to strategy developers.

Reserves – 2,950,000 VSP of the 10,000,000 total supply is allocated to Vesper's DAO
holdings. These reserves can be deployed only with the democratic approval of VSP
holders. Reserves are designed to extend incentives to holding and liquidity pools beyond
initial allocations and introduce incentives to new products as they are released.

Earning Rate – Earning Rate reflects two figures: the underlying yield accrued by pool
assets as they are routed to other DeFi platforms per the pool strategy and the VSP "boost"
assigned as part of VSP token distribution. The "spot" earning rate is calculated as last 24-
hours performance annualized and compounded, while "average" reflects the past 30-days
annualived and compounded.

vVSP Flow – The sum of VSP bought back over the past 24 hours and delivered to vVSP
pool depositors.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 1/12

renproject / ren

Code Issues 6 Pull requests Actions Projects Wiki Security

Home
Jump to bottom

Vincent Ward edited this page on Oct 21, 2020 · 17 revisions

RenVM is currently at the beginning of phase sub-zero.

In this Wiki, we present RenVM, a Byzantine fault tolerant (BFT) network that enables universal
interoperability between blockchains. By combining consensus with secure multi-party computation
(MPC) algorithms, RenVM is able to instantiate a decentralised, permission-less, and trust-less
custodian capable of locking assets on one chain and minting one-to-one pegged representations
of them on other chains. In this way, users are able to interact with multiple applications, multiple
assets, and multiple chains with only one transaction. Throughout this wiki, we will explore how
RenVM is able to achieve this, using BTC-on-Ethereum as a particularly interesting case study.

0. Too Long; Didn't Read
1. Introduction

i. Universal Interoperability
ii. Related Work
iii. RenVM

2. How It Works
i. Darknodes
ii. Shards
iii. Fees

3. Cross-chain Transactions
i. Lock and Mint
ii. Burn and Release
iii. Burn and Mint

4. Community

TL;DR

RenVM is a decentralised crypto asset custodian that:

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 2/12

enables universal interoperability between blockchains: anyone can use RenVM to send any
asset to any application on any chain in any quantity.
has robust security: large bonds, large shard sizes, and continuous shuffling make RenVM
extremely difficult to attack, even for irrational adversaries. In the unlikely event of a successful
attack, RenVM can restore lost funds.
is scalable: as more assets are locked into the custody of RenVM, the algorithmic adjustment of
fees allows RenVM to automatically scale its capacity to meet demand.
provides an optimal user experience: users can interact with multiple assets, applications, and
chains with only one transaction.

Introduction

Blockchains have enabled a new approach to technology and finance, one where users are self
sovereign and do not need to trust centralised third-parties or intermediaries. Since their inception,
blockchains have found the most adoption in financial applications, allowing users to store and
transfer value, purchase goods, and earn interest. In somewhat of a contradiction, most of this
activity has taken place on centralised exchanges and websites, where central authorities are able to
subvert and censor users. However, in the past few years, the rapidly growing DeFi movement has
aimed to empower users by giving them access to all of the same functionality but without the need
for centralised third-parties and intermediaries. DeFi encompasses many kinds of decentralised
applications, but ultimately it is an attempt to enable sending, lending, exchanging, and leveraging
(and more) without the need to leave the Byzantine resistant world of the blockchain.

Now, the struggle has changed. To scale this new class of financial technology (and not in the
transactions-per-second kind of way), a major shortcoming of blockchains must be addressed:
interoperability. At the time of writing, Bitcoin is 9x larger than Ether, and eclipses all other
cryptocurrencies. It is worth more than the next 100 largest cryptocurrencies combined. But, despite
its dominance, no general purpose interoperability solution exists that does not require centralised
third-parties. Furthermore, this is a deficiency that extends beyond Bitcoin. None of the top ten
blockchains (ranked by market capitalisation of their assets) are interoperable with one another.

Interoperability presents a major challenge, but it is critical for the continued growth of blockchains
and the financial technologies built upon them. For DEXs to grow, access to more liquid assets is
needed. For lending platforms to grow, access to more interesting and diverse assets is needed. For
synthetics and derivatives to grow, access to higher market cap assets is needed. For the ecosystem
to take the next step, we need to connect our users. Network effects that are achieved on one chain
should not need to be replicated on others, applications that are built, battle-tested, and adopted
on one chain should not need to be built again, and competition should encourage innovation and
improvement instead of cloning. Interoperability will not solve all of the challenges faced by
blockchains, but it does solve some of them and lay the foundations for solving many more.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 3/12

To this end, we have developed RenVM — the design of which will be the focus of this wiki — with
the intent to bring interoperability to all blockchains, developers, and users. RenVM is designed with
careful consideration for simplicity of use, and is able to offer a native user experience, where users
are only ever required to make a single transaction from a single chain. Such a transaction can kick-
off arbitrarily complex logic that spans many applications, many assets, and most importantly, many
chains. We call this universal interoperability.

Universal Interoperability

Interoperability is quite an overloaded term, used to describe many different kinds of functionality.
We will dive into some of these definitions in a moment, but first, it is worth giving our own
definition to provide clarity on exactly what RenVM is built to accomplish.

We define universal interoperability as the ability to send any asset from any chain to any other
chain for use in any application. Furthermore, we require that such a universal interaction, spanning
multiple assets, chains, and applications, must be executed as the result of one transaction made by
the user. For example, a universal interoperability protocol must allow a user to 1) exchange BTC for
ZEC on an Ethereum DEX, 2) send that ZEC to Polkadot where it is used to collateralise a stable-coin,
and 3) send that stable-coin back to Ethereum where it is lent out to another user. All of this must
happen as a result of only one Bitcoin transaction made in the first step. It is worth explicitly noting
that universal interoperability protocols must not make any assumptions about the specific
applications that will be using them. Many of the decentralised applications available today could
not have been imagined when blockchains were first brought to the world by Satoshi Nakamoto,
and a universal interoperability protocol must ensure that it works for use cases that we still have
not imagined today.

Related Work

There have been many attempts to achieve various forms of interoperability between blockchains,
most of which have focused on interactions between Bitcoin and Ethereum. In this section, we will
discuss some of the existing solutions that have been proposed and look at their main
disadvantages.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 4/12

Atomic swaps — or, as they are sometimes miscalled, HTLCs — use special Bitcoin scripts and
Ethereum contracts to guarantee that BTC is swapped for ETH/ERC20s in full or not at all. Consider
Alice trying to swap BTC for ETH with Bob. Alice will not get custody of the ETH, unless Bob is able to
get custody of the BTC, and vice versus. Although atomic swaps have many desirable properties,
they have two major drawbacks:

1. They are not universally applicable. Atomic swaps are only usable for swapping, and Alice and
Bob must already agree on the assets and the price-point. This makes them very limited in
where they can be used. We cannot use atomic swaps to create cross-chain collateralised
derivatives, automated market-makers, etc., so other solutions are needed. This problem is
particularly apparent when we realise that we want to support applications that may not even
exist today, so we need solutions that are as general as possible.

2. They suffer from the free-option problem. Atomic swaps require long timeouts to function
correctly. Alice or Bob could intentionally participate slowly, observing market conditions to see
if the swap continues to be favourable. A market movement will always make the swap
unfavourable for one party, and that party can then cancel the swap. This gives the parties the
“option” to back out of a deal that becomes unfavourable. Alice and Bob are both strongly
incentivised to behave this way, especially for large amounts, so other incentives (e.g.
reputation) need to be brought into the equation.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 5/12

Synthetics are another form of interoperability that aim to give users exposure to the price of an
underlying asset. For example, Dai is a synthetic that gives users exposure to USD. Synthetics
generally require the user to deposit an excess amount of collateral to mint a smaller amount of
synthetics (e.g. every $150 of collateral allows the minting of $100 of synthetics). If the value of the
collateral drops too much with respect to the value of the synthetic, then the collateral is liquidated.
This means it is taken from the user and used to buy-back-and-burn the synthetic asset that was
minted. While synthetics are powerful financial tools, they have major problems when it comes to
interoperability:

1. Synthetics are not redeemable for the underlying asset, they are only pegged to be
approximately the same price. If you have synthetic BTC, but you now want real BTC, you need
to find a counter-party that is willing to make that trade with you.

2. Synthetics cannot interact with other chains. A synthetic that has been minted on one chain can
only interact with contracts and assets on that chain, unless it is combined with a different
interoperability solution. For example, Dai cannot be moved from Ethereum unless it does so on
the back of an interoperability solution like RenVM.

3. Liquidation mechanisms have been known to fail during times of high market volatility. This is
problematic, because times of high market volatility are exactly the times when you want your
assets to be the most stable/usable. Mass liquidations and rapid price movements can result in
synthetic assets that are under-collateralised, and this unpegs their price.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 6/12

Lastly, we will look at tokenised representation. Tokenised representations are the most flexible kind
of interoperability, and can be implemented in many different ways. For example, there is WBTC,
imBTC, TBTC, and pBTC. Tokenised representation is where the user locks up an asset with a
custodian, and the custodian mints a one-to-one backed token for the user on another chain. This
token can then be burned, and the custodian releases the respective amount of the locked asset
back to the user. While flexible, all of the existing tokenised representation models exhibit serious
problems for universal interoperability:

1. WBTC and imBTC both trust centralised custodians to keep the locked assets secure. While there
are many valid use-cases for WBTC and imBTC, they are not decentralised, permission-less, or
trust-less. WBTC also enforces that only authorised merchants can request minting/burning,
making it impossible for users to directly create/redeem WBTC.

2. TBTC requires synthetic-like over-collateralisation and liquidation. This means the one-to-one
peg can be broken by market volatility, and the signers that power the network must accept a
lot of risk for little ROI (compared to other investments). It only supports fixed lot sizes of BTC,
and requires multiple transactions on both chains, making it overly restrictive for users.

3. pBTC assumes that trusted execution environments are secure enough to resist the attacks of
rational adversaries. In practice, many vulnerabilities have recently been discovered that subvert
these security assumptions. If pBTC was to lock large amounts of BTC, the incentive to advance
and exploit these vulnerabilities would be massive.

RenVM

RenVM implements universal interoperability using the tokenised representation model. However, it
introduces several advances that solve many of the technical and economic problems in existing
models (see above).

RenVM replaces the role of the trusted custodian with a decentralised custodian. This decentralised
custodian is implemented using the RZL MPC algorithm, which can generate and manage ECDSA
private keys without ever exposing them (not even to the machines that power RenVM). This
improves on WBTC and imBTC by removing the need to trust a centralised custodian.

RenVM uses bonding and algorithmically adjusted fees to make sure that attacks are never profitable
and to make sure that it can always restore the one-to-one peg if an attack ever does succeed. This
improves on TBTC by removing the need for liquidation, which can cause a permanent loss of the
one-to-one peg during times of high market volatility. It also improves on pBTC by not relying on
trusted execution environments, which have been shown to be exploitable. This approach also
allows RenVM to scale its capacity to meet demand: as more assets are locked in RenVM, the
algorithmic adjustment of fees allows RenVM to automatically increase its capacity for more locked
assets. This is an improvement over TBTC, which requires its signers to explicitly acquire and bond
more collateral to increase its capacity.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 7/12

Lastly, RenVM is designed with careful consideration for the user experience. It allows the
minting/burning of pegged assets by anyone, at any time, and at any quantity. Minting/burning of
the pegged assets only ever requires at most one transaction from the user and can have
application-data attached to allow the direct calling of smart contracts. This allows for some
interesting use-cases, where users never need to interact with the minting/burning process (and
only ever interact with real assets on their real chains) and where cross-chain transactions can be
combined/composed to span multiple applications and multiple chains.

How It Works

Although RenVM is capable of supporting complex and composable cross-chain transactions, its
design is relatively simple. Here, we will present a high-level overview of how RenVM works, but we
will also detail each component in later sections (each component deserves its own dedicated Wiki
page).

Darknodes

RenVM is powered by thousands of independently operated machines, known as Darknodes, which
require bonds of 100K REN tokens to run. The bond of every Darknode represents a commitment to
good behaviour and can be slashed if 1) the Darknode behaves maliciously or 2) if it is responsible
for the loss of assets (and the slashed bonds can then be used to restore the lost assets).

Shards

Darknodes are periodically shuffled into random non-overlapping groups, known as shards. Each
shard uses the RZL MPC algorithm to generate a secret ECDSA private key, unknown to everyone,
including the Darknodes in the shard. This secret ECDSA private key cannot be revealed and cannot
be used to sign transactions, without cooperation of 1/3rd+ of the Darknodes. This enables each
shard to securely lock assets into its custody.

Shards are large, containing at least one hundred Darknodes, and they are randomly shuffled once
per day. This makes Sybil attacks difficult, as an attacker needs to own a large portion of the entire
network to have a chance at corrupting any one shard. This also makes bribery attacks extremely
difficult, requiring an attacker to collude with a large number of anonymous Darknodes in a short
period of time, with minimal trust.

These properties help RenVM to resist attacks made by irrational adversaries (adversaries that do
not care about profiting from an attack). But, it also helps RenVM to resist attacks from rational
adversaries during periods where an attack may be temporarily profitable. Regardless, RenVM is
always able to restore its one-to-one peg in the unlikely event that an attack succeeds.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 8/12

Fees

Fees are the main incentive for Darknodes to power RenVM. In return for their work, Darknodes are
rewarded with fees that are paid by the user. If the user transfers BTC from one chain to another, the
Darknodes earn a small adjustable percentage of that transfer. That is, if BTC is moved by users, BTC
is earned by Darknodes, and so on. This helps keep the rewards diverse, and the user experience
simple (the user does not need to juggle fee tokens).

Fees are algorithmically adjusted in response to demand. Since REN is only used for bonding,
RenVM can use a discounted cash flow model to adjust fees such that the total value of REN
bonded by Darknodes is always greater than the total value of assets locked in RenVM. This means
that if assets are ever stolen, RenVM can slash the bonds of the responsible Darknodes and use the
bonds to restore the one-to-one peg by buying-back-and-burning the same amount of pegged
assets. Even if the bonded value temporarily drops below the locked value, RenVM can adjust fees
to bring the values back into alignment.

RenVM targets a bonded value that is 3x greater than the locked value, because above this
threshold it is irrational to attack RenVM (the loss of the bond is greater than the gain of the attack).
However, this is not a hard limit, because as long as the bonded value is greater than the locked
value, RenVM can still restore the peg using its buy-back-and-burn mechanism. Furthermore, this
mechanism does not need to be applied until an attack is successful, which allows for a time lag
between fee adjustment and bond re-evaluation.

Cross-chain Transactions

RenVM supports three kinds of cross-chain transactions. Using BTC-on-Ethereum as an example,
these three kinds of cross-chain transactions enable:

1. sending BTC from Bitcoin to Ethereum (known as a lock-and-mint),
2. sending BTC from Ethereum back to Bitcoin (known as a burn-and-release), and
3. sending BTC from Ethereum to Polkadot (known as a burn-and-mint).

Lock and Mint

Lock-and-mint transactions are cross-chain transactions where the first step, initiated by the user,
sends an asset from its origin chain to a host chain. For example, sending BTC from Bitcoin to
Ethereum is a lock-and-mint transaction.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 9/12

Lock-and-mint transactions are so named because the first step requires the user to send assets to
RenVM, thereby “locking” into its custody. Unless there is consensus in RenVM that the assets can
be released, they will remain locked. After witnessing the locking of assets, RenVM returns a
“minting signature” to the user. This authorises the user to mint a tokenised representation of the
asset on the host chain. This representation is pegged one-to-one with the locked asset; it is always
redeemable in any quantity at any time.

For example, Alice can lock BTC into RenVM, and then mint the same amount of renBTC on
Ethereum. She can also attach arbitrary application-specific data, but we will talk about this in more
detail later.

1. Alice makes a Bitcoin transaction that locks 0.55 BTC into the custody of RenVM.
2. Alice (or the application) notifies RenVM about this transaction.
3. RenVM verifies the existence, details, and number of confirmations of the Bitcoin transaction.
4. RenVM uses the RZL MPC algorithm to produce and return a minting signature to Alice.
5. Alice (or the application) submits the minting signature to Ethereum and mints 0.54940005

renBTC (0.55 BTC - fees).

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 10/12

As you can see, only one transaction — the initial bitcoin transaction in the first step — is required
from Alice. Everything else can be handled by third-parties. Although it is not discussed here, Alice
can attach application-specific data to her cross-chain transaction and the final step can result in
smart contracts being called. It is this ability to directly call smart contracts in the final step that
allows third-parties, such as the Gas Station Network, to submit transactions of her behalf. Alice
never needs to have ETH to pay for gas or even an Ethereum address of her own.

Burn and Release

Burn-and-release transactions are the complement to lock-and-mint transactions and allow users
and smart contracts to send assets from a host chain back to their origin chain. The first step,
initiated by a user or smart contract, burns the pegged asset from the host chain and specifies an
address to which it wants to receive the underlying assets on the origin chain. For example, sending
BTC from Ethereum back to Bitcoin is a burn-and-release transaction.

Unsurprisingly, we call such transactions burn-and-release transactions, because the host chain
“burns” the pegged assets, and after witnessing the burn, RenVM “releases” the same amount of
assets on the origin chain. The burn event specifies the receiving address, which can allow for some
interesting compositions of transaction that we will explore later.

1. Alice (or a smart contract) burns 0.2 renBTC on Ethereum, specifying her Bitcoin address at the
same time.

2. RenVM witnesses the burn event and waits for the required number of confirmations. RenVM
does not need to be notified; it will see the burn event by itself.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 11/12

3. RenVM produces a signature that transfers 0.19975 BTC (0.2 renBTC - fees) to the Bitcoin
address specified by Alice in the first step.

As with lock-and-mint transactions, Alice is only requires to initiate one transaction in the first step.
Everything else is handled by RenVM. The initial burn transaction can also be triggered by a smart
contract. In this way, just like with lock-and-mint transactions, third-parties, like Gas Station
Network, are able to make the transaction on her behalf (she never needs ETH for gas).

Burn and Mint

Using only lock-and-mint and burn-and-release transactions, we can compose interesting and
flexible transactions. One thing we can do is use a burn-and-release transaction to fulfil a lock-and-
mint transaction. In effect, this allows us to move an asset from one host chain to another host
chain. But, this requires multiple round trips to RenVM, which is unnecessarily expensive and slow
(due to underlying blockchain fees and confirmation times).

To better support this kind of transaction flow, RenVM supports burn-and-mint transactions, which
allow this behaviour in a more direct fashion. Using burn-and-mint transactions, users and smart
contracts can “burn” pegged assets from one host chain and “mint” the same amount of pegged
assets on another host chain without ever touching the origin chain. For example, sending BTC from
Ethereum to Polkadot can be done using a burn-and-mint transaction.

1. Alice burns 0.34 renBTC on Ethereum, specifying that she wants to send it to her address on
Polkadot.

3/29/2021 Home · renproject/ren Wiki · GitHub

https://github.com/renproject/ren/wiki 12/12

2. RenVM witnessed the burn event and waits for the required number of confirmations. RenVM
does not need to be notified; it will see the burn event by itself.

3. RenVM uses the RZL MPC algorithm to produce and return a minting signature to Alice.
4. Alice submits the minting signature to Polkadot and mints 0.33932034 renBTC (0.34 renBTC -

fees).

Community

Ask questions, give us feedback, and learn more about the project:

GitHub
Telegram
Twitter
Reddit

Website | Telegram | Twitter | Reddit

 Pages 19

 Introduction

 Fees and Economics

 Phases

 Audits

WIP

 Consensus

 Execution
 Sharding

 Greycore

 Gateways

 Safety and Liveliness

 Supported Blockchains

 REN

Clone this wiki locally

https://github.com/renproject/ren.wiki.git

Flexa Network
Whitepaper
May 2019 · flexa.network

Executive summary

With cryptocurrency transactions exceeding 20 billion USD each day,1 it’s

simply a matter of time before digital commodities become a central part

of global commerce. And yet, cryptocurrency’s collective value of 0.25–

0.5 trillion USD2 remains practically unusable in physical retail.

Considering that 90.9 percent of retail sales in the US still take place

offline,3 brick-and-mortar payments are the primary hurdle in realizing

the true utility of cryptocurrencies. Furthermore, widespread retail

acceptance of cryptocurrency is critical for its sustainable value.

The solution to blockchain payments

We have developed the Flexa network as an open standard that enables

instant cryptocurrency payments in stores and online. This new network

is designed to act as an intermediary between merchants and the

blockchain, offering them inexpensive and fraud-resistant transactions

without volatility exposure. Flexa enables consumers to pay with

their preferred cryptocurrency while preserving their freedom,

security, and data privacy. And, Flexa doesn’t require any physical

cards or merchant point-of-sale upgrades.

Flexa was developed from decades of experience in fintech,

retail, and payments. Today, Flexa features many high-profile

merchants on its platform, the launch of which marks the

first real instance of a decentralized, global payment

network with the power to make commerce more

efficient and accessible for billions of people.

At Flexa, we believe that the best way for global
commerce to become more efficient and accessible is
by making cryptocurrency spendable everywhere.

 4 Vision

We’re making cryptocurrency useful

The blockchain as the future of commerce

A framework for consumer adoption

 14 Product

Scalable retail payments for any app

The Flexa payment experience

Principles for network development

 20 People

Core team

Advisors

 25 Background

The present state of digital payments

4

Vision

5

In the original Bitcoin whitepaper, Satoshi Nakamoto
outlined a perspective on the fallacies of modern-day
commerce, which relies “almost exclusively on financial
institutions... to process electronic payments.”4

Digital payment instruments in the United States and around the world

consist of complicated financial settlement processes—costing merchants

up to 4 percent in processing fees for purchases and involving up to

twelve different entities (each a discrete point of failure) to process a

single exchange. Meanwhile, retail fraud losses in the US alone continue

to reach all-time highs, claiming more than 48.9 billion USD in 2016.5

However, present-day payment instruments are extremely useful to

consumers because they have widespread merchant acceptance. And in

order for cryptocurrencies to realize similar real and sustainable value, it is

critical that they become spendable everywhere.

Many companies have recently developed wallets and apps that enable

retail blockchain payments, but they are universally dependent on existing

payment networks. The promise of cryptocurrency is not being realized

when it also requires physical debit cards, linked accounts, or centralized

payment infrastructure to facilitate the purchase of a cup of coffee.

Flexa is the first network specifically designed to facilitate practical

cryptocurrency payments by enabling instant, no-fee transactions at

stores, restaurants, and online. Flexa represents a milestone in the utility

of cryptocurrency—payments that are both consumer and merchant

We’re making
cryptocurrency useful

6 We’re making cryptocurrency useful

friendly. With a simple SDK, Flexa allows developers to add retail payment

features to any app, streamlining acceptance of cryptocurrencies for

merchants and eliminating volatility exposure.

Flexacoin (FXC) is the new digital collateral token for facilitating retail

cryptocurrency payments on the Flexa network. Flexacoin is staked to

collateralize every payment on the Flexa network, enabling instant, fraud-

free point-of-sale transactions at merchants worldwide—helping to achieve

a long-term vision of making cryptocurrency spendable everywhere.

As a simple, neutral, fixed-supply ERC20 token, Flexacoin ensures that

the network itself is blockchain-agnostic, and allows people to spend the

cryptocurrencies that are meaningful to them. Anyone can use Flexacoin

to stake wallets on the Flexa network. Stakers help to collateralize

payments made by those wallets, and in return, they earn stake rewards

based on transaction volume.

We envision that the Flexa network will ultimately come to represent open

network infrastructure for any blockchain payment, similar to how card

associations such as Visa, Mastercard, UnionPay, and American Express

offer closed payment rails for credit cards. Beyond that, with digital global

payments in excess of 10 trillion USD each day,6 this retail platform will

make cryptocurrency more valuable, meaningful, and useful.

By connecting merchants, banks, and the blockchain
with this open network, we’re building a new, global
payment system to challenge the status quo.

7

For many merchants, payment card fraud and transaction expense are

two of the most significant operating costs to manage and actively reduce

(e.g., in 2017, losses due to payment card fraud amounted to an estimated

28 billion USD worldwide).7 Payment card fraud today takes many forms,

from stolen account numbers to abuse of marketing incentives. Even

chargebacks, initially developed as a consumer protection over forty years

ago, have become a vehicle for malicious activity. And smaller merchants

ultimately share a disproportionate share of the damages, as they have

fewer resources to counter sophisticated fraud or defend themselves in

the case of a dispute.

In addition to the costs of fraud, the very act of processing a payment

can be extremely expensive, due to the variety of fees and operating

expenses involved in handling cash, payment cards, and other payment

instruments. For instance, in 2016, the top twenty-five merchants by

revenue worldwide spent a collective 19 billion USD to accept payments.8

In general, these expenses are a result of complex settlement processes

across a variety of network participants, including payment gateways,

processors, card associations, and financial institutions. Due to this

complexity, a standard payment card transaction in the United States

involves more than ten discrete steps.

The blockchain as
the future of commerce

The limitations of traditional payment instruments—
fraud and cost—are solved by the primary strengths of
blockchain technology. Accordingly, merchants and the
greater blockchain community each stand to benefit
from making cryptocurrency spendable everywhere.

8 The blockchain as the future of commerce

1 A customer presents their card or

app at a merchant point-of-sale

(POS) terminal.

2 The terminal reads the magnetic

stripe or embedded signature

data from the card and transmits

it through a payment gateway to a

payment processor.

3 The processor uses a list of Issuer

Identification Numbers (IINs) to route

data through the appropriate card

association, or network.

4 The card association sends the

transaction to the bank that issued

the card through a card processor.

5 The issuing bank reviews the transac-

tion data, metadata, and internal risk

models to determine whether the

transaction should be authorized.

6 The issuing bank returns an approval

or decline to the card association,

along with any other verification data

as requested by the merchant.

7 The card association relays the

authorization to the processor, which

sends a transaction success message

back to the POS terminal.

8 Based on the merchant’s decision to

complete the transaction, the POS

terminal sends the payment proces-

sor instructions to “settle” the prior

authorization amount, which are then

relayed to the card association.

9 The card association directs the issu-

ing bank to transfer a final purchase

amount (minus interchange) to the

processor’s own bank, called the

“acquiring bank.” It returns a success

message to the payment processor.

10 The acquiring bank receives funds

within 2 business days. Meanwhile,

the issuing bank resolves the cus-

tomer’s pending record of charge,

and appends it to their statement.

11 The acquiring bank initiates a daily

transfer for funds collected minus

any fees for processing.

The steps of a payment card transaction

Authorization

Clearing & settlement

Customer Merchant

POS Terminal

IIN
Register

Magstripe
Card

EMV Chip
Card

Mobile
Wallet App

Card
Association

Payment
Gateway

Acquiring
Bank

Merchant’s
Bank

Cardholder
Accounts

Issuing
Bank

Card
Processor

Payment
Processor

1

5 6

11

4

37

9

8

10

510510

•••5100

JONATHAN APPLESEED

987

04/23

✓

✓

✓

✓

%B 5105105105105100 ̂ APPLESEED/JONATHAN

^ 2304 1200000000000000** 987 ******?*

IIN + CARD PAN CARDHOLDER NAME

CVV1EXPIRATION

IIN

CARD PAN

EXPIRATION

CVV1

CARDHOLDER NAME

$8000 credit line

2

9 The blockchain as the future of commerce

Payment processing costs of the world’s largest retailers by revenue in 20169

Walmart

The Kroger Company

Costco Wholesale

The Home Depot

CVS Health

Walgreens Boots Alliance

Amazon.com

Target

Lowe’s Companies

Albertsons Companies

Apple

Seven & I Holdings Co.

Ahold Delhaize

Wesfarmers Limited

Woolworths Group

Schwarz Gruppe

Carrefour

ALDI Einkauf

Tesco

Metro Group

ÆON Group

Groupe Auchan

EDEKA Zentrale

Groupe Casino

US

US

US

US

US

US

US

US

US

US

US

JP

NL

AU

AU

DE

FR

DE

GB

DE

JP

FR

DE

FR

4,989 million USD

1,516

1,179

1,170

1,120

1,090

1,059

956

833

807

525

283

262

252

249

238

223

207

183

179

740

460

416

399

While the majority of payment processing cost

for any given retailer can be attributed to payment

card interchange fees, they also include costs such

as bank charges, cash and check handling fees, or

administrative fees for store credit programs.

10 The blockchain as the future of commerce

How merchants and the blockchain stand to benefit

The blockchain offers a practical solution to merchant concerns of fraud

and cost. It dramatically reduces the number of possible fraud vectors

by enforcing tamper-proof transactions on a ledger, and it decentralizes

transaction verification—creating an open market for processing that

more closely represents the actual computation cost. As an added

benefit, the blockchain provides native support for borderless payments,

which opens merchants to a global community of customers without

requiring additional payment infrastructure or currency exchange.

Meanwhile, the blockchain needs merchant adoption in order to become

a viable supplement to other payment methods. Additionally, with this

increased utility comes more straightforward cryptocurrency valuation,

reduced volatility, and market stabilization. Growing merchant acceptance

will make cryptocurrencies substantially more valuable, and truly enable

the globalizing effects of peer-to-peer electronic cash that Satoshi

Nakamoto envisioned.

Blockchain adoption is inevitable

For these reasons, we believe that the blockchain complements the

infrastructure of traditional payment instruments. However, due to the

operational and technical complexity in managing native cryptocurrencies

at scale, many merchants will require an intermediary service. This service

must be designed so that it cannot compromise the core principles of

data protection, decentralization, and choice that have bolstered the

cryptocurrency community since its inception.

We believe that the Flexa network offers the first practical cryptocurrency

payments service for retail, dining, groceries, fuel, travel, and more. We

remove the complexities of acceptance to bring fraud resistance and

low-fee processing to merchants, while still protecting consumer tenets

of privacy, decentralized governance, and freedom of choice. By allowing

merchants and their customers to engage directly as buyers and sellers,

global commerce becomes vastly more efficient.

11

Since the creation of Bitcoin in 2008, blockchain communities have

attempted to make cryptocurrencies a useful complement to traditional

payment instruments like credit cards, debit cards, and cash. However,

fundamental user-experience challenges such as unintuitive QR code

interfaces, complex address strings, new security protocols, and network

capacity issues have hindered commercial adoption. Various scaling

solutions such as multi-layer protocols and Proof of Stake consensus

algorithms show considerable promise for improving the speed and

utility of blockchain transactions, but create issues of complexity and

compatibility for merchants.

A variety of mobile wallets are promoting cryptocurrency payment

solutions, but unfortunately, they are completely reliant on existing legacy

infrastructure. These wallets utilize high-fee virtual Visa and Mastercard

debit cards—requiring bank accounts, physical cards, and multiple tiers

of centralization. Digital payments on these platforms are subject to low

transaction limits (in some cases, less than $100),11 as well as Apple’s

restrictions for NFC access on iOS devices.12 Justifiably, these systems

have extremely low consumer adoption due to the increased friction

compared to a typical payment card.

A framework for
consumer adoption

The software that moves the vast majority of money
around the world today still uses legacy standards
created during the late 1970s,10 but in the absence of
a compelling alternative, consumers are trapped into
maintaining the status quo.

12 A framework for consumer adoption

While decades of retail payments experience confirm the pain points of

fraud and processing cost, we find that consumers’ needs are distinctly

different. Consumers evaluate payment instruments against an individual

framework of five basic criteria:

Speed, usefulness, and value are often the most critical factors in

choosing a particular payment instrument at retail. Each of these features

must be addressed for cryptocurrencies to see widespread adoption.

Basic consumer criteria

Freedom of choice

The need to avoid fees, and

mechanisms of unwarranted control

Security

The need to use a system without

fear of loss by deception or failure

Speed

The requisite convenience of instant

confirmation, often lost to security

Usefulness

The need for widespread acceptance

of a particular payment instrument

Value

Any incentive to use a payment

instrument (e.g., rewards, no fees)

 Bank transfers Payment cards Mobile wallets Flexa

 × × ×

	 ✓	 ✓	 ×

 × × ✓	

	 ✓	 ✓	 ✓	

 × ✓	 ×

The solution to blockchain payments is not building
cryptocurrency acceptance on top of the existing
multi-layer networks, but creating a new network that
solves merchant and consumer needs alike.

13 A framework for consumer adoption

1 Real-time transactions

Merchants and their customers need to receive confirmation that a

transaction was successful in less than one second.

2 No consumer-facing fees

Consumers will not pay a premium to use blockchain

cryptocurrencies, because such a cost represents negative

value in their decision-making framework. The fee must be zero

on the consumer side of the transaction, and ultimately provide

competitive spending incentives.

3 Broad acceptance

In order to see widespread consumer adoption, it must be possible

to use cryptocurrencies for the majority of daily expenditures. Any

less than that, and the mindshare required to maintain “front of

wallet” utility will not be attainable.

Meeting and dramatically exceeding these expectations will be

challenging, but any new payments network must comprehensively solve

both consumer and merchant needs. We believe that Flexa satisfies all of

the core consumer requirements necessary to break the legacy payments

status quo.

In order for a viable blockchain cryptocurrency
payment network to achieve meaningful scale, the
table stakes for consumers are the following:

14

Product

15

Flexa is designed to facilitate payments from any wallet, in any coin, to

any merchant, across the globe. Flexa’s network is already integrated with

many high-profile merchants, offering instant acceptance of potentially

hundreds of cryptocurrencies to developers all over the world.

The vision for this new network is to become the open, seamless standard

for cryptocurrency payments in physical retail.

Scalable retail payments for any app

Introducing Flexa

Flexa is an open network for enabling instant
cryptocurrency payments in stores and online, allowing
merchants to receive secure cash deposits via their
existing points-of-sale.

$ €

···¥£

Flexa

Network

Any

Merchant

Any

App

Any FiatAny Coin

···

16 A new network

App

Sample Flexa transaction flow

1 A customer scans their app at

merchant POS for payment in any

cryptocurrency supported by Flexa.

2 The app requests the current

conversion rate for the customer’s

desired cryptocurrency, and submits

a blockchain transaction via Flexa.

3 The Flexa network transmits a

one-time authorization code

(FPAN) in real time to authorize the

transaction on the merchant’s POS

terminal, then pushes fiat funds to

the merchant’s bank account. The

customer’s purchase is complete.

Streamlined authorization,

clearing & settlement

Customer Merchant

1

Flexa

2 3

Merchant’s
Bank

POS Terminal

IIN
Register

Card
Association

Payment
Gateway

Acquiring
Bank

Cardholder
Accounts

Issuing
Bank

Card
Processor

Payment
Processor

Flexa will enable developers to integrate retail cryptocurrency payments

within their own apps. By creating the most simple, direct network, Flexa

enables broad cryptocurrency acceptance with the least complexity—

no longer requiring the variety of payment gateways, processors,

associations, and financial institutions.

Flexcode
Scan

17 A new network

The Flexa payment experience

Flexa payments are designed to be as simple as possible. With just a

single tap and scan, Flexa verifies your cryptocurrency balance against a

public index rate and generates a proprietary flexcode for payment.

Because Flexa payments do not require NFC (like traditional payment

cards), they are not restricted by Apple’s requirements for payment

cards to be loaded into the Wallet app, nor by tap-to-pay (contactless)

implementation timelines or transaction limits. This greatly reduces the

network’s risk as compared to other cryptocurrency payment solutions.

A Flexa transaction has two primary components, which are delivered to

client apps through the Flexa Wallet SDK:

• The first is called an FPAN, or flexible primary account number, which

is a one-time authorization that allows a merchant to debit local fiat

currency against the selected cryptocurrency wallet balance.

• The second is called a flexcode, which is a proprietary and backwards-

compatible barcode format that is scannable by standard point-of-sale

barcode readers. Each flexcode conveys the FPAN with any user-

authorized metadata through the merchant’s point-of-sale system.

Online Flexa transactions will make use of identical FPAN provisioning

mechanisms and back-end integrations. In fact, online Flexa transactions

will differ from physical Flexa transactions only in their form of approval.

Instead of using a flexcode, virtual Flexa transactions will relay an FPAN via

an account-linked device.

Because all Flexa transactions use the same
authentication process for payments, they represent
the only interface that is just as secure—and just as
usable—whether used in stores or online.

18 A new network

Principles for network development

Flexa has presented six principles for the network, representing our vision

for its ongoing development and sustained platform growth.

We present these principles to help guide the development of Flexa, and

we hope to build trust and transparency with the blockchain community

by articulating them as the ongoing intentions guiding the network:

Compliant

We designed Flexa to support local compliance requirements and data

protection regulations. Notably, unlike alternative solutions for institutional

cryptocurrency payments, the network does not require Flexa or third

parties to act as custodian of funds; the technology functions as a direct

payments processor without volatility exposure for merchants.

Secure

The Flexa network has been designed with open-source, end-to-end

encryption for resilience from man-in-the-middle attacks and other forms

of surveillance or tampering, and exposes only non-sensitive information

in the course of completing a transaction.

Compliant Secure Instant Open Simple Useful

In order to become a trusted, public cryptocurrency
payment rail, we believe that Flexa must be:

19 A new network

Instant

Flexa is the only network to offer instantaneous conversion of

cryptocurrency via direct bank deposits at merchant point-of-sale,

regardless of block time. End users need only one tap to authorize

payment, with transactions (confirmed by point-of-sale) currently

measured at less than a second. Flexa transactions are designed to be the

absolute fastest payment solution available in the world.

Open

Flexa is designed to enable the free and open use of cryptocurrency at

retail. The network will be accessible to a wide variety of developers and

merchants around the globe. To support this widespread acceptance, the

network community need only stake Flexacoin. Therefore, Flexa requires

no proprietary license or gateway in order for developers to integrate their

wallet or transmit cryptocurrency transactions.

Simple

From tap to transaction, Flexa supports simple, straightforward API

methods for exchange and payment. Because the network is not reliant

on existing payments infrastructure, payments are pre-authorized in a

single message, enabling authorization signatures and settlement to

be combined into one fraud-resistant transaction. Flexa’s simplicity of

integration, operation, and settlement makes cryptocurrency payments

easy for merchants and their customers alike.

Useful

Finally, Flexa is designed to be backwards-compatible with existing POS

systems, and as interoperable with as many partners and platforms as

possible. We have developed the Flexa network toward broad accessibility

and widespread acceptance—starting with the very first apps on the

network, which take advantage of existing POS integrations and require

no new hardware or merchant upgrades.

20

People

21 People

Trevor Filter
Co-Founder

Trevor began his career at the

MIT Media Lab, and has been

designing award-winning,

customer-centric experiences for

over a decade. He was previously

Head of Product & Design at

Raise, Head of Product at Slide

Network, and a Senior Product

Manager at American Express.

He holds a Bachelors from MIT.

linkedin.com/in/trevorfilter

Zachary Kilgore
Co-Founder

Zach has more than eight years of

experience engineering front-end

and back-end software platforms

and infrastructures for payments

and mobile. He was previously

an Engineering Manager at Raise,

Director of Engineering at Slide

Network and a Front-End Engineer

at Warby Parker. He holds a

Bachelors from Duke University.

linkedin.com/in/zacharykilgore

Tyler Spalding
Co-Founder

Tyler has founded and invested in

various blockchain projects since

2011. He was previously the CTO

of Raise, Co-Founder and CTO of

Tastebud Technologies, and an

Engineering Lead with the United

Space Alliance, US Air Force, and

NASA’s Space Shuttle Program.

He holds two Masters degrees

from MIT and UIUC.

linkedin.com/in/tylerspalding

Our team

The people behind Flexa combine more than twenty
decades of experience in technology, retail and
payments at American Express, Bloomberg, the MIT
Media Lab, NASA, Starbucks, and Warby Parker.

22 People

Alex Disney
Blockchain Engineer

Alex is a blockchain engineer

with ten years of experience

developing cryptocurrency

mining and trading operations

at DRW. He implemented EIP-758

for Parity and holds a Bachelors

degree from UIUC.

linkedin.com/in/alex-disney-4a203617

Ryan Records
VP of Partnerships

Ryan led the creation, rollout, and

consumer growth strategies for

the Starbucks mobile app, one

of the most successful mobile

payment platforms in the world.

He holds a Masters degree from

Washington State University.

linkedin.com/in/ryanrecords

Caitlin Skulley
Sr. Director of Merchant Dev.

Caitlin built and grew the

merchant B2B program from the

ground up for a leading payments

distributor, and boasts nearly

20 years of experience in client

services. She holds a Bachelors

degree from Colby College.

linkedin.com/in/caitlinskulley

Chris Pick
Software Engineer

Chris is a financial software

engineer with seven years of

experience building distributed

data storage and analysis

systems and infrastructure at

Bloomberg. He holds a Bachelors

degree from UIUC.

linkedin.com/in/christopherpick

Daniel C. McCabe
Co-Founder

Daniel has 20 years of experience

across finance, technology, and

private equity law. He was formerly

a partner at Greensfelder and

holds a JD from the Chicago Kent

College of Law with a Bachelors

from Northwestern University.

linkedin.com/in/danielcmccabe

23 People

Luke Gebb
SVP of Amex Digital Labs and

Global Network Products

linkedin.com/in/luke-gebb-12812b

Advisors

To guide the growth and scale of our products, we have also assembled a

group of talented individuals across blockchain development, consumer

retail, hardware, machine learning, marketing, and payments. Our

advisors bring the experience of leadership positions with some of the

most notable companies in the world, including:

Payments, financial services, and blockchain

Amazon.com

American Express

Apple

Capital One

Citigroup

ConsenSys

Google

Mastercard

Nike

PayPal

Pinterest

Samsung

Tesla

Venmo

Visa

Walmart / Store No. 8

Warby Parker

Dave Hoover
Ethereum Developer, formerly at

ConsenSys and IDEO

linkedin.com/in/redsquirrel

Jason Korosec
Former SVP and Group Head of

Information Services at Mastercard

linkedin.com/in/jasonkorosec

Mark Jamison
Global Head of Innovation at Visa

and former CDO at Capital One

linkedin.com/in/markrjamison

Pete Woodhouse
Former CTO of PayPal Credit and

Sr. Director of Global Solutions

linkedin.com/in/woodhouse

24 People

Retail, hardware, and consumer partnerships

Shahriar Khushrushahi
Senior Engineer on Google ARA

and Project Jacquard, MIT PhD

linkedin.com/in/skhushrushahi

Sharat Alankar
Blockchain and Incubation

Associate at Walmart Store No. 8

linkedin.com/in/sharatalankar

Thomas Kim
Former Board Director at ACTnano,

products for Apple, Google, Tesla

linkedin.com/in/thomaskimco

Deirdre Peters
Senior Product Manager for

e-Commerce at Nike

linkedin.com/in/dierdre-peters-9909318

Branding and marketing

Anthony Rodriguez
Founder and CEO of Emmy-

winning agency Lineage Digital

linkedin.com/in/avrod

Coby Berman
COO at Radar, former Sales

Director at mParticle, Foursquare

linkedin.com/in/cobyberman

Sarah Shere
Pinterest Head of Product Marketing,

former Sales Manager at Google

linkedin.com/in/sarah-hoople-shere-87a2413

Brian Magida
Director of Performance

Marketing at Warby Parker

linkedin.com/in/brian-magida-46186312

Chris Walti
Former RFID Lead at Accenture

Technology Labs, MIT Media Lab

linkedin.com/in/chriswalti

Christina Wick
Former Head of Engineering at

Venmo and Sr. Manager at Amazon

linkedin.com/in/christina-wick-60b4981

25

Background

26

Direct bank
transfer

e.g., SWIFT, Fedwire, ACH

Global and domestic bank

clearing networks that move 3.6

quadrillion USD in 102 million

transactions per year14

Common throughout Europe for

all transaction sizes, and in the

US and Canada for large and

commercial transactions

→ Page 27

Payment
cards

e.g., Visa, American Express

Plastic cards leveraging credit

and debit networks to move small

purchases of 26 trillion USD in

257 billion transactions per year15

Common in most geographies

throughout the world for small

transactions, especially the US,

Canada, Europe, and Asia-Pacific

→ Page 30

Mobile
wallets

e.g., Apple Pay, Google Pay, Alipay

Mobile apps that proxy traditional

payment instruments to move

more than 8 billion USD in 300

million transactions per year16

Common in Asia-Pacific for all

transactions (via bank transfers);

gaining broad acceptance in the

US, Canada, and Europe

→ Page 33

The present state
of digital payments

Digital payments take many forms around the world and
move a collective 10 trillion USD each day.13 The majority
of these transactions are conducted using one or any
combination of three instruments:

27 The present state of digital payments

Daily processing volume

SWIFT

5 trillion USD17

30.7 million transactions18

Fedwire

2.1 trillion USD21

528,000 transactions

CHIPS

1.4 trillion USD21

430,000 transactions

ACH

120 billion USD19

70.1 million transactions

In general, non-cash payment instruments are underpinned by a

traditional account held at an insured financial institution, such as a

commercial bank or credit union. Whenever money is exchanged via

one of these payment instruments, whether electronically or by an

offline ledger, it is ultimately transmitted between financial institutions.

To reconcile these payments, a variety of domestic and international

standards are used for direct bank transfer between businesses and

consumers (also sometimes called “electronic funds transfer”), such as

ACH/IAT, CHIPS, SWIFT, RTGS, Fedwire, BEPS, NEFT, and KFTC.

Despite their ubiquity, each of these systems rely on legacy infrastructure

that remains vulnerable to fraud and transaction inefficiencies.

Legacy infrastructure

The underlying technology of the global financial network is difficult

to navigate, consisting of a variety of incompatible legacy protocols

and standards; many of the current electronic settlement systems have

remained relatively unchanged for 40 years. For instance, Automated

Clearing House (ACH) transactions in the United States are still

conducted via fixed-width text files (with precisely 94 characters per

line), uploaded to various FTP servers and downloaded at specific times

of day for settlement. Until 2016, these transactions cleared the following

business day, when NACHA announced an update allowing for same-

Direct bank transfer

28 The present state of digital payments

day payments.20 This “upgrade” involved no changes to the underlying

specification; rather, banks were required to process transactions twice

instead of once daily.

Other clearing systems include the Society for Worldwide Interbank

Financial Telecommunication (SWIFT); the New York Clearing House

Association’s CHIPS network; and the Federal Reserve’s Fedwire network.

Each involve substantially more robust checks and balances than ACH

and benefit from greater speed, increasing the complexity of the global

financial system. Together, these systems transmit a staggering 3.6

quadrillion USD in global volume.21

Fraud vulnerability

Despite the additional supervision involved in these ledger systems, their

protocols and networks are vulnerable to fraud. In a 2016 survey of the

largest financial institutions, “cybersecurity concerns” was the most-

responded challenge that bank executives said they faced in their day-to-

day role,22 and many such instances of theft have recently become public.

In 2016, thieves made off with 81 million USD by impersonating Central

Bank SWIFT operators.23 Throughout a single weekend, they routed four

transactions through the New York Fed’s mostly automated system,

moving 101 million USD from Bangladesh to the Philippines. It was only

when a New York Fed official caught a thief’s misspelling of the beneficiary

name that they were able to alert Bangladesh Bank officials and prevent

the transit of an additional 920 million USD.

In 2018, a larger heist was discovered involving the Punjab National Bank

and promissory “letters of understanding” issued through SWIFT, where

funds were laundered by using a password provided by bank officials

for direct access to the SWIFT network.24 Letters of understanding were

issued for the equivalent of nearly 1.77 billion USD, and they were not

correlated with the lesser amount that was registered via SWIFT in the

bank’s holdings. Despite repeated warnings against fraudulent SWIFT

messaging from the deputy governor of the Reserve Bank of India, the

scam went undetected for nearly seven years.25

29 The present state of digital payments

Transaction inefficiency

Despite the underlying fraud vectors, funds transmitted over SWIFT,

Fedwire, CHIPS, and ACH incur costs of approximately 18 billion USD

every day.26 Additionally, transfers require three to five days for settlement,

and up to 4 percent of payments fail due to technical reasons.27

The blockchain could potentially offer several enhancements in these

systems, namely cryptographically secure transactions, immutability,

and data redundancy. For instance, Ripple, a prominent US startup,

allows financial institutions to quickly settle cross-border payments

using its xCurrent network, claiming a 60 percent reduction in net cost.28

Remittance providers such as Western Union and Moneygram have also

piloted using native Ripple blockchain tokens (XRP) for settlement.29 Using

products such as these, we believe that blockchains have the potential to

influence well beyond the primary layer of the global financial network.

30 The present state of digital payments

Daily processing volume

Union Pay

41 billion USD30

105 million transactions31

Visa

20 billion USD32

305 million transactions

Mastercard

12 billion USD33

184 million transactions

American Express

3.2 billion USD37

19.8 million transactions

JCB

731 million USD37

8.1 million transactions

Discover

466 million USD37

6.4 million transactions

Direct bank transfers are just one of the several steps involved in

conducting a standard transaction with a payment card (e.g. a credit or

debit card). In practice, the payment card authorization and settlement

framework implemented throughout the United States and Europe

involves the coordination of no fewer than six parties in order to transmit

and guarantee funds.

Although payment cards offer universal acceptance and consumer

benefits, they are prone to many single points of failure as well as the

rising costs of fraud and incentive fees.

Many single points of failure

The companies involved in payment card processing serve mutually

exclusive roles and extract a share of the transaction fee. This fee is called

“interchange,” and has been variously regulated by the European Union

(Interchange Fee Regulation, April 2015), and the Federal Reserve (Durbin

Amendment, July 2010).

Payment cards also mandate a secondary network provided by entities

called “card associations.” Card associations work with payment

processors to conduct the three broad stages of a payment card

transaction: authorization (verifying funds in accounts on either side

of a transaction), clearing (transferring funds between banks after the

exchange of goods or services) and settlement (paying a merchant).

Payment cards

31 The present state of digital payments

In 2012, responding to these rising processing fees, some of the largest

merchants in the US—including Walmart, Target, Best Buy, CVS and

7-Eleven—created a cooperative organization called Merchant Customer

Exchange (MCX), with the charter of developing an ACH-backed payment

instrument to avoid interchange fees.34 After three years of continuous

merchant investment and delayed development, the MCX mobile app

never exited a pilot phase. Although it was successful at reducing

merchant costs of processing, MCX was never able to deliver a compelling

consumer value proposition. In 2017, JP Morgan Chase acquired the MCX

technology to integrate with its existing Chase Pay system.

In the past decade, payment card processing fees have skyrocketed for

two main reasons: first, because of an increase in fraud, including losses

that are paid by issuing banks when they reimburse their customers for

unauthorized charges; and second, because of the consumer demand for

better card benefits and rewards on high-end credit card products.

Rising costs of fraud

EMV (Europay Mastercard Visa) chip cards have found mainstream

adoption in Europe, Asia and the US, but payment card fraud in aggregate

has continued to rise. Despite broad acceptance of the card-based

technology, 2.8 million fraudulent accounts were created in 2018,35

and account takeovers cost merchants 5.1 billion USD.36 Additionally,

transactions made online (i.e., “card-not-present”) have seen fraud

losses increase more than 100 percent since the introduction of the EMV

standard.37 Chip-enabled cards have subsequently increased payment

security, but are still vulnerable to man-in-the-middle attacks, especially

when merchants don’t upgrade their systems to support encrypted

transaction data from EMV-capable terminals. Cards can also be cloned

from unsophisticated account enumeration, physical card skimmers, RFID

readers, or simply a restaurant waiter with a cell phone camera.

In order to accept payment cards, merchants incur
disproportionately high processing fees which are
often one of their largest operational costs.

32 The present state of digital payments

In 2016, the total fraud losses for payment cards worldwide was estimated

at 22.80 billion USD,38 with 46 percent of all US citizens reporting card

fraud within the past five years.39

Yahoo—now part of Verizon—also revealed that hackers obtained the

personal information of its entire database of 3 billion worldwide users

during an attack in 2013.43

Incentive fees

Credit card rewards points also contribute to the high fees incurred by

merchants to accept these payment instruments. Originally introduced by

American Express in 1991,44 these points have since become a cornerstone

of consumer marketing for major credit card products. Today, travel and

dining bonuses have become extremely competitive for the major credit

card issuers: Chase, Capital One, and American Express are each vying

for coveted “front of wallet” placement by offering up to 5× points or five

percent cash back on various purchase categories.

As a result, many industries have developed to help the affluent consumer

“optimize” their spend for maximum returns, perhaps without realizing

that the true cost of these rewards is subsidized either by the small

merchant businesses (which lack the required leverage to negotiate more

affordable interchange rates), or the other payment card consumers who

finance debt through high monthly APR interest. Many small businesses

ultimately choose to avoid payment cards altogether and revert to cash-

only transactions, putting them at a significant consumer disadvantage.

Recently, the rate of identity theft has soared, with
more than 1,500 corporate data breaches,40 including
the theft of 143 million credit reports from Equifax41
and 40 million credit card numbers from Target.42

33 The present state of digital payments

Daily processing volume

Alipay

4.7 billion USD45

175 million transactions

WeChat Pay

3.3 billion USD46

130 million transactions47

PayPal (incl. Venmo)

425 million USD48

8.3 million transactions49

Paytm

55 million USD50

11 million transactions

More and more, third-party mobile wallets are becoming mainstream

payment instruments, capitalizing on their ability to aggregate various

aspects of bank accounts and payment cards and offer even more

consumer choice and convenience. While some (like Apple Pay, Google

Pay, and Samsung Pay) simply serve as vehicles for virtual cards by

proxying existing payment cards’ primary account numbers, or PANs;

others (such as Alipay, WeChat Pay, PayPal, Venmo, Square Cash,

and Apple Pay Cash) have built a suite of value-added services and

integrations on top of what is essentially a stored value account.

Many of these mobile wallets have seen substantial growth in recent

years—especially in China—but their traditional payment instrument

underpinnings present limitations on the ability to provide meaningful

incentives, grow internationally, and manage fraud vulnerabilities.

Limited incentives

Today, even the largest and most successful mobile wallet apps and

services enable the vast majority of their transactions by proxying an

underlying insured or regulated payment instrument, such as a bank

account or payment card. By functioning as this abstraction layer, services

like Apple Pay and PayPal are able to offer value-added features like

enhanced security or purchase protection, but are limited in their ability

to provide unique incentives or sustainable bonus structures beyond what

the underlying instruments already support natively.

Mobile wallets

34 The present state of digital payments

International incompatibility

Moreover, mobile wallets have seen substantial growth in markets

without entrenched financial institutions. For example, in the absence

of traditional, credit-based payment infrastructure throughout China,

companies like Alipay and WeChat Pay have built a direct system that

facilitates mobile transactions on a private payment network over the

internet. The rapid growth of these platforms—in terms of both scale

and versatility—is impressive. But because the underlying financial

infrastructure is still provided by domestic financial institutions,

international growth is encumbered by the overhead of adapting these

systems to foreign banks and exchanging currencies.

Outside of payments, the major value in third-party mobile wallets is their

usefulness for internal or peer-to-peer transactions via network effects.

Many people join Alipay, WeChat, Venmo or Square Cash because their

friends are there, or because it’s easier to send money to a phone number

or username than it is to share account numbers. These features build

community, but ultimately limit platform growth to these regional groups

because users have limited incentive to interact internationally.

Fraud vulnerability

Mobile wallets are essentially an interface to existing payment

instruments, which can make them vulnerable to certain types of fraud.

By storing many payment instruments behind a single online account and

password, these apps create an opportunity for account takeovers, which

in 2018 amounted to 5.1 billion USD in losses.51 Many apps also distinguish

between peer-to-peer payments and payments for goods and services

because of their inability to mitigate buyer fraud, such as chargebacks

and ACH returns.

For example, due to its ACH underpinnings, Venmo’s terms and conditions

explicitly warn against using the app for retail payments. When a fraudster

reverses an ACH transaction used to load a Venmo account, the company

is forced to reverse the transaction within its own ecosystem, sometimes

by directly debiting beneficiaries’ bank accounts.

35 References

April 30, 2018, http://ir.homedepot.com/~/media/Files/H/

HomeDepot-IR/reports-and-presentations/annual-

reports/annual-report-2016.pdf; CVS Health, 2016 Annual

Report, April 30, 2018, http://investors.cvshealth.com/~/

media/Files/C/CVS-IR-v3/reports/annual-report-2016.

pdf; Walgreens Boots Alliance, Annual Report 2016,

April 30, 2018, http://files.shareholder.com/downloads/

WAG/6215787588x0x920659/858BCE46-131D-4764-8410-

1F35998DD1F8/278444_Final_BMK.pdf; Amazon.com, 2016

Annual Report, April 30, 2018, http://phx.corporate-ir.net/

External.File?item=UGFyZW50SUQ9NjY2MjA0fENoaWxkSUQ

9Mzc0MDUxfFR5cGU9MQ==&t=1; Target, 2016 Annual

Report, April 30, 2018, https://corporate.target.com/_media/

TargetCorp/annualreports/2016/pdfs/Target-2016-Annual-

Report.pdf; Lowe’s Companies, 2016 Annual Report,

April 30, 2018, http://phx.corporate-ir.net/External.

File?item=UGFyZW50SUQ9NjY3MDUzfENoaWxkSUQ9Mzc0

ODQ3fFR5cGU9MQ==&t=1; Nasdaq, “Albertsons Companies,

Inc. IPO Financials & Filings,” April 30, 2018, https://www.

nasdaq.com/markets/ipos/company/albertsons-companies-

inc-970028-78908?tab=financials; Apple Inc., 2016 Annual

Report, April 30, 2018, http://files.shareholder.com/

downloads/AAPL/6219007589x0x913905/66363059-7FB6-

4710-B4A5-7ABFA14CF5E6/10-K_2016_9.24.2016_-_as_filed.

pdf; Seven & I Holdings & Co., Integrated Report 2016, April

30, 2018, https://www.7andi.com/dbps_data/_template_/_

user_/_SITE_/localhost/_res/en/ir/library/ar/pdf/2016_10.

pdf; Ahold Delhaize, Annual Report 2016, April 30, 2018,

https://www.aholddelhaize.com/media/4045/ahold-

delhaize_annual-report-2016_interactive.pdf; Wesfarmers,

2016 Annual Report, April 30, 2018, https://www.wesfarmers.

com.au/docs/default-source/reports/2016-annual-report.

pdf?sfvrsn=4; Woolworths Group, Annual Report 2016, April

30, 2018, https://wow2016ar.qreports.com.au/xresources/

pdf/wow16ar-financial-report.pdf; Deborah Weinswig,

“European Grocery Discounters: Small Stores—Big Threats?,”

Fung Business Intelligence Centre, PDF, November 2015,

https://www.fbicgroup.com/sites/default/files/European%20

1. “Cryptocurrency Market Capitalizations,” CoinMarketCap,

April 30, 2018, https://coinmarketcap.com/charts/.

2. CoinMarketCap.

3. “Quarterly Retail E-Commerce Sales,” U.S. Census Bureau,

PDF, February 16, 2018, https://www.census.gov/retail/mrts/

www/data/pdf/ec_current.pdf.

4. Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic

Cash System,” PDF, October 31, 2008, http://bitcoin.org/

bitcoin.pdf.

5. National Retail Federation, “National Retail Security

Survey 2017,” PDF, June 22, 2017, https://nrf.com/system/

tdf/Documents/NRSS-Industry-Research-Survey-2017.

pdf?file=1&title=National%20Retail%20Security%20

Survey%202017.

6. Financial Crimes Enforcement Network (FinCEN),

“Feasibility of a Cross-Border Electronic Funds Transfer

Reporting System Under the Bank Secrecy Act: Appendix

D – Fundamentals of the Funds Transfer Process,” US

Department of the Treasury, October 2006, https://www.

fincen.gov/sites/default/files/shared/Appendix_D.pdf.

7. “Card Fraud Worldwide,” The Nilson Report, PDF, October

2016, https://nilsonreport.com/upload/content_promo/

The_Nilson_Report_10-17-2016.pdf.

8. Walmart, 2016 Annual Report, April 30, 2018,

http://s2.q4cdn.com/056532643/files/doc_

financials/2016/annual/2016-Annual-Report-PDF.

pdf; The Kroger Company, 2016 Annual Report, April

30, 2018, http://ir.kroger.com/Cache/1500099541.

PDF?O=PDF&T=&Y=&D=&FID=1500099541&iid=4004136;

Costco Wholesale, Annual Report 2016, April 30, 2018,

http://phx.corporate-ir.net/External.File?item=

UGFyZW50SUQ9NjU1NTg1fENoaWxkSUQ9MzYxNDM2fFR5c

GU9MQ==&t=1; The Home Depot, 2016 Annual Report,

36 References

12. Chris Corum, “Apple to enable iPhone NFC tag reading in

new models, still restricts card emulation,” SecureIDNews,

June 9, 2017, https://www.secureidnews.com/news-item/

apple-to-enable-iphone-nfc-tag-reading-in-new-models-still-

restricts-card-emulation/.

13. FinCEN.

14. FinCEN.

15. “Global Cards - 2016,” The Nilson Report, https://

nilsonreport.com/research_featured_article.php.

16. Zennon Kapron and Michelle Meertens, “Social Networks,

e-Commerce Platforms, and the Growth of Digital Payment

Ecosystems in China: What It Means for Other Countries,”

Better Than Cash Alliance, PDF, April 19, 2017, https://www.

betterthancash.org/tools-research/case-studies/social-

networks-ecommerce-platforms-and-the-growth-of-digital-

payment-ecosystems-in-china.

17. FinCEN.

18. “SWIFT FIN Traffic & Figures,” SWIFT, April 23, 2018,

https://www.swift.com/about-us/swift-fin-traffic-figures.

19. “ACH Volume Grows to More Than 25 Billion Payments

and $43 Trillion in Value in 2016,” NACHA, April 12, 2017.

https://www.nacha.org/news/ach-volume-grows-more-25-

billion-payments-and-43-trillion-value-2016.

20. NACHA, “Same Day ACH: Moving Payments Faster,”

Same Day ACH Resource Center, April 9, 2016, https://web.

nacha.org/resource/same-day-ach/same-day-ach-moving-

payments-faster.

21. FinCEN.

Grocery%20Discounters%20Report%20by%20FBIC%20

Global%20Retail%20Tech.pdf; Carrefour, 2016 Annual

Activity and Responsibile Commitment Report, April 30,

2018, http://www.ecobook.eu/ecobook/Carrefour/2016/

view/RA-EN.html; “Market Study: Food retail in Germany –

market structure data 2016,” bulwiengesa, PDF, June 21, 2017,

https://www.tlg.eu/fileadmin/user_upload/Publikationen-

en/pdf/2017_06_23_Food_retail_in_Germany_-_Market_

structure_data_2016_EN.pdf; Tesco, Annual Report 2016,

April 30, 2018, https://www.tescoplc.com/media/264194/

annual-report-2016.pdf; Metro Group, Annual Report

2015/2016, April 30, 2018, http://reports.metrogroup.

de/2015-2016/annual-report/servicepages/downloads/files/

entire_metrogroup_ar16.pdf; Aeon Co., Ltd., Financial Results

for the Fiscal Year ended February 28, 2017, April 30, 2018,

http://v4.eir-parts.net/v4Contents/View.aspx?template=ir_

material_for_fiscal_ym&sid=35790&code=8267; Auchan

Holding, 2016 Annual Financial Report, April 30, 2018,

https://www.auchan-holding.com/uploads/files/modules/

results/1504611432_59ae8c68d5036.pdf; D&B Hoovers,

“EDEKA ZENTRALE AG & Co. KG,” April 30, 2018, http://

www.hoovers.com/company-information/cs/company-

profile.edeka_zentrale_ag__co_kg.109606d824e6baca.html;

Groupe Casino, 2016 Registration Document, April 30, 2018,

https://www.groupe-casino.fr/en/wp-content/uploads/

sites/2/2014/01/Document-de-reference-EN.pdf.

9. Walmart et al.

10. Jonnelle Marte, “Google, Square thwarted by banks’

1970s tech,” MarketWatch, November 5, 2013, https://www.

marketwatch.com/story/banks-rely-on-1970s-tech-to-move-

money-2013-10-21.

11. Carmen Chai, “Contactless ‘tap-and-go’ cards finally enter

US market,” CreditCards.com, November 15, 2017, https://

www.creditcards.com/credit-card-news/contactless-tap-and-

go-cards-us-market.php.

37 References

6, 2018, http://www.unionpayintl.com/en/mediaCenter/

newsCenter/companyNews/3533.shtml.

31. “Global Cards - 2016.”

32. “Annual Report 2017,” VISA, PDF, January 30, 2018,

https://s1.q4cdn.com/050606653/files/doc_financials/

annual/2017/Visa-2017-Annual-Report.pdf.

33. “Global Cards - 2016.”

34. “Merchant Customer Exchange,” Wikipedia, https://

en.wikipedia.org/wiki/Merchant_Customer_Exchange.

35. Jeff Bukhari, “That Chip on Your Credit Card Isn’t

Stopping Fraud After All,” Fortune, February 1, 2017, http://

fortune.com/2017/02/01/credit-card-chips-fraud/.

36. Al Pascual, Kyle Marchini, and Sarah Miller, “2018 Identity

Fraud: Fraud Enters a New Era of Complexity,” Javelin

Strategy & Research, PDF, February 6, 2018, https://www.

javelinstrategy.com/coverage-area/2018-identity-fraud-fraud-

enters-new-era-complexity.

37. U.S. Payments Forum, “Card-Not-Present Fraud around

the World,” PDF, March 2017, https://www.uspaymentsforum.

org/wp-content/uploads/2017/03/CNP-Fraud-Around-the-

World-WP-FINAL-Mar-2017.pdf.

38. “Card Fraud Losses Reach $22.80 Billion,” The Nilson

Report, PDF, October 2017, https://nilsonreport.com/upload/

content_promo/The_Nilson_Report_Issue_1118.pdf.

39. Ben Knieff, “2016 Global Consumer Card Fraud: Where

Card Fraud is Coming From,” Aite Group and ACI Worldwide,

PDF, July 2016, https://www.aciworldwide.com/-/media/files/

collateral/trends/2016-global-consumer-card-fraud-where-

card-fraud-is-coming-from.pdf.

22. Capgemini and BNP Paribas, “World Payments Report

2017,” PDF, October 9, 2017, https://www.capgemini.com/

en-us/wp-content/uploads/sites/2/2017/10/world-payments-

report-2017_year-end_final_web-002.pdf.

23. Kim Zetter, “That Insane, $81M Bangladesh Bank Heist?

Here’s What We Know,” WIRED, May 17, 2016, https://www.

wired.com/2016/05/insane-81m-bangladesh-bank-heist-

heres-know/.

24. Sriram Iyer and Anwesha Ganguly, “Everything you need

to know about the $1.8 billion PNB-Nirav Modi fraud,” Quartz

India, February 16, 2018, https://qz.com/1208266/the-1-8-

billion-punjab-national-bank-nirav-modi-fraud-explained/.

25. Chief General Manager, Jose J. Kattoor, “Press Release,”

Reserve Bank of India, February 20, 2018, https://rbi.org.in/

scripts/bs_pressreleasedisplay.aspx?prid=43181.

26. SBI Holdings, Inc., “Financial Results,” PDF, July 27, 2017,

http://www.sbigroup.co.jp/english/investors/disclosure/

presentation/pdf/170727presentations.pdf.

27. McKinsey & Company, “Global Payments 2016: Strong

Fundamentals Despite Uncertain Times,” PDF, September

2016, https://www.mckinsey.com/~/media/McKinsey/

Industries/Financial%20Services/Our%20Insights/A%20

mixed%202015%20for%20the%20global%20payments%20

industry/Global-Payments-2016.ashx.

28. Ripple, “Solution Overview,” PDF, April 30, 2018, https://

ripple.com/files/ripple_solutions_guide.pdf.

29. Jeff John Roberts, “Western Union Is Testing Ripple and

XRP for Money Transfers,” Fortune, February 14, 2018, http://

fortune.com/2018/02/14/ripple-xrp-western-union-money-

transfers/.

30. “The transaction volume for UnionPay reached 14.95

trillion US dollars in 2017,” UnionPay International, February

38 References

49. “PayPal Q1-18 Investor Update,” PayPal, PDF, April

25, 2018, https://investor.paypal-corp.com/common/

download/download.cfm?companyid=AMDA-4BS3R8

&fileid=978256&filekey=00F974E6-C92A-44BE-82AE-

3DF86E429149&filename=Investor_Update_First_

Quarter_2018.pdf.

50. Pratik Bhakta, “Paytm transactions reportedly grew four-

fold to $20 billion in February,” The Economic Times, March

20, 2018, https://economictimes.indiatimes.com/small-biz/

startups/newsbuzz/paytm-transactions-reportedly-grew-

four-fold-to-20-billion-in-february/articleshow/63375003.

cms.

51. Pascual, Marchini, Miller.

40. Identity Theft Resource Center and CyberScout, “2017

Annual Data Breach Year-End Review,” PDF, https://www.

idtheftcenter.org/images/breach/2017Breaches/

2017AnnualDataBreachYearEndReview.pdf.

41. Tara Siegel Bernard et al. “Equifax Says Cyberattack May

Have Affected 143 Million in the U.S.,” New York Times online,

September 7, 2017, https://www.nytimes.com/2017/09/07/

business/equifax-cyberattack.html.

42. Miles Parks, “Target Offers $10 Million Settlement in Data

Breach Lawsuit,” NPR online, March 19, 2015, https://www.

npr.org/sections/thetwo-way/2015/03/19/394039055/target-

offers-10-million-settlement-in-data-breach-lawsuit.

43. Nicole Perlroth, “All 3 Billion Yahoo Accounts Were

Affected by 2013 Attack,” New York Times online, October

3, 2017, https://www.nytimes.com/2017/10/03/technology/

yahoo-hack-3-billion-users.html.

44. “From Tickets to Tastings: American Express Introduces

the Anniversary Collection to Celebrate 25 Years of the

Membership Rewards® Program,” American Express

Company, June 30, 2016, http://about.americanexpress.

com/news/pr/2016/amex-celebrates-25-years-membership-

rewards.aspx.

45. Kapron and Meertens.

46. Kapron and Meertens.

47. Mary Meeker, “Internet Trends 2017,” Kleiner Perkins

Caufield & Byers, PDF, May 31, 2017, http://www.kpcb.com/

file/2017-internet-trends-report.

48. Chief Executive Officer, Dan Schulman, “PayPal’s Fourth-

Quarter and Full-Year 2017 Results,” PayPal, January 31, 2018,

https://www.paypal.com/stories/us/paypals-fourth-quarter-

and-full-year-2017-results.

3/29/2021 The Harvest Finance Launch 🚜. Harvest automatically farms the highest… | by Harvest Finance | Harvest Finance | Medium

https://medium.com/harvest-finance/the-harvest-finance-project-338c3e5806fc 1/5

The Harvest Finance Launch 🚜
Harvest automatically farms the highest yields in DeFi.

Harvest Finance Follow

Aug 29, 2020 · 4 min read

🥖 Bread For The People ��
📈 In the last few months, yield farming has become an unstoppable force. Humble

farmers from all over the world have been tilling their crops to help feed themselves.

Some get ample harvest, but many don’t!

3/29/2021 The Harvest Finance Launch 🚜. Harvest automatically farms the highest… | by Harvest Finance | Harvest Finance | Medium

https://medium.com/harvest-finance/the-harvest-finance-project-338c3e5806fc 2/5

Farmers are a diverse bunch, they have varying degrees of expertise and experience, and

farming can prove to be very cumbersome for those farmers who lack access to skills,

knowledge, tools and information.

The history of agriculture has been marked by technological advancements that allowed

human populations to scale by maximizing the available yield through better tools and

crop selection.

As you can see in the image above, we evolved from using primitive tools like the yoke to

advanced machines like the tractor, which allowed humans to maximize yield and scale

our population to billions. 🌾

With that, we present Harvest 🚜, a tool that helps farmers of all shapes and sizes get

automatic exposure to the highest yield available across select decentralized finance

protocols.

We hope this will make yield farming more accessible and help create a sustainable

community-governed farming cooperative that only has one goal in mind:

#BreadForThePeople. 🥖��

📚 Protocol Design
Harvest automatically farms the highest yielding assets and distributes the profits

among the people. 🌿

The harvesting strategies are flexible and future-proof. A majority of the past and

upcoming assets can be farmed through Harvest. New crops with standard

implementation can be farmed for you as they see the light of the world. Non-

standard crops will be farmed as soon as respective strategies get developed.

Harvest’s clean and consistent design allows outside developers to easily add to it

and receive rewards for their efforts. There is no time to waste while weeds are

growing. 🌱

The governance cannot drain staked assets or farmed crops from the farming

strategies. Your beans will always be safe. 🧺

📈 Protocol Incentives

3/29/2021 The Harvest Finance Launch 🚜. Harvest automatically farms the highest… | by Harvest Finance | Harvest Finance | Medium

https://medium.com/harvest-finance/the-harvest-finance-project-338c3e5806fc 3/5

In addition to the yields from harvesting, the protocol provides incentives to its users

for making deposits. Users of Harvest receive $FARM 🚜.

Protocol profits are distributed to the holders of $FARM which aligns incentives for

Harvest users to govern and hold a stake in its continuous success.

� Token Distribution
Total $FARM supply: 5,000,000 FARM distributed over 4 years

Circulating supply at launch: 0 FARM

FARM is bootstrapped and has no VCs or investors

Emissions happen as rewards are farmed:

70% for liquidity providers from incentive pools

10% rewards to operational treasury

20% rewards to team for building Harvest

� FARM holders receive the 5% fee from Harvest operations.

💸 Reward Distribution
Through our automated yield farming, users will receive rewards depending on which

pool they enter, which are automatically harvested into the base pool asset. In addition

to the yields and rewards from harvesting, the protocol provides incentives to its users

for making deposits. Users of Harvest receive $FARM 🚜. Through adding new pools

and strategies, we will be able to keep expanding the list of reward assets.

Protocol Emissions for Bootstrapping Period:

Week 1: 57569.1

Week 2: 51676.2

Week 3: 41250.3

Week 4: 30824.4

Total for first 4 weeks: 181,320 (3.63% of supply)

After week 4: constant emission of 23555 FARM per week for 4 years

🏎 How You Can Participate

3/29/2021 The Harvest Finance Launch 🚜. Harvest automatically farms the highest… | by Harvest Finance | Harvest Finance | Medium

https://medium.com/harvest-finance/the-harvest-finance-project-338c3e5806fc 4/5

Harvest will launch in the next few days and will be available to all yield farmers who

would like to use the protocol and participate in our cooperative.

The countdown clock has begun on https://harvest.finance/

The deposit page will open on Monday Aug 31st, at 7pm UTC.

FARM rewards for incentive pools begin on Tuesday Sep 1st, at 7pm UTC. Be sure to

stake before that for maximum FARM yields 🚜.

#BreadForThePeople 🥖��

📱 Discord and Twitter
Join our Discord discussion at https://discord.gg/UZvqBjZ

Don’t miss an update by following us at https://twitter.com/harvest_finance

3/29/2021 The Harvest Finance Launch 🚜. Harvest automatically farms the highest… | by Harvest Finance | Harvest Finance | Medium

https://medium.com/harvest-finance/the-harvest-finance-project-338c3e5806fc 5/5

Check out our Github https://github.com/harvest-finance/harvest

✌ Acknowledgements
Thanks to:

The many people who helped out with this project, including providing comments

and helpful suggestions for the early iterations of this product.

Weeb, who has created one of the most useful public goods at

https://yieldfarming.info/

Andre Cronje, who provided inspiration in that a lone developer can build so much

useful DeFi infrastructure so quickly. He’s a great example of what is possible in the

world of DeFi where barriers to entry have been greatly reduced, and software,

creativity, and value are so closely interlinked.

The community for participating in this farming cooperative with us, thank you!

About Help Legal

Get the Medium app

Tornado Cash Privacy Solution

Version 1.4

Alexey Pertsev, Roman Semenov, Roman Storm

December 17, 2019

1 Introduction

Tornado.Cash implements an Ethereum zero-knowledge privacy solution: a smart contract that accepts
transactions in Ether (in future also in ERC-20 tokens) so that the amount can be later withdrawn with
no reference to the original transaction.

2 Protocol description

The protocol has the following functionality:

• Insert/deposit money to the smart contract. This can be done in a single transaction with a fixed
amount (denoted by N) of Ether. The N -ETH note is called a coin.

• Remove/withdraw money from the smart contract can be done in 2 ways:

– The N ETH is withdrawn through a Relayer with f Ether sent as a fee to the Relayer address
t and (N − f) to the designated recipient. The value f and t is chosen by the sender. In
this case the withdraw transaction is initiated by the Relayer and it pays the Gas fee that is
supposed to be covered by f .

– The N ETH is withdrawn to the designated recipient, the transaction is initiated by the
recipient. The recipient should have enough ETH to pay Gas fee for the transaction. In that
case fee f is considered to be equal to 0.

2.1 Setup

Let B = {0, 1}. Let e be the pairing operation used in SNARK proofs, which is defined over groups of
prime order q.

Let H1 : B∗ → Zp be a Pedersen hash function defined in [Ped]. Let H2 : (Zp,Zp) → Zp be the
MiMC hash function [AGR+16] defined as a MiMC permutation in the Feistel mode in a sponge mode
of operation1.

Let T be a Merkle tree of height 20, where each non-leaf node hashes its 2 children with H2. It is
initialized with all leafs being 0 values. Later the zero values are gradually replaced with other values
from Zp. Let O(T , l) be the Merkle opening for leaf with index l (value of sister nodes on the way from
leaf l to the root, denoted by R) in tree T .

Let us call k ∈ B248 a nullifier and r ∈ B248 a randomness. Let us denote an Ethereum address of
the coin recipient by A.

Let S[R, h,A, f, t] be the following statement of knowledge with public values R, h,A, f, t:

S[R, h,A, f, t] = {I KNOW k, r ∈ B248, l ∈ B16, O ∈ Z16
p SUCH THAT h = H1(k)

AND O is the opening of H2(k||r) at position l to R} (1)

1https://github.com/iden3/circomlib/blob/master/src/mimcsponge_gencontract.js

1

2.2 Deposit 3 IMPLEMENTATION

where A and f are included into the context of the statement. Here h is called nullifier hash and || is
concatenation of bitstrings.

Let D = (dp, dv) be the ZK-SNARK [Gro16] proving-verifying key pair for S created using some
trusted setup procedure. Let Prove(dp, T , k, r, l, A, f, t) → P be the proof constructor using dp and
Verify(dv, P,R, h,A, f, t) be the proof verifier.

Let C be the smart contract that has the following functionality:

• It stores the last n = 100 root values in the history array. For the latest Merkle tree T it also stores
the values of nodes on the path from the last added leaf to the root that are necessary to compute
the next root.

• It accepts payments for N ETH with data C ∈ Zp. The value C is added to the Merkle tree, the
path from the last added value and the latest root is recalculated. The previous root is added to
the history array.

• It verifies the alleged proof P against the submitted public values (R, h,A, f, t). If verification
succeeds, the contract releases (N − f) ETH to address A and fee f ETH to the Relayer address t.

• It verifies that the coin has not been withdrawn before by checking that the nullifier hash from the
proof has not appeared before and if so, adds it to the list of nullifier hashes.

2.2 Deposit

To deposit a coin, a user proceeds as follows:

1. Generate two random numbers k, r ∈ B248 and computes C = H1(k||r)

2. Send Ethereum transaction with N ETH to contract C with data C interpreted as an unsigned
256-bit integer. If the tree is not full, the contract accepts the transaction and adds C to the tree
as a new non-zero leaf.

2.3 Withdrawal

To withdraw a coin (k, r) with position l in the tree a user proceeds as follows:

1. Select a recipient address A and fee value f ≤ N ;

2. Select a root R among the stored ones in the contract and compute opening O(l) that ends with R.

3. Compute nullifier hash h = H1(k).

4. Compute proof P by calling Prove on dp.

5. Perform the withdrawal in one of the following ways:

• Send an Ethereum transaction to contract C supplying R, h,A, f, t, P in transaction data.

• Send a request to Relayer supplying transaction data R, h,A, f, t, P . The Relayer is then
supposed to make a transaction to contract C with supplied data.

The contract verifies the proof and uniqueness of the nullifier hash. In the successful case it sends (N−f)
to A and f to the Relayer t and adds h to the list of nullifier hashes.

3 Implementation

The cryptographic functions for off-chain use are implemented in the circomlib library2. The Solidity
implementation of Merkle tree, deposit, and withdraw logic is by the authors3. The Solidity implemen-
tation of MiMC is by iden34. The SNARK keypair and the Solidity verifier code are generated by the
authors using SnarkJS. The other protocol logic (e.g., Ethereum transaction composition, SNARK proof
construction calls) is by the authors5.

2https://github.com/iden3/circomlib/tree/master/circuits
3https://github.com/tornadocash/tornado-core/tree/master/contracts
4https://github.com/iden3/circomlib/blob/master/src/mimcsponge_gencontract.js
5https://github.com/tornadocash/tornado-core/blob/master/cli.js

2

REFERENCES

4 Security claims

Tornado claims the following security properties:

• Only coins deposited into the contract can be withdrawn;

• No coin can be withdrawn twice;

• Any coin can be withdrawn once if its parameters (k, r) are known unless a coin with the same k
has been already deposited and withdrawn.

• If k or r is unknown, a coin can not be withdrawn. If k is unknown to the attacker, he can not
prevent the one who knows (k, r) from withdrawing the coin (this includes all cases of front-running
a transaction).

• The proof is binding: one can not use the same proof with a different nullifier hash, another recipient
address, or a new fee amount.

• The cryptographic primitives used by Tornado have at least 126-bit security (except for the BN254
curve where the discrete logarithm problem has something like 100-bit security), and the security
does not degrade because of their composition.

• For each withdrawal every deposit since the last moment when the contract has zero Ether till the
formation of the root in the proof can be a potential coin, though some coins are more likely to be
withdrawn depending on the user behaviour.

References

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, et al. “MiMC: Efficient Encryp-
tion and Cryptographic Hashing with Minimal Multiplicative Complexity”. In: ASIACRYPT
(1). Vol. 10031. Lecture Notes in Computer Science. 2016, pp. 191–219 (cit. on p. 1).

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EUROCRYPT
2016. Vol. 9666. LNCS. Springer, 2016, pp. 305–326 (cit. on p. 2).

[Ped] Iden3: Pedersen Hash. https://iden3-docs.readthedocs.io/en/latest/iden3_repos/
research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.

html. 2019 (cit. on p. 1).

3

1 | N e x u s M u t u a l

NEXUS MUTUAL
A peer-to-peer discretionary mutual on the Ethereum blockchain.

HUGH KARP, REINIS MELBARDIS

ABSTRACT

The insurance industry has developed over time from a community-based model to an adversarial

one where large institutions dominate. It is also inefficient in many areas leading to large frictional

costs being borne by customers. Blockchain technology allows individuals to efficiently transact

directly with each other and therefore enables the core insurance entity to be replaced. Nexus

Mutual uses blockchain technology to bring the mutual ethos back to insurance by creating aligned

incentives through smart contract code on the Ethereum blockchain.

BACKGROUND

Before insurance companies existed,

communities would group together

themselves. They would pool resources to

protect individual members from risks they

all faced.1 If an unfortunate event occurred

the senior members of the community would

decide whether to provide assistance or not.

All funds raised were used to benefit the

members of the community.

In developed nations we have largely moved

away from this community approach

primarily due to the underlying economics of

insurance. Insurance economics are driven

by diversification. The more individual risks

that are pooled together the less capital is

required to be confident all claims can be

met.2 Scale benefits are significant and

community models don’t have the means to

access them easily.

Moving away from the community model

brought other challenges, in particular the

issue of agency. An insurer is looking after

customers money and then promising it will

pay when a claim arises. As a result, the

insurer is becoming an agent of the customer

1 https://en.wikipedia.org/wiki/Mutual_insurance

2 https://en.wikipedia.org/wiki/Law_of_large_numbers

and history has proven this model doesn’t

work without heavy oversight from

government institutions and complex legal

frameworks. These frameworks are

necessary primarily due to the lack of trust

between customers and the institution and

boil down to two main points:3

1. AGENCY - Insurers decide on how

customers money is handled. Including

how it is invested, which insurance risks

it will back and when it gets paid out to

shareholders. They also have an implied

option where there is potentially

unlimited upside but if the insurance

company goes bust it is customers that

suffer. Interests are not directly aligned.

2. TRANSPARENCY - A customer finds it

extremely difficult to assess how safe a

particular insurer is. There is a clear

information asymmetry issue.

In developed nations both of these issues are

dealt with primarily via law and prudential

regulation – a complex combination of

standards defining minimum capital levels,

governance processes, reviews and regular

financial reporting. Regulation in this way is

largely effective, barring a handful of high

3 http://fsi.gov.au/publications/

2 | N e x u s M u t u a l

profile exceptions4, but brings additional

costs and reduced flexibility.

Even with this burden the institutional

model has provided significant benefits to

customers via reduced premiums and deeper

pockets. The underlying diversification

benefits have more than outweighed the

regulatory burden. But there is still

substantial unnecessary cost in the system.

Roughly 35%5 of insurance premiums are

lost due to frictional costs in the system. Only

65% of premiums are returned to customers

via claims, the rest is lost in distribution,

operational expenses (including regulatory),

capital costs and profit.

Blockchain technology and smart contracts

can strip out not only the administrative

inefficiencies but a large portion of the

governance and regulatory related costs.

They can do this by providing trust in a

different, much more cost-effective way.

Trust is moved from institutions and

regulations to transparent code. Of the 35%

of frictional costs we believe blockchain

technology can cut out approximately 18%6

due to administrative savings and reduced

governance and regulatory costs, effectively

halving the frictional costs in the system.

Additionally, through the use of membership

tokens, blockchain technology can bring back

the original goals of the mutual where all

contributions are entirely for the benefit of

members. Aligned incentives will foster a

community spirit rather the existing

adversarial and unbalanced relationship

between individual and large institution.

4https://en.wikipedia.org/wiki/List_of_corporate_collapses_and_s

candals

5http://www.mckinsey.com/industries/financial-services/our-

insights/what-drives-insurance-operating-costs

http://www.guycarp.com/content/dam/guycarp/en/documents/

dynamic-

content/Insurance_Risk_Benchmarks_Research_Annual_Statistical

_Review.pdf

6 See Appendix A

Blockchain technology allows a peer-to-peer

insurance mutual to be recreated in a cost

effective and scalable way. It allows the

cooperative ethos to be regained while

preserving the benefits of diversification.

SOLUTION OVERVIEW

The following components are necessary for

a peer-to-peer risk sharing mutual:

1. MEMBERSHIP TRACKING – A way to track

individual members, including their

proportional ownership.

2. CLAIMS ASSESSMENT METHODOLOGY – A

way for claims to be approved or

declined.

3. CAPITAL MODEL – To define how much

capital is required to back the risks at

any point in time.

4. FUNDING – Ability to attract capital to

back the risks and reward that capital

appropriately for the risks taken.

Initially and on an ongoing basis.

5. INVESTMENT RETURNS – Insurers hold

customers money until a claim event

occurs. During this time they tend to

invest these funds, usually quite

conservatively, to earn additional

return.

6. PRODUCT – A viable product to sell,

including underwriting rules and other

acceptance criteria.

7. PRICING – A method for determining the

fair risk charge for the risk cover and a

way for it to adjust over time.

8. DISTRIBUTION – Tools and incentives to

attract new members to the mutual.

9. IDENTITY – An identity module will be

required as part of the sign-up process

to conform with legal and regulatory

requirements.

10. GOVERNANCE – A way to upgrade,

enhance and fine-tune the code in line

with the wishes of the membership base,

3 | N e x u s M u t u a l

as well as the ability to interact with the

non-blockchain world.

11. TRANSPARENCY – Real time reporting of

capital position and risk exposures.

12. LEGAL FRAMEWORK – A safe legal and

regulatory environment to operate

within.

The next sections of the paper will describe

each of these components in turn, followed

by additional comments on the competitive

strategy.

A visual overview of the general structure, is

shown below:

4 | N e x u s M u t u a l

MEMBERSHIP

A simple ERC-20 compatible token will be

created to serve as the key internal incentive

mechanism to bind the mutual together.

A continuous token model will be used so

that tokens can be purchased at any time but

at a variable price. This contrasts to more

common ICO type approaches where there is

a fixed purchase period with set price change

points, followed by a speculation-driven

market on exchanges.

The token price will vary based on 1)

funding level of the Capital Pool and 2) the

minimum amount of capital required to

support existing covers (which provides a

link to business growth):

Note: Diagram illustrates funding level only. Price

also varies with the amount of capital required to

support existing cover.

𝑇𝑃 = 𝐴 +
𝑀𝐶𝑅𝐸𝑇𝐻

𝐶
∙ 𝑀𝐶𝑅%4

TP = Token Price in Ether

MCRETH = The minimum amount of capital

required to support existing covers, Minimum

Capital Requirement, in Ether. The MCR is

calibrated to a 99.5% solvency level.

MCR% = Ratio of Capital Pool funds to the

Minimum Capital Requirement.

A and C = Fixed constants, to be calibrated

based on the prevailing Ether price before

launch.

Tokens can only be created in the following

ways:

1. INITIAL TOKENS – Some tokens will be set

aside for founders and early

contributors when the contract is

deployed.

2. PURCHASED VIA THE TOKEN PRICE MODEL –

Anyone, at any point, can purchase

tokens via the token price model. When

funding is required (ie low MCR%) the

price will be lower to encourage funds

to be placed. Conversely the token price

increases when funds are more plentiful.

Price also increases based on the

business growth (represented by

growth in the MCR) which places a

natural throttle on token issuance. The

token model ensures a balance is

reached between adequate

compensation for the risks taken by

early participants and allowing future

members to join at any time.

3. CLAIMS ASSESSMENT REWARDS – Additional

member tokens are allocated as an

incentive to perform claims assessment.

This will be limited to a fixed percentage

of the cost of cover.

4. RISK ASSESSMENT REWARDS – Additional

member tokens are allocated as an

incentive for participating in risk

assessment.

5. GOVERNANCE – Additional member

tokens are allocated as an incentive for

participating in governance.

While the supply of member tokens is not

fixed all methods of generating new member

tokens require a specific contribution to the

mutual. Contributions are made as either

funds or services (claims assessment, risk

assessment or voting in governance).

Membership tokens can be used in the

following ways:

1. PURCHASING COVER – Member tokens can

be used (“burned”) to purchase cover. In

this case the token value is determined

5 | N e x u s M u t u a l

by the continuous token model. 90% of

the tokens used are burned, with the

remaining 10% locked for the cover

period plus 35 days, as they are required

to submit a claim.

2. CLAIMS ASSESSMENT STAKE – To

participate in claims assessment and

earn the resulting income, member

tokens must be staked.

3. RISK ASSESSMENT STAKE – To participate

in assessing risks and earning

commissions a stake is required.

4. REDEMPTION - If the Capital Pool has

sufficient funds redemptions of member

tokens in exchange for Ether is

permitted.

The following restrictions will apply:

1. Capital Pool needs to be above the

MCR (MCR% > 100%).

2. Redemptions are capped per

transaction.

3. The Capital Pool must have enough

liquidity in Ether.

4. Sell price will be 2.5% below the

prevalent buy price.

Only members of the mutual will be able to

own tokens. As such, tokens cannot be

transferred to any Ethereum address that

has not been designated as a member.

CLAIMS ASSESSMENT

There are two main approaches to claims

assessment using blockchain technology.

Firstly, using an oracle which is either a

trusted off-chain information provider (eg to

trigger parametric insurance events) or

secondly, crowd-sourcing information and

assessing claims using voting mechanics (eg

a prediction market).

Under a discretionary mutual model there is

a legal requirement that a group or sub-

group of members decide on how funds are

distributed. This immediately focusses

efforts on the crowd-source approach but

there are other arguments that limit the

usefulness of parametric trigger-based

cover:

1. BASIS RISK7 - This can lead to poor

customer outcomes especially when

customers have suffered a loss but the

trigger has not technically been met.

2. ORACLE FAILURE - Back-up claims process

mechanisms will be required if the

oracle were to fail.

3. LIMITED PRODUCT SET – Product

development requires a reliable data

oracle to exist. The data must also be

sufficiently granular to construct a

meaningful consumer product. IoT

devices are expected to bring many

more potential data oracles in the future

but are currently not widespread or

reliable enough.

Returning to the crowd-source model, there

needs to be an incentive for people to report

and a strong disincentive to prevent

fraudulent reporting. This is somewhat

difficult to achieve in an insurance context

because there is a clear incentive to defraud

the pool by 1) purchasing cover for a low

percentage of the cover amount, 2) using a

substantial portion of the cover amount to

pay-off claims assessors and then 3)

pocketing the difference.

A solution to this issue is to require claims

assessors to have a significant stake in the

success of the overall pool and a high

disincentive to act dishonestly. This can be

achieved by requiring a stake be posted in

the form of membership tokens. The stake is

deposited for a specified period of time and

provided claims are assessed honestly it is

returned. If the Advisory Board deems a

claims assessor to be acting dishonestly it

has the power to burn the staked member

tokens.

7https://www.questia.com/library/journal/1P3-

1252828171/understanding-basis-risk-in-insurance-contracts

6 | N e x u s M u t u a l

In addition, the following other incentive

structures will be put in place:

• Voting with the consensus outcome

entitles claims assessors to a share of

the fee pool. Fees will be paid as

additional member tokens and valued at

a fixed percentage of the cost of cover.

• Voting against the consensus outcome

results in locking of the bond for a

longer period. Assessment is often

challenging and automatically burning

high values of member tokens for

genuine differences of opinion needs to

be avoided.

• Voting power must add up to greater

than 5x the cover amount, where voting

power is determined by the number of

staked member tokens used to vote.

• No consensus results in a reduced fee

pool for claims assessors and the claim

is then escalated to all members for a

vote.

• Member tokens contributing to claims

assessment voting become “inactive”

and cannot contribute to another claims

assessment for 12 hours. This prevents

posting a sufficiently high stake,

submitting many fraudulent claims of

total value well above the staked

amount and then approving them all.

The Advisory Board has time to step in

and burn tokens before too many

fraudulent claims are approved. In this

case the members would benefit overall

as the accretive benefit from the burned

member tokens would outweigh the

fraudulent claims cost.

• Calibrations of the incentive

mechanisms need to be refined in

testing.

Designing incentive structures resilient to

game theoretic attacks is very challenging.

The approach described has a basic incentive

structure at its core and then overlays timing

windows and human intervention to prevent

more extreme scenarios.

7 | N e x u s M u t u a l

CAPITAL MODEL

The capital model determines the minimum

capital the fund needs to hold. The funding

rules in the next section then reference the

Minimum Capital Requirement (MCR) and

determine actions such as the token price

and redemption restrictions.

The capital model will borrow heavily from

EIOPA’s Solvency II8 methodology which is

calibrated to withstand events in a year with

a 99.5% probability, or, in other words, a 1-

in-200 year event. This is consistent with

many other regulatory standards of nations

such as Australia9, Bermuda, Japan, Mexico

and Singapore who either have specific

targets of 99.5% or are on the way to gaining

“equivalence” with the SII regime.

An alternative approach is to 100%

collateralise the insurance contracts,

essentially holding the full sum assured

value at all times. In combination with the

immutability of the blockchain this would

give the consumer an extremely high level of

security. This comes at the cost of severely

reduced capital efficiency and the ability to

raise funds at an appropriate price. As a

simple example, assume we have 10,000 (n)

identical policies each with a chance of claim

of 1% (p) for a sum assured of $100 (v).

Assuming independence the 99.5%

Minimum Capital Requirement (MCR) is

given by:

Mean = = p n = 100

Std Dev = = √𝑛 ∙ 𝑝 ∙ (1 − 𝑝) = 9.9499

MCR = 𝑣 ∙ (+ 2.58 ∙) = $12,567

8https://eiopa.europa.eu/regulation-

supervision/insurance/solvency-ii

9http://www.apra.gov.au/Policy/Documents/Regulation-Impact-

Statement-LAGIC.pdf

http://www.aon.com/attachments/reinsurance/052011_ab_latin

_america_solvency_regulation_paper_051911.pdf

https://www.munichre.com/site/corporate/get/documents_E-

2113795143/mr/assetpool.shared/Documents/5_Touch/_Public

ations/302-08131_en.pdf

Total Exposure = n 𝑣 = $1,000,000

In this example, we expect 1% of the total

exposure to be paid out in claims, but with

10,000 contracts we only need 1.26% of the

total exposure to be confident the fund will

be solvent in 199 out of 200 scenarios. This

diversification benefit needs to be leveraged

otherwise we cannot compete with existing

institutions.

The capital model is structured in multiple

modules, where each module represents a

product and currency pair. In addition, there

is a currency module (fx) to account for

currency risk. The modules are then

combined at a total level to get the MCR. In

its simplest form, with one product and one

currency there are three modules, M1, fx and

CM.

The base calculation currency is Ether as the

pool will be Ether dominated to start with.

The MCR of each individual module is

calculated in its currency (ie ETH or DAI10)

and then converted to Ether in the

combining module.

Focussing on module one to begin with, and

assuming the product has a fixed sum

assured MCRM1 is defined as follows:

MCRM1= √∑ 𝐶𝑜𝑟𝑟(𝑖, 𝑗) ∙ 𝐸𝑥𝑝(𝑖) ∙ 𝐸𝑥𝑝(𝑗)𝑖,𝑗

Where;

10 https://makerdao.com/whitepaper/DaiDec17WP.pdf

8 | N e x u s M u t u a l

Corr(i,j) is the correlation matrix of the

individual pricing risk cells;

Corr(i,j) = [
1 ⋯ 𝑐𝑜𝑟𝑟(𝑗, 𝑖)
⋮ ⋱ ⋮

𝑐𝑜𝑟𝑟(𝑖, 𝑗) ⋯ 1
]

And Exp(i) = Total probability-weighted

exposure (or cover amount) in pricing risk

cell i.

The correlation matrix may be very simple if

independence between cells can be assumed

in which case MCRM1 reduces to:

MCRM1= √∑ 𝐸𝑥𝑝(𝑖)𝑖

It is possible that each product module may

have a different formulaic logic to get to an

assumed 99.5% confidence capital

requirement. In particular, this would be

required with indemnity-based products

rather than fixed cover amount values.

The next step is the currency module (fx)

which takes the MCR’s of each module in a

particular currency (k), compares that to the

value actually held in the pool, Vj, and applies

a currency shock of 50%, both up and down,

and then chooses the maximum value. The

sum of all these becomes MCRfx:

MCRfx = k | (k MCRi – Vk) / 50%| fxk to

Where fxk to is the exchange rate to Ether.

The combining module then takes a similar

approach to the MCRM1 calculation, treating

each module as its own pricing risk cell and

assuming a correlation between different

modules:

MCRTot=√∑ 𝐶𝑜𝑟𝑟(𝑙,𝑚) ∙ 𝑀𝐶𝑅(𝑙) ∙ 𝑀𝐶𝑅(𝑚)𝑙,𝑚

subject to a minimum value.

Where, Corr(l,m) is the correlation matrix of

the modules:

Corr(l,m) = [
1 ⋯ 𝑐𝑜𝑟𝑟(𝑙,𝑚)
⋮ ⋱ ⋮

𝑐𝑜𝑟𝑟(𝑙,𝑚) ⋯ 1
]

A minimum MCR value will be set when the

pool launches and the MCR value can never

drop below this.

The total MCR will need to be calculated

regularly, probably at least once per day, as it

is needed as a reference item for funding

triggers. Operationally this will work as

follows:

• Calculation will need to be performed

off-chain, due to gas requirements, with

the result being notarised on-chain.

• The capital model code will be open-

source and all inputs will be available

on-chain (either directly or via oracles

for currency exchange rates) or as part

of the model itself.

• Correct running of the model will be

verified on-chain.

• Updates to the model or input

parameters will be handled via the

governance process.

• There will be a specified block number

on which calculations are made. This

locks the data inputs to the calculation

model and gives enough time for the

model to be run off-chain.

• To begin with it is likely the MCR will be

run in a trusted manner off-chain due to

technical limitations. In the future trust

minimising options for complex

computation will be investigated further

with a strong intention to remove this

reliance.

FUNDING

The funding levels are all effectively

governed by the continuous token model

described in the membership section. The

total Capital Pool value is V, which is

calculated as the sum of all the asset values

converted into Ether.

When the fund is first launched no covers

can be purchased until an MCR% of 100% is

achieved (which will be once the Capital Pool

9 | N e x u s M u t u a l

is equal to the Minimum Capital

Requirement). Once that happens the fund

goes live and the token model interacts with

the capital model to increase or decrease the

token price as required.

Another aspect of funding is the multi-

currency pool of funds. As member fees and

claim payments will be constantly flowing in

and out of the pool, rules are required (both

trigger limits and targets) to ensure the right

level of funds are held in each currency. Also,

as the capital model punishes mismatches in

fund pools vs MCRs by currency modules

(via greater MCRTot) a decision on allocation

is required. Targets and trigger limits will be

set, which can be updated via the governance

process as necessary.

Additionally, some trust-less way of

converting fiat-crypto tokens to Ether is

required to balance the pool. As per the

investment returns section, this will be

handled via the Uniswap11.

More broadly, there is an implicit

assumption throughout the paper regarding

the availability of a fiat-based crypto token

for all currencies the mutual wishes to trade

in. At present no widely adopted solutions to

this exist, though many companies and

organisations have publicly stated they are

developing solutions and MakerDAO has

recently gone live with DAI (a USD stable-

coin). Initially, Nexus Mutual will use Ether

and DAI ($USD) as its initial currencies and

wait for further solutions to develop and

become more widely adopted.

INVESTMENT RETURNS

Investment returns are an often under-

appreciated aspect to insurance as it allows

the insurance entity to earn returns on the

reserves it holds. This is a key component to

insurers’ profitability and therefore must be

replicated in some fashion if Nexus Mutual is

11 https://github.com/Uniswap/uniswap-info

able to compete with existing insurance

entities longer term.

As Nexus Mutual will hold all funds on-chain,

it will restrict itself to assets of ETH and

ERC20 tokens only. At present this asset

universe is quite small but it is expected to

grow substantially over time.

The investment process will be entirely

automated using the Uniswap protocol to

initiate trades. A buy and hold investment

strategy will be defined and trades will

rebalance the pool as required. There will

also be trading triggers to deal with liquidity

needs arising from claim payments. The

assets chosen will need to change over time,

with the changes initiated and approved via

the governance module.

Such an approach means basic investment

management can be entirely automated and

conducted in a trust-less way.

Ideally, the assets would generate a positive

return over time with very high probability,

akin to the portfolio composition of

traditional insurers which tend to be

dominated by corporate and government

debt instruments12. In the Ethereum world,

we see the current most appropriate

candidates for generating a return on ETH

as:

• locking up ETH to generate interest in

the proposed Proof of Stake system,

• investing in financial instruments based

on collateralised lending13

• acting as a guarantor in state channel

and payment channel networks.

Unfortunately, we are still some time away

from Ethereum moving to a Proof of Stake

system. With insufficient scale and liquidity

currently available in the various ETH-based

lending markets, becoming a payment

channel guarantor is more likely to be viable

12http://www.oecd.org/investment/Evolution-insurer-strategies-

long-term-investing.pdf

13 https://dharma.io/

10 | N e x u s M u t u a l

in the short term, but the technology still

needs to mature and be adopted more widely

by other blockchain applications. The

current lack of investment options is not

considered a major issue in the short term

given the expected short policy durations of

the initial product. It is therefore likely that

Nexus Mutual will initially launch without

any investment assets, only holding currency

assets closely matched to the liabilities of the

mutual.

An alternative approach would be to invest a

portion of the funds into a basket of ERC20

tokens, in the hope that they gain in value

relative to ETH. We do not see any reason to

believe that such investments exist and, if

they do, that we would be able to pick out

such a basket from the outset. However, such

investments could be made via the member

governance process.

PRODUCT

Initially the mutual will be launched with

only one product, Smart Contract Cover with

a fixed cover amount. The product will cover

“unintended code usage” where someone,

not necessarily the cover purchaser, has

suffered a financial loss on the smart

contract. As an example, the cover would pay

out on the DAO hack, and the two Parity

multi-sig wallet issues. It is not intended to

pay-out on loss/misuse/phishing of private

keys as this cannot be verified.

This product is seen to have a very good

market fit for the early adopters of the

platform. Security of smart contracts is a

well-publicised issue within the Ethereum

community with many technical efforts being

led to improve the situation. Longer term,

the intention is to expand the product range

into more regular insurance products and

become an alternative risk carrier for the

insurance industry.

The initial product has been chosen for

several reasons:

• Claims assessment can be done entirely

remotely using publicly available data

from block explorers.

• A fixed cover amount means claims

assessment is a simple “yes” or “no”

rather than requiring an assessment of

how much damage has been caused.

• The product pricing can be largely

automated allowing covers to be issued

without any mandatory manual

underwriting.

• It is not necessary to confirm the

member has an insurable interest in the

specific contract.

• The product is new to market with no

alternatives existing. Many developers

are very worried about deploying code

to main-net, as even with many security

audits and thorough testing you can

never be completely sure bugs don’t

exist.

• The likely short-term nature of the

covers is a good fit given the (lack of)

on-chain investment options available.

Numerous future products can be developed

such as indemnity-based cover, life cover,

auto cover etc. Many of them will require

some form of initial underwriting process

and much more complex claims assessment

procedures. The goal is to initially build a

product with a clear consumer need in our

target audience before expanding into

regular product lines.

PRICING & CAPACITY LIMITS

Given the lack of historic data on smart

contract hacks, related information on code

security will be used to assist pricing.

Additionally, it is expected that most new

contracts will start off with a very high (or

even uninsurable) cost which is then

reduced over time as the code is more battle-

tested. However, by itself this is not of any

material benefit to code developers as they

will often want cover immediately.

11 | N e x u s M u t u a l

Therefore, we are introducing the concept of

decentralised risk assessment, which

involves knowledgeable experts (think smart

contract security auditors) staking value in

the form of member tokens against specific

risks to reduce the price of cover.

If there is an early claim then part or all of

the stake will be lost. In return, the risk

assessor will earn commission in the form of

tokens for cover sold on that particular

address.

In this way, we are combining a standard

pricing algorithm with decentralised risk

assessment to develop a complete pricing

framework.

Another important risk mitigation technique

employed by the mutual involves capacity

limits. A relatively simple approach will be

taken whereby exposure to any single smart

contract (or related and very similar

contracts) will be limited to a fixed

percentage of the pool value. This ensures

that any one claim event does not put the

solvency of the mutual at risk.

From an upgrade perspective, any member

can propose a detailed one-off review of

pricing at any time. This would re-set the

base pricing with a new set of

rates/algorithm. Alternatively, pricing can be

provided off-chain via an API. This option is a

likely first improvement step which is easier

to implement and more flexible but

introduces a level of trust in the API.

Unlike traditional insurers, pricing will also

be flexible enough for cover periods in daily

increments, with a formula used to

determine rates for specific, non-yearly

cover periods.

DISTRIBUTION

Distribution will initially focus on the

relatively small group of cryptocurrency

enthusiasts, entirely within the

cryptocurrency sphere. This will enable any

teething issues to be identified before

building out more products and attempting

significant scaling by offering the product to

a mainstream audience. There is ample

opportunity in the short to medium term to

provide meaningful growth with the initial

product, in particular:

• WELL-FUNDED PROJECTS looking to deploy

code could purchase cover in case

something goes wrong. This would help

minimise reputational damage and

provide funds to compensate users if

necessary.

• INDIVIDUALS looking to interact with

smart contracts may want extra

confidence before exposing funds. Very

few individuals have the capability to

assess code quality by themselves. This

is especially important when large

values are involved.

• PROJECTS LAUNCHING AN ICO looking to

provide confidence to prospective

funders may want to pre-purchase cover

for their ICO contract code.

• MULTI-SIG WALLET CONTRACTS could be

insured. While not addressing private

key management issues this gives

greater confidence funds won’t just

disappear. This could form part of a

more comprehensive custody solution

designed by 3rd parties.

Distribution in the short term will come

primarily via community engagement and

promotion within the cryptocurrency

community driven from within the project.

Longer term, when the product range is

expanded to more typical products the main

challenges to wider distribution are:

• ACCESSING CRYPTO TOKENS – As future

products require purchasing fiat-crypto

tokens the development of consumer

wallet tools and processes is needed to

achieve any meaningful scale.

Approaches whereby distribution

partners handle the crypto aspects and

allow consumers to conduct business

12 | N e x u s M u t u a l

entirely outside the crypto sphere will

be the primary focus.

• FIXED SUM ASSURED – Most consumers are

accustomed to indemnity-based

products where claims paid cover losses

actually incurred.

• DISTRIBUTION PARTNERS – Many insurance

policies are sold through brokers, so

enabling an attractive financial

distribution model will be key to

attracting larger volumes. Distribution

tools and marketing material will need

to be developed.

In summary, the longer-term vision is not for

products to be mass marketed to consumers

directly, but rather as a B2B2C platform that

distribution partners can integrate with via

blockchain’s inherent open API architecture.

This is similar in nature to the concepts

behind existing insurance distribution and

the latest trends in open-banking in the UK.

Therefore, a key aspect to the long-term

success of the mutual are the distribution

partners. The smart contract platform is

designed to be as open as possible and

therefore quite flexible for distributors to

interact as they see fit (subject to any

compliance obligations).

IDENTITY

It will be necessary to identify all members

of the mutual. This is because each member

becomes a guarantor of the company and is

required by company law in the UK to be

identified.

There will be a simple identity process

where KYC is conducted that links an

Ethereum address to the customer, noting

that all identifying information is not held

on-chain. This will be a one-time process

when signing up as a member.

From then on, the Ethereum address will be

linked to the member. This serves a dual

purpose of legal compliance and providing

some level of Sybil attack prevention, noting

that the system is designed to be Sybil

resistant anyway.

GOVERNANCE

Ideally all potential actions can be defined by

the code but reality is much more complex

and fall-back options are required in several

circumstances. As such an Advisory Board

will be set-up to facilitate decisions requiring

interaction with the non-blockchain world as

well as govern some of the more extreme

scenarios. Importantly, the Advisory Board

has no custodial rights over the fund pool

and cannot release funds to any particular

person, with each Board member liable to be

replaced at any time via the member voting

process.

The Advisory Board will operate under two

core principles:

1. SUSTAINABILITY – Protect existing

members by ensuring the overall fund is

sustainable; and

2. GROWTH - Enable sustainable premium

and member growth.

At the start, it will contain several individuals

who are all members of the mutual and

contain a mix of expertise within insurance,

mutual governance and blockchain

development.

Advisory Board members will have the

following broad authorities, which will be

specified in more detail:

1. Facilitate and implement the wishes of

the membership base, particularly

where the code doesn’t specifically

allow automatic implementation.

2. Punish bad actors within the Claims

Assessment process.

3. Meet all the legal and regulatory

requirements of Nexus Mutual Ltd.

4. Implement emergency pause

functionality if required.

5. White-list and vote on proposals where

required.

13 | N e x u s M u t u a l

A detailed list of authorities will lay out what

Advisory Board members can agree on by

themselves and what proposals need to go to

members for a final decision.

All proposals put to a member vote must

contain a defined list of the possible voting

outcomes (eg Yes/No) as well as the

Advisory Board recommendation and vote

result. Members are then given a specified

timeframe to vote on the proposal. The

majority outcome prevails unless a specified

quorum is not met – then the vote proceeds

as per the Advisory Board recommendation.

Individual members can develop proposals

for the Advisory Board who will have some

discretion whether to “white-list” the

proposal or not. The aim is to “white-list” all

reasonable proposals.

Any individual member may propose that

they join the Advisory Board. This type of

proposal is automatically put to a full

member vote without proceeding through

the “white-listing” process. This ensures the

members ultimately maintain full control of

the mutual as any Advisory Board member

can be replaced without interference from

the Advisory Board.

TRANSPARENCY

A key requirement for operating a well-run

mutual entity is providing members,

potential members and other interested

parties with accurate information regarding

the financial health of the mutual. Blockchain

technology lends itself quite naturally to

transparency due to the public ledger. As

such, a website interface will be developed

which reports on key metrics in real-time.

These will include information such as:

• Capitalisation ratio (MCR%).

• Exposure by pricing cell, and groupings.

• History of capital metrics and token

price.

• Number of total member tokens

outstanding split by locked vs

transferrable.

• Details on claims assessment results,

with summary statistics.

In combination this information will provide

an accurate real-time financial position of the

mutual. Compared to a regular insurer’s

financial reporting, which generally takes 3

months (at best) to determine a quarterly

result, blockchain can provide orders of

magnitude improvement in both timeliness

and transparency.

LEGAL FRAMEWORK

Nexus Mutual has been set-up as a company

limited by guarantee in the UK and will

operate under a discretionary mutual

structure. Members of the mutual will have a

legal right to proportional ownership of the

mutual and will also be responsible for

providing the guarantee.

The guarantee will be set at £1 per member.

This means if the mutual was ever to run out

of money, each member is liable for a further

£1 only.

A discretionary mutual is not a provider of

insurance, it is a legal structure that enables

members to trade with each other under the

banner of one legal personality. Therefore, it

is not required to conform with all the

insurance regulatory and legal requirements.

In addition, products are not subject to

Insurance Premium Tax (IPT) in the UK with

any distributions or surplus being taxed in

the hands of members. The mutual will pay

tax on any trade outside of the mutual, for

example VAT on services and corporate tax

on investment income.

A discretionary mutual based in the UK can

legally trade in the UK but cover can be

provided anywhere in the world. As such,

global cover is available as long as;

1. Members are able to legally become a

member of the UK company, and;

14 | N e x u s M u t u a l

2. Local laws and regulations of the members

jurisdiction are adhered to.

Practically, this means Nexus Mutual will be

able to provide cover in most countries with

some being restricted for various local legal

reasons, such as securities laws, insurance

regulation and tax.

As a real world legal entity, the mutual can

interact directly with non-blockchain service

providers as well as regulated insurance

entities. The latter is particularly useful as

excess-of-loss insurance coverage may be

required for high exposures to facilitate

faster growth

Nexus Mutual will adhere to the principles in

the Association of Financial Mutuals (UK

industry trade body) code of conduct and

will investigate the process of becoming a

full member.

All of the above views are formed based off

informed research and discussion with

business and legal experts. While many

aspects have also been verified through

formal legal advice there still remains

uncertainty with how products and

platforms like Nexus Mutual interact with

the legal system, especially as many aspects

still require guidance from various

regulators. As such, when joining, any

members of the mutual agree that they will

withdraw their membership should it be

required for legal or regulatory reasons that

would endanger the ongoing operation of the

mutual. Nexus Mutual fully intends to comply

with all regulation.

COMPETITIVE STRATEGY

A key challenge in open source business is

retaining a competitive advantage when

anybody can copy your entire code base,

decrease margins slightly and poach all your

customers. To remain relevant the business

must establish meaningful barriers to

potential competition. In open-sourced

blockchain systems this is largely achieved

through the network effect where a

community gathers around a certain

technology, becomes bought into it (usually

financially as well as emotionally and

philosophically) and continuously improves

it to remain relevant. The following barriers

and frictional costs are designed to keep

Nexus Mutual relevant to current members

and continually attract new ones:

• RISK ASSESSOR NETWORK – Establishing a

meaningful network of risk assessors

(smart contract auditors to begin with)

and providing them adequate incentives

to participate.

• SIZE OF CAPITAL POOL – The faster scale

can be achieved the larger the Capital

Pool can grow and the greater the

diversification benefits. This ensures

efficient capital usage, lower prices and

provides more resilience to claims

shocks. Additionally, the greater the

pool value the higher the barrier to

replicate.

• CONTINUAL DEVELOPMENT – A continued

focus on improvement of the product.

Releasing new products and providing

easy to use infrastructure surrounding

the core blockchain code will heighten

the barrier to replicate. This will be

increasingly driven by all members of

the mutual over time.

• MEMBER TOKENS – All customers are

members and have a vested interest in

the success of the mutual through token

ownership. If members shifted to

another provider their current holdings

would drop in value. Membership

tokens therefore provide an indirect

incentive to remain with the mutual and

an additional barrier to competitors.

Whilst all of these barriers have the potential

to be overcome the goal is to gain network

effects and scale benefits that will prevent

copy-paste competitors taking significant

market share.

15 | N e x u s M u t u a l

APPENDIX A – COST REDUCTION ENABLED BY BLOCKCHAIN TECHNOLOGY

14

Focussing on the P&C column (Property and Casualty, i.e. short-term non-biometric insurance

more akin to the initial offering of Nexus Mutual), the costs in the above diagram account for

roughly 25% of premium, representing most of the ~35% of premium that gets lost in frictional

costs15. The most notable cost excluded from the above is commission.

MARKETING AND SALES SUPPORT – These costs will largely remain as is for mainstream products.

There are likely to be some small savings in sales support costs due to efficiency in the

underlying systems but there won’t be any material savings overall.

OPERATIONS AND IT – The major area where large cost savings can be realised. The only material

costs that affect the proposed mutual will be gas costs, rewards for decentralised claim

assessment and smart contract upgrades. We estimate these costs are reduced by 90%, as policy

issuance and servicing are entirely automated, claims management is simplified and

crowdsourced and systems normally required by insurers are made vastly more efficient by

availability of the distributed ledger.

SUPPORT FUNCTIONS – Large cost savings will materialise across a number of sub-functions

primarily because the number of people employed will be dramatically reduced. Only the

Advisory Board is required at the start, with potential for some support functions if the

marketing and sales support teams have grown large enough. We assume 90% of these costs can

be avoided.

14 http://www.mckinsey.com/industries/financial-services/our-insights/what-drives-insurance-operating-costs

15 Typically, claims costs account for about 65% of insurance premium income (e.g

http://www.guycarp.com/content/dam/guycarp/en/documents/dynamic-

content/Insurance_Risk_Benchmarks_Research_Annual_Statistical_Review.pdf), with expenses making up the rest up to the point where

typically most of the premium income gets spent (e.g.

https://www.verisk.com/siteassets/media/downloads/insuranceresultsreport2016q4.pdf).

16 | N e x u s M u t u a l

Therefore, combining the above estimates, we expect to reduce the non-commission frictional

costs by approximately 72% compared to a traditional insurance company. Converting it back to

a percentage of premium income, this equates to a further 18% of premiums accruing in the

mutual for the benefit of the members.

Note that the above discusses a comparison to established insurance companies assuming

comparable products and sales channels applying to Nexus Mutual. Initially, the cost base is

likely to be reduced further due to the niche nature of the product resulting in pre-incurred

product development costs and a fully digital marketing approach aimed at the blockchain

community.

3/29/2021 creamY Launches in the next 24 hours with CREAM Incentives | by C.R.E.A.M. | C.R.E.A.M. Finance | Medium

https://medium.com/cream-finance/creamy-launches-in-the-next-24-hours-with-cream-incentives-83157436f922 1/2

creamY Launches in the next 24 hours with
CREAM Incentives

C.R.E.A.M. Follow

Sep 23, 2020 · 2 min read

We are excited to launch creamY, our capital efficient, dynamic AMM, beginning with

the stablecoin market. Join us as we deploy this new AMM with some novel innovations

— dynamic pools, consolidated liquidity, single-sided liquidity adds, all in a yielding,

stable LP token we call cyUSD that also works well as a stablecoin.

Background
A few days ago we announced creamY, our capital efficient, dynamic AMM here. Andre

Cronje also did a technical write up here. We are launching the creamY stablecoin

market first and will launch the BTC and ETH markets soon thereafter. We also

shortened the LP token prefix to cy- from cry- to reduce name collisions.

CREAM Rewards
We will start with a strong, 7-day incentive program, and optimize the incentives

quickly. These two pools will be available at launch tomorrow:

Pool 1 — Stake cyUSD and share a portion of the 500 CREAM/day pool.

Pool 2 — Add liquidity to the 95/5 cyUSD/CREAM pool, stake your CRPT token and

share a portion of the 1,500 CREAM/day pool.

There will be no locks with these opening pools. We will add more, longer duration

pools as adoption of creamY plays out.

A Word of Caution

3/29/2021 creamY Launches in the next 24 hours with CREAM Incentives | by C.R.E.A.M. | C.R.E.A.M. Finance | Medium

https://medium.com/cream-finance/creamy-launches-in-the-next-24-hours-with-cream-incentives-83157436f922 2/2

Even though this code has been reviewed thoroughly by several credible developers, this

code has not yet been through formal audit nor production testing. We are pushing this

code through audits now, and will provide updates as we progress. Please do not put in

more money than you can afford to lose.

C.R.E.A.M. DAO

Crypto Rules Everything Around Me, C.R.E.A.M.

Join us on Discord, follow us on Twitter, or visit us at cream.finance.

Ethereum Bitcoin Blockchain Defi Finance

About Help Legal

Get the Medium app

dYdX: A Standard for Decentralized Margin Trading and
Derivatives

Antonio Juliano

September 25, 2017 [Updated August 6, 2018]

Abstract

We present a set of protocols that allow several types of financial products to be created,
issued, and traded for any pair of underlying ERC20 tokens. Our approach uses off-chain
order books with on-chain settlement to allow creation of efficient markets. All described
protocols are fair and trustless, creating truly open markets that are not governed by a
central authority. The protocols are extensible by anyone, requiring no special
permissions to be used with other smart contracts.

1

Contents

dYdX: A Standard for Decentralized Margin Trading and Derivatives 1

Contents 2

1 Introduction 3

2 Existing Work 4

3 Protocols 5
3.1 Margin Trading Protocol 5

3.1.1 Description 5
3.1.2 Use Cases 5
3.1.3 Overview 6
3.1.4 Implementation 7

3.1.4.1 Contracts 7
3.1.4.2 Offering Message 7
3.1.4.3 Buyer 9
3.1.4.4 Position Opening 9
3.1.4.5 Closing 10
3.1.4.6 Calling 11

3.1.5 Risks 11
3.2 Options Protocol 12

3.2.1 Description 13
3.2.2 Use Cases 13
3.2.3 Overview 13
3.2.4 Implementation 14

3.2.4.1 Contracts 14
3.2.4.2 Issuance 15
3.2.4.3 Exercise 16
3.2.4.4 Withdrawal 16

4 Governance 18

5 Summary 19

6 Acknowledgments 20

2

1 Introduction

The rise of blockchains has enabled anyone to own and transfer assets across an open network without
needing to trust any external parties. Unlike existing financial architecture, blockchains are freely and
equally available worldwide. This has led to a large and rapidly increasing number of digital assets
existing on the blockchain. Many centralized and decentralized platforms designed to facilitate the
efficient exchange of these assets already exist, and more are in development. Such platforms allow
investors to take long positions in various assets. However, it is currently very difficult or impossible to
take more complex financial positions.

dYdX allows creation of entirely new asset classes which derive their value from underlying
blockchain-based assets. Financial products such as derivatives and margin trades allow investors to
achieve superior risk management with their portfolios, and open up new avenues for speculation. They
also increase market efficiency for the underlying asset by aiding in price discovery and allowing
individuals to express more complex opinions on price and volatility. dYdX provides advantages over
traditional financial products by eliminating the need for a regulated central clearing house, providing
global and equal access, and allowing users full control of their funds at all times.

The size of the derivatives market on existing financial infrastructure far outstrips the market size of any
other type of financial asset. It is roughly estimated to be over $1.2 quadrillion , or more than 10 times the 1

total world GDP. We believe that as decentralized platforms mature and start to offer significant
advantages over traditional financial systems, an ever increasing number of traditional assets will start to
be listed on the blockchain.

dYdX will offer a number of decentralized protocols implementing various types of crypto-asset financial
products. These protocols are comprised of open source Ethereum Smart Contracts and standards.

1 Investopedia. How big is the derivatives market?.
http://www.investopedia.com/ask/answers/052715/how-big-derivatives-market.asp

3

2 Existing Work

There are few existing decentralized protocols that support derivatives or margin trading and none that
have any significant usage. Centralized exchanges also fail to offer adequate financial products on
decentralized assets. Consequently, it’s very difficult to take short or more complex financial positions on
the bulk of today’s decentralized assets.

In order for a decentralized derivatives or margin trading protocol to operate, there needs to be a way to
trustlessly exchange assets, as well as determine the price at which assets will be exchanged. A
decentralized exchange protocol is one that facilitates the trustless exchange of one token for another at
prices dictated by the market. dYdX can work with any standard Ethereum-based decentralized exchange.
Initially, dYdX will use the 0x protocol to enable token exchange at rates supplied by users of the 2

protocol.

Several types of decentralized exchanges have been proposed: on-chain order books, automated market
makers, state channels, and a hybrid off-chain order book approach. The 0x whitepaper offers an in-depth
discussion of the tradeoffs between these models . We chose to base dYdX on the hybrid approach 3

pioneered by 0x, as we believe it allows creation of the most efficient markets. This allows market makers
to sign and transmit orders on an off-blockchain platform, with the blockchain only used for settlement.

One previous attempt at decentralized derivatives, Velocity , proposed using an oracle based approach to 4

feed the exchange rates of asset pairs to a smart contract responsible for operation of options contracts.
The contract would then use this price information to create and exercise options. Using such an oracle
based approach has several significant drawbacks. The limitations on frequency, latency, and cost of price
updates due to the nature of blockchains makes it impossible to create markets as efficient as those built
on traditional centralized exchanges. Using an oracle also adds a great deal of centralization to any
protocol, as some central parties have full control over setting the price. Worse, if those central parties
were also trading on the protocol, they would have a huge economic incentive to manipulate prices in
their favor.

dYdX protocols allow trade of financial products at any price agreed upon by two parties. This means that
there is no need for the contracts to be aware of the market price. Traders provide orders of their
choosing, which are then used to execute the exchange. It is in the economic interest of traders to choose
orders with the best prices. This best price is dictated by the market, and no orders with better prices will
exist.

2 Will Warren, Amir Bandeali. 0x White Paper. https://0xproject.com/pdfs/0x_white_paper.pdf
3 Will Warren, Amir Bandeali. 0x White Paper. “Existing Work”. https://0xproject.com/pdfs/0x_white_paper.pdf
4 Shayan Eskandari, Jeremy Clark, Vignesh Sundaresan, Moe Adham. On the feasibility of decentralized derivatives markets.
https://users.encs.concordia.ca/~clark/papers/2017_wtsc.pdf

4

3 Protocols

dYdX consists of a number of protocols specifying the operation and execution of different types of
financial products. We plan to prioritize the development of the most popular and widely used types.
Below we outline our implementation of protocols for options and margin trades. We plan to develop
protocols for additional types of financial products in the future.

3.1 Margin Trading Protocol

3.1.1 Description
In a margin trade, a trader borrows an asset and immediately trades it for another asset. The asset must be
repaid to the lender, usually along with interest, at a later date. Margin trading includes both short sells
and leveraged longs.

In a short sell an investor borrows an asset and sells it for the quote currency. The investor makes money
if the price of the asset decreases, since rebuying the asset to repay the lender costs less than the original
sell-price.. The investor loses money if the price of the asset increases, since rebuying the asset to repay
the lender costs more than the original sell-price. The lender makes money from the interest paid by the
trader.

In a leveraged long an investor borrows the quote currency and uses it to buy an asset. The investor makes
money if the price of the asset increases, and loses money if it decreases. Gains or losses from the position
are equal to the change in price of the underlying asset multiplied by the leverage ratio, which is the ratio
of the sum of the borrowed amount plus the amount paid by the trader to the amount paid by the trader.

3.1.2 Use Cases
Short sells are used to enable investors to profit from an asset which decreases in price. Short sells can be
used for both speculation and hedging. Investors can use a short sell for speculation when they believe the
price of an asset will go down. Short sells can be used to hedge existing positions by shorting a correlated
asset.

Leveraged longs are used to multiply gains when an asset increases in price. Leveraged longs can be used
for speculation, as they allow traders to achieve larger gains with less capital. Investors can use leveraged
longs for more efficient capital allocation, as less capital is required to achieve the same results for each
investment.

Lending assets for margin positions can provide the lenders with interest from the loan.

5

3.1.3 Overview
The dYdX Margin Trading protocol uses one main Ethereum Smart Contract to facilitate decentralized
margin trading of ERC20 tokens. Lenders can offer loans for margin trades by signing a message
containing information about the loan such as the amount, tokens involved, and interest rate. These loan
offers can be transmitted and listed on off-blockchain platforms.

A trader opens a margin position by sending a transaction to the dYdX margin smart contract containing a
loan offer, a buy order for the borrowed token, and the amount to borrow. Upon receiving this transaction,
the smart contract transfers the margin deposit from the trader to itself, and then uses an external
decentralized exchange such as 0x to sell the loaned token using the specified buy order. The smart
contract holds onto the deposit and token resulting from the sale of the loaned token for the life of the
position.

The position is closed when the trader sends a transaction to the smart contract containing a sell order
offering to sell the amount of token owed to the lender for an amount less than or equal to the amount
locked in the position. Upon receiving this transaction, the contract uses an external decentralized
exchange to execute the trade between the order maker and itself. After, the contract sends the owed
amount of the loaned token to the lender. The amount owed to the lender includes the interest fee. The
trader is sent all of the leftover token, which is equal to . Note the profit could be eposit rof itd + p
negative if the price moved against the position.

The loan for a margin trade can also be called in by the lender when the price has moved against the
position. Once the loan is called in, the trader has a specified amount of time to close the position. The
trader can also allow other contracts to trustlessly and automatically close the position on their behalf
using mechanisms such as a dutch auction.

The margin trading protocol can be used for both short selling and leveraged long trading by simply
switching which token is borrowed (referred to as the owed token) with the one that is held in the position
(referred to as the held token) . The protocol allows the margin deposit to be paid in either owed token or 5

held token. If the deposit is paid in owed token it is sold along with the owed token borrowed from the
lender, so that only held token is held in the position. Similarly, the payout to the trader from closing can
be in either owed token or held token. If the payout is in owed token, all held token in the position is sold
for owed token and whatever is leftover after paying the lender is paid out to the trader.

When used for short selling, the trader will borrow base token from the lender which will be sold for
quote token, and put up a margin deposit in quote token. Only quote token is held in the position. When
the position is closed base token will be bought and paid back to the lender, and the trader will be paid out
in quote token.

5 The concept of owed token and held token should not be confused with base token and quote token. Depending on whether it is
a short sell or leveraged long position, base or quote token can be the owed or held token in the position. This section aims to
articulate the relatedness of the two positions from an implementation point of view.

6

When used to take a leveraged long position, the trader will borrow quote token from the lender, and put
up a margin deposit in quote token. Both the quote token borrowed from the lender, as well as the quote
token put up as margin deposit are then sold for base token. Only base token is held in the position. When
the position is closed all of the base token is sold for quote token. quote token is paid back to the lender,
and the trader is again paid out in quote token.

3.1.4 Implementation

3.1.4.1 Contracts

For margin trading, there are three contracts used: the Margin contract, the Proxy contract, and the Vault
contract.

The Proxy is used to transfer user funds. Users set token allowances on the Proxy which authorizes it to
transfer funds on their behalf.

The Margin contract offers functionality to enable margin trading. It contains all the business logic and
public functions. It also contains the state where positions are stored. The Margin contract is designed so
existing positions cannot be modified by any external party (see the governance section).

The Vault contract holds all the funds locked up in positions. It exposes a simple interface which the
Margin contract is authorized to use.

3.1.4.2 Offering Message

The first ingredient to a margin trade is a lender who holds the owed token, and wants to lend it out for a
given deposit and interest rate. The lender prepares and cryptographically signs a message with the
following information:

Name Type Description

owedToken address Address of owed token - the token borrowed from and owed to
the lender

heldToken address Address of held token - the token held in escrow by the position

payer

address

Address that supplies the funds for the loan. If this is different
than signer it is assumed to be a smart contract and its consent is
gotten through an interface

signer address Address that cryptographically signs the loan offering

owner address Address that will own the loan after it is taken. All payouts will

7

go to this address

taker address
(optional)

If set, only this address will be able to take the loan

feeRecipient address
(optional)

Address to receive relayer fees associated with this offering

lenderFeeToken address
(optional)

Address of the token to charge the lender fee in

takerFeeToken address
(optional)

Address of the token to charge the taker fee in

maxAmount uint256 The maximum amount of the loan offering. Denominated in
units of owed token

minAmount uint256 The minimum takeable amount of the loan offering.
Denominated in units of owed token

minHeldToken uint256 The minimum amount of held token locked in the position after
the deposit and sell (based on maxAmount)

lenderFee uint256
(optional)

Amount of lenderFeeToken to charge the lender (based on
maxAmount)

takerFee uint256
(optional)

Amount of takerFeeToken to charge the taker (based on
maxAmount)

interestRate uint32 The interest rate (continuously compounded, represented as
annual nominal percentage with up-to 6 decimal places)

interestPeriod uint32
(optional)

The interest rate update period. Interest fee will increase once
per period

expirationTimestamp uint32 The timestamp (in seconds since unix epoch) at which the
offering expires

callTimeLimit uint32 The minimum amount of time (in seconds) that the position
must be closed after being margin-called by the lender

maxDuration uint256 The maximum duration (in seconds) of the loan. Relative to
when a position is opened

This message can then be broadcast off-blockchain between counterparties. It is a binding agreement to
commit to the loan if a trader desires. The protocol is agnostic to the medium of exchange used to relay
these signed messages. It is expected that these offers will be listed on centralized platforms referred to as

8

relayers and will compete on interest rate and terms. Larger OTC trades can be agreed upon through
traditional means, then made formally-binding using the protocol.

3.1.4.3 Buyer

The second ingredient to a margin trade is a buy order which can be filled as part of the margin trade.Like
the loan offering, the buy order can be transmitted through any means. The buyer is in no way involved in
the loan or margin trade. This order can be for any price, and must be selected by the trader. The only
prerequisite is the order must be for at least as much owed token as the trader is selling as part of the
margin trade. It is in the trader’s economic interest to select the buy order with the best price.

dYdX allows any standard buy/sell decentralized exchange to be used. This is done by wrapping external
decentralized exchange smart contracts in another contract that provides standard interface to Margin.
The wrapping contract is known as an ExchangeWrapper. The ExchangeWrapper is specified by the
trader for each margin trade and requires no special permissions. This means anyone can write, deploy,
and use an ExchangeWrapper for any decentralized exchange. dYdX has implemented the first
ExchangeWrapper which wraps the 0x Exchange Contract, and allows any 0x order to be used to open a
dYdX position.

3.1.4.4 Position Opening

To open a position, a trader sends a transaction to the Margin smart contract containing:

● The signed loan offering
● The buy order offering to buy owed token for held token
● The address of the ExchangeWrapper to be used with the buy order
● The amount of owed token the trader wishes to borrow
● A boolean indicating whether the trader wishes to post margin deposit in held token or owed

token
● The amount of token the trader wishes to put up as a deposit
● The address that will own the position after it is opened

When the contract receives the transaction the following happens:

1. The signature and inputs on the loan message are verified
2. Margin calls into Proxy to transfer the offered deposit in either held token or owed token from the

trader to Vault (if depositing in held token) or to the ExchangeWrapper (if depositing in owed
token)

3. Margin calls into Proxy to transfer the requested amount of the owed token from the lender to the
ExchangeWrapper

9

4. Margin records that the requested amount of the loan has been used, and saves it in a mapping.
This is used to keep track of the amount remaining in the loan offer and protect against replay
attacks using the signed loan message 6

5. Margin calls into the ExchangeWrapper to exchange the owed token for the amount of held token
offered by the buy order. The buyer is the maker in this trade and the ExchangeWrapper is the
taker. The exchange contract (e.g. the 0x Exchange Contract if using 0x) will verify the inputs
and signature on the supplied buy order and execute the trade

6. Margin calls Proxy to transfer the held token received from the sell from the ExchangeWrapper to
Vault. The held token remains locked in Vault for the duration of the position

7. The details of the position are stored in the contract, mapped by a unique public identifier for the
position. This identifier is used by the trader and/or lender to interact with the position at a later
date

All steps happen atomically, meaning that they all succeed or all fail together. At the end, the Vault
contract ends up with an amount of held token for the position. If the margin deposit was put up in held
token, this amount is equal to the deposit put up by the trader plus the held token resulting from the sale of
the owed token. If the margin deposit was in owed token, the amount is equal to the held token resulting
from the sale of both the borrowed owed token as well as the owed token put up as margin deposit. Vault
holds onto these funds until the position is closed.

3.1.4.5 Closing

The trader can decide to close any portion of the position at any time by presenting the Margin contract
with a sell order offering to sell greater than or equal to the amount of owed token owed to the lender
(including interest fee) for an amount of held token. This sell order can be for any price such that there is
enough held token in the position (prorated by the portion of the position being closed) to pay for it.
However it is in the trader’s economic interest to select an order with the lowest price.

When Margin receives this transaction, the following happens:

1. The total amount (in owed token) owed to the lender at this point in time is calculated using
continuously compounded interest

2. Margin calls into the ExchangeWrapper to execute the trade of held token for the amount of owed
token owed (if paying out in held token), or to trade all of the held token in the position for owed
token (if paying out in owed token). After the trade, Vault holds the owed amount of owed token
and an amount of either held token or owed token equal to (profit could eposit rader prof itd + t
be negative) for the position

3. Margin calls into Proxy to transfer the owed amount of owed token from the ExchangeWrapper to
the lender

4. Margin sends either held token or owed token equal to to the tradereposit rof itd + p

6 Will Warren, Amir Bandeali. 0x White Paper. “Fills & Partial Fills”. https://0xproject.com/pdfs/0x_white_paper.pdf

10

5. Margin deletes the position from its storage if its value is now zero, or reduces its amount by the
amount that was closed

At the end of the margin trade, the trader ends up with the amount, denominated in either held rof itp
token or owed token. The lender makes the amount of interest fee in owed token. The Margin / Vault
contracts end up net neutral as desired.

3.1.4.6 Calling

The other way a margin trade can be settled is by the lender or another party authorized by the lender
calling in the loan from the trader. It is done by the lender or authorized party sending the Margin contract
a transaction indicating they are calling in the loan, along with an amount of held token that must be
deposited into the position by the trader to cancel the margin call. After this transaction the trader has the
amount of time originally specified in the loan (call time limit) to either pay back the loan, or put up
additional held token as deposit. The trader uses the same process described above in the closing section
to close the position. If the trader fails to close the position or put up the required additional deposit, the
lender is entitled to the entire held token balance locked in the position.

It is in the lender’s interest to call in the position when the price of owed token relative to held token rises
to the point that the held token locked in the position is almost not enough to buy back the owed amount
of owed token. This means the lender or authorized party needs to be watching the price and be ready to
call in the position on an upward price movement. The authorized party would most likely be a relayer or
service that watched the price and was always ready to programmatically call in loans on price
movements. The approach of authorizing a trusted party is functionally equivalent to using a centralized
oracle to determine when margin calls should occur, however is more efficient as gas does not need to be
paid for constant price updates and the price can be effectively watched in real-time rather than once per
block.

This approach also requires that the trader is always online and able to send a transaction to close the
position before the call time limit, or risk forfeiting the entire position balance. To protect traders from
always having to be online, traders can optionally opt-in to an external contract that can automatically and
trustlessly close the position on their behalf.

The automatic closing contract works by running a dutch auction offering to buy back the amount of owed
token owed to the lender for an amount of held token that starts at 0 and linearly increases to the total
amount of held token in the position over the call time limit. Any excess held token is given to the trader.
Anyone can bid on the auction, or use an existing decentralized exchange order to buy the owed token and
keep the spread. The moment the auction price crosses the market price, there will exist an incentive for
everyone to bid on the auction, causing the trader to get paid out at market price.

11

3.1.5 Risks
One risk for the trader is that the lender calls in the loan before the trader wishes to close the position even
when enough deposit is posted. Current non-blockchain related financial systems use a reputation system
to identify optimal lenders that will not call in the loan prematurely. Such a reputation system for dYdX
could exist entirely separately to the base protocol, as traders would prefer loan offers from lenders with
higher ratings and would price this into their decision on whether or not to take a loan. Another solution is
to use an authorized party that is mutually trusted by both the trader and lender to margin call the position.
In the future, decentralized price oracles could also be used.

The risk for the lender (besides the economic risk of holding the owed token) is that the price of the owed
token relative to the held token rises so rapidly that the loan is not able to be margin-called before the
amount of held token locked in the position is no longer enough to buy back the owed amount of owed
token. In this case the lender would still receive the entire amount of held token locked in the position, but
would have been better off just holding the owed token. This risk for the lender can be mitigated by
setting a high enough deposit, low enough call in time, and by using an efficient margin-calling
mechanism (likely through off-blockchain monitoring).

12

3.2 Options Protocol

3.2.1 Description
In an option, a holder of an asset sells the right to buy or sell that asset at a specified strike price and
future date . An option to buy an asset is referred to as a call, and an option to sell an asset is called a put. 7

The seller of the option (the writer) collects a premium upon sale, but is also bound to buy or sell the asset
at the agreed upon price and date if the holder of the option desires. A covered option indicates that the
underlying asset is put up as collateral, so it is guaranteed to be able to be collected at a future date. The
option can itself be traded on the open market. We describe an implementation of an American covered
option, or one which can be exercised at any time before the expiration date.

3.2.2 Use Cases
Options enable numerous trading strategies that can be designed for speculation or risk management.

Options can be used to provide additional leverage in speculation. For example suppose the price of
AAPL is $100, and an investor who has $1000 to invest believes it will go up. The investor could buy 10
shares at $100, and if the price rises to $110, selling would yield a $100 or 10% profit. Suppose instead
that the investor had purchased call options with a $100 strike and $2 premium. The investor could afford
500 of these options with $1000. If the price again rose to $110, the investor could exercise the options to
buy at $100, and then immediately sell at $110 for a $10 profit per option. Since the investor had paid $2
for each option, a profit of $8 per option would have been made. This means the investor’s profit would
have been $8 * 500 = $4,000 or a 400% return. This shows how with the same amount of capital investors
can achieve much larger returns using options than by simply holding the asset.

Options can also be used to hedge or reduce risk in an investment. Imagine an investor is long 100 share
of AAPL, which is again trading at $100. The investor could purchase a put option with $90 strike for a
$2 premium. Such an option would ensure that for only a 2% fee, during the lifetime of the option the
investor could not lose more than 10% on the investment.

Options also enable more advanced trading strategies such as straddles, strangles, collars, and many more.
Among other things, such strategies can lock in a price, profit from volatility in any direction, or profit
from price stability in an asset.

3.2.3 Overview
The dYdX option protocol uses one Ethereum Smart Contract per type of option. A type refers to a given
set of input parameters including the base token, quote token, strike price, and expiration date. base token
refers to the asset the option is for and quote token refers to the token in which the premium and strike

7 Investopedia. Options Basics: What are Options?. http://www.investopedia.com/university/options/option.asp

13

price are denominated . Each option contract is able to issue new options of its type at any time before the 8

option expiration date. The contracts can act as either a put or a call option by simply switching the base
token and quote token and inversing the strike price.

Writers of the option list offers for a specified lot size and premium on an off blockchain platform. Buyers
can buy options from a writer by sending a transaction containing a write offer to the smart contract. After
receiving such a transaction, the smart contract transfers the premium in quote token to the writer, and the
offered amount of base token to itself. The buyer is issued options which can be transferred and traded as
any other ERC20 token. The smart contract holds on to the base token until the option is either exercised
or expired.

Any holder of the option can choose to exercise at any time before the expiration date. Upon exercise, the
option holder pays of quote token to the smart contract and is sent of trike price # options)s × (options#
base token from the smart contract. The quote token paid to the contract is distributed to the writer or
writers of the option. After the option expires, all writers can withdraw base token from the smart contract
corresponding to .total tokens held)Options W ritten

T otal options W ritten × (

3.2.4 Implementation

3.2.4.1 Contracts

We use three types of smart contracts to allow the issuance and functionality of options: the Creator,
Proxy, and CoveredOption contracts.

The Creator is responsible for creating all CoveredOption contracts. Anyone can create a new type of
CoveredOption by providing the the following specifications:

● The address of the ERC20 token the option is for (referred to as base token)
● The address of the ERC20 token the strike price and premium are to be paid in (referred to as

quote token)
● The strike price (broken into two parts to form an exchange rate between base token and quote

token)
● The expiration date

Creating a new type of CoveredOption only opens it up for sale, and does not issue any options. There can
exist only one CoveredOption for each combination of input parameters.

The Proxy is responsible for transferring user tokens between accounts. Users use the ERC20 allowance
functionality to authorize the Proxy to move their tokens. Each new CoveredOption is authorized to use
the Proxy to transfer user funds when it is created by the Creator.

8 Investopedia. Base Currency. http://www.investopedia.com/terms/b/basecurrency.asp

14

The CoveredOption contract represents a specific type of covered option. Each one implements the
ERC20 interface to allow shares of the option to be traded and transferred after issuance. This means
every option can be publicly traded on an exchange as any other ERC20 token.

3.2.4.2 Issuance

CoveredOption uses the exchange functionality of the 0x Protocol to facilitate issuance of new options.
Options can be issued anytime before the expiration date of the option. In order to issue new options, the
writer broadcasts a signed message in the 0x message format specifying the following information:

● The address of the writer
● The address of the fee recipient
● The amount of base token the writer is offering
● The amount of quote token to be paid as a premium to the writer upon purchase
● The expiration time for the sale of this option
● The address of the CoveredOption contract for the option they want to write. This address is

specified in the taker field of the message, so only the CoveredOption contract can take the trade

The writer must have at least as much base token as offered, and must set allowance on the Proxy
contract. Buyers can buy less than the amount of options offered by the writer. In 0x terminology, the
writer will be the maker of the trade, and the CoveredOption contract will be the taker of the trade. The
message can be published in any channel, but is a binding agreement to offer the specified sale. Relayers
can then list these option sale offers on an option issuance order book (much the same as relayers in the
0x protocol).

When a buyer wants to purchase an option, they send a transaction to the CoveredOption contract that
includes the message signed and broadcast by the writer, and the amount of options they wish to buy.
Options are issued on a 1:1 ratio with the amount of base token deposited by the writer. Once the
CoveredOption contract receives this transaction it does the following:

1. Validates the expiration date of the option has not yet passed
2. Calls into the Proxy to transfer the appropriate amount of quote token from the buyer to the

CoveredOption contract itself. This is the premium that is being paid for the option.
3. Call the 0x Exchange Contract to exchange the quote token which was just taken from the buyer

with the appropriate amount of base token from the writer. The 0x Exchange Contract validates
the the writer’s signature, ensuring this offer is legitimate. The writer is the maker and the
CoveredOption contract is the taker in this trade. After this, the writer ends up with the quote
token premium, and the CoveredOption contract ends up with the offered amount of base token.
The CoveredOption contract will hold the base token until the option is settled.

4. The CoveredOption contract records that the writer has deposited the amount of base token. This
amount is used later in the case the option expires without being exercised.

15

5. The balance of the buyer is increased by the amount of options purchased. The buyer is now the
holder of that amount of the options, and can now freely transfer and trade them as per the ERC20
standard.

6. If the amount of options available to be written was less than the amount desired by the buyer, the
excess quote token left over after the trade is transferred back to the buyer.

All of the above steps happen atomically (i.e. they all happen, or none of them happen) in a single
transaction.

3.2.4.3 Exercise

Before the option expires, any holder of the option can exercise any amount up to the number of options
owned. This means the holder agrees to pay the strike price (globally specified on the CoveredOption
during its creation), for every option exercised. It is only in the holder’s economic interest to exercise the
options if the market price for the base token is greater than the strike price of the option.

In order to exercise, the owner sends a transaction to the CoveredOption contract indicating how many
options are to be exercised . Assuming the transaction is valid, the CoveredOption contract:

1. Calls into the Proxy to transfer of quote token from the sender to the trike price # optionss ×
CoveredOption contract itself

2. Deducts balance from the owner
3. Sends the owner base token on a 1:1 basis with number of options exercised
4. Holds onto the quote token. The appropriate portion can later be withdrawn by each writer of the

option

3.2.4.4 Withdrawal

After the option expires, any writer of the option can withdraw a proportion of both base token and quote
token held by the CoveredOption contract corresponding to:

total tokens held)Options W ritten
T otal options W ritten × (

This is done by sending the CoveredOption contract a withdraw transaction, which causes the contract to
send the writer their full balance of each token, and sets the writer’s written balance to zero.

If an address is both the writer and holder of an equivalent number of options, it may at any time
withdraw any amount of base token less than or equal to:

 in(# options written, # options held)m

16

Doing so will decrease both the address’s balance and number of options written by the amount
withdrawn. This is provided as a utility so a writer can always get the base token back, even before the
option expires, by purchasing the desired number of options.

17

4 Governance
Governance will initially be handled by a multisig contract whose keys are held by reputable individuals
with a vested interest in the success of dYdX. The powers of this contract will be limited to putting the
dYdX protocol into a close-only mode, preventing the creation of any new positions. The contract will
have no power to influence any open positions, nor will the contract be able to add new functionality to
the protocol. A lack of centralized power is essential to the trustlessness of the protocol. The limited
power to put the protocol into close-only mode is intended to be used only to protect would-be users in
the event that a major security bug is found.

dYdX enables anyone to increase the functionality of the protocol by allowing users to specify their own
smart contracts to help open, close, or manage positions. In this way, any upgrades are completely opt-in
by users of the protocols themselves and can also be written by anyone, requiring no special permissions
from the base protocol.

In this way, upgrades cannot be forced by the authors of the protocol. Therefore, a token is not currently
needed for governance. In the future, to help promote common standards, dYdX will consider using a
DAO to govern upgrades to the protocol, however no viable DAOs currently exist.

18

5 Summary

● dYdX
○ Decentralized protocols for peer-to-peer derivatives and margin trading
○ Built on Ethereum and 0x
○ Open-source and free to use
○ Efficient markets are enabled using off-chain 0x orders and economic incentives for price

discovery
○ Modular, extensible smart contracts allow continuous opt-in upgrades

● dYdX Margin Trading Protocol
○ Can be used to profit on downward price movements, or increase leverage
○ Providing low risk fully collateralized loans for margin trades can provide interest fee on

long positions
○ Anyone can margin trade or lend any ERC20 token

● dYdX Options Protocol
○ Can be used to reduce risk or speculate
○ Anyone can create, write, buy, or trade any option on any ERC20 token
○ Each option is represented by its own ERC20 token to allow easy trading

19

6 Acknowledgments

We would like to thank our mentors, advisors, and friends who have provided invaluable advice on
dYdX. In particular, we would like to thank Olaf Carlson-Wee, Fred Ehrsam, Linda Xie, and Julian
Borrey for reviewing and providing feedback on this work. We would also like to thank Albert Zhou for
his help educating us about derivatives. dYdX would not have been possible without their and others’
support.

20

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 1/18

keep-network / whitepaper

Code Issues 18 Pull requests 1 Actions Projects Security In

whitepaper / keep.tex

Shadowfiend Properly show date last updated … History

 3 contributors

 master

838 lines (651 sloc) 35.3 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Raw Blame

%% Based on the style files for ACL-2015

\documentclass[11pt]{article}

\usepackage[utf8]{inputenc}

\usepackage[hidelinks]{hyperref}

\usepackage{acl2015}

\usepackage[numbers]{natbib}

\usepackage{fancyhdr}

\usepackage{textcomp}

\title{The Keep Network:\protect\\A Privacy Layer for Public Blockchains\\

 \vspace*{0.1cm}\textnormal{\normalsize Last updated October 15, 2017}}

\author{Matt Luongo \\

 {\tt mhluongo@gmail.com} \\\And

 Corbin Pon \\

 {\tt corbin.pon@gmail.com} \\}

\pagestyle{fancy}

\fancyhf{}

\renewcommand{\headrulewidth}{0pt}

\lfoot{Draft: \href{https://github.com/keep-network/whitepaper/tree/COMMIT}{COMMIT} - Last updated

\begin{document}

\thispagestyle{fancy}

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 2/18

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

\maketitle

\begin{abstract}

 We introduce the keep, a new privacy primitive for developing smart

 contracts on public blockchains, enabling secure storage and usage

 of secrets, as well as supporting infrastructure, including the keep

 market and token.

 Our incremental approach to privacy infrastructure can be brought

 to market on the Ethereum public network, iterated on, and adapted

 for other public blockchains and cross-blockchain use.

\end{abstract}

\section{Motivation}

\subsection{The irony of public blockchains}

Public blockchains have brought unprecedented transparency and

auditability to financial technology. Records are immutable,

verifiable, and censorship-resistant.

Unfortunately, these strengths are also weaknesses for many potential

users.

For every financial use case a public blockchain enables, its public

status restricts another. Bitcoin is touted as a more private payment

method than the traditional financial system, but those familiar with

the technology know that while it may be censorship-resistant, it's

certainly not private by default \cite{bitcoinPrivacy}. Developers

introduced to Ethereum quickly learn to adjust their expectations

\cite{ethereumStackexchange}- all contract state is published to the

blockchain, and can be easily read by competing interests.

These issues are recognized by developers of the Bitcoin and Ethereum

projects.

Confidential transactions \cite{confidentialTransactions} is an

ongoing effort to bring better privacy, and therefore fungibility, to

Bitcoin via sidechains \cite{confidentialTransactionsElements}. The

Zerocash project \cite{zerocash} applied zero-knowledge proofs to

Bitcoin, leading to the creation of Zcash \cite{zcash}, a

cryptocurrency using zk-SNARKs to ensure transaction privacy.

As early as December 2014, Vitalik Buterin, one of the founders of

Ethereum, explored solving this problem with secure multi party

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 3/18

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

computation (sMPC) \cite{secretSharingDaos}. In more recent writing,

Buterin shares that ``when [he] and others talk to companies about

building their applications on a blockchain, two primary issues always

come up: scalability and privacy'' \cite{privacyOnTheBlockchain}.

Scalability of public blockchains is a hurdle to mainstream adoption.

Some of the best minds in the cryptocurrency space \cite{lightning}

\cite{ethereumSharding} \cite{plasma} are working on multiple

order-of-magnitude improvements. Privacy, however, hasn't garnered the

same attention, especially in smart contracts.

Basic use cases of smart contracts, including publishing secrets after

certain criteria are met, assessing borrower risk for a loan, and

signing messages and transactions, are incredibly difficult on today's

public blockchains.

\subsection{Existing approaches}

In practice, developers have found a number of ways to build

decentralized applications that use private data.

\subsubsection{The hash-reveal pattern}

A common pattern on public blockchains is to keep private data with

the application's users. Contracts can receive and manipulate hashes

of private data, more generally called commitments

\cite{commitmentScheme}, while users withold the original until

revealing the private data off-chain. We call this the ``hash-reveal''

pattern.

For many applications, this approach is satisfactory. There's a clear

privacy benefit over typical web applications- no centralized

third-party database is at risk. Spreading storage across many users

means a distributed, diverse target for attackers.

There are significant downsides, however. The hash-reveal pattern

requires that all users party to a transaction be online, monitoring

the system, providing private data when necessary, and validating

hashes against private data provided by other users.

This requirement makes the hash-reveal pattern inflexible for complex

protocols, and unsuitable for systems that don't revolve solely around

active human participants, like decentralized autonomous organizations

(DAOs).

\subsubsection{Private blockchains}

Another response to privacy restrictions, primarily from the finance

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 4/18

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

industry, has been to build private blockchains, or so-called

``permissioned ledgers''.

These systems operate in a trusted or semi-trusted manner. Instead of

using proof-of-work or other consensus mechanisms designed with an

adversarial network in mind, they can use systems like RAFT to reach

consensus.

One such system, J.P. Morgan's Quorum \cite{quorum}, is a fork of

Ethereum supporting private contract state and messaging between

network participants. Another, Microsoft's recently announced Coco

Framework \cite{coco}, provides data privacy atop an existing private

blockchain.

These systems solve privacy at the expense of many of the benefits of

a public blockchain- trustlessness, public accountability,

censorship-resistance, and permissionless innovation.

\subsubsection{Zero-knowledge proofs}

Zero-knowledge proofs have been leveraged to maintain privacy on

public blockchains- most famously, by the Zcash \cite{zcash} project.

Zero-knowledge proofs allow one party, the prover, to prove a

statement to another party, the verifier, without revealing the

knowledge used to prove that statement. For example, a prover could

show that they have access to a private key by encrypting a message

chosen by a verifier. The proof can be trivially checked by the

verifier by decrypting the cyphertext with the public key. The private

key, however, remains secret.

More relevant to the domain, zero-knowledge proofs can be used for a

party to prove they have access to funds, or in the case of Zcash, for

a party to prove to miners that a transaction is valid according to

the consensus rules of the network.

Zero-knowledge proofs can be used to construct private financial

systems on a public blockchain. On their own, however, they stop short

of allowing safe delegation of private data from one party to another,

and suffer the same always-online requirements of the ``hash-reveal''

pattern.

Zero-knowledge proofs are a powerful cryptographic tool, and can be

used in conjunction with other techniques to safely delegate secret

access and computation (see section \ref{sMPC}).

\subsection{Public applications, private data}

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 5/18

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

None of these techniques adequately address how to build a publicly

verifiable, decentralized, censorship-resistant application that makes

use of private data.

Consider contracts to reveal a secret in case of a dispute between two

parties, to sign a message verifying contract identity off-chain, or

to securely encrypt files \footnote{We go over applications in more

depth later in section \ref{applications}}.

\section{Introducing keeps}

To solve this mismatch between the transparency of public blockchains,

and the need of many autonomous smart contracts for private data, we

introduce the {\em keep}.

A keep is an off-chain container for private data. Keeps allow

contracts to manage and use private data without exposing the data to

the public blockchain.

\subsection{Keep operations}

\begin{table*}[t]

 \centering

 \begin{tabular}{|rp{10cm}|}

 \hline

 \multicolumn{2}{|c|}{\textit{Keep operations}} \\

 \textbf{Create:} & $Contract_{owner}$ publishes a creation request,

 including an initial deposit and a public key,

 $K_{Contract_{owner}}$.\\

 \textbf{Accept:} & A keep, $Keep_{accepted}$, publishes one or more

 public keys $K_{Keep_{accepted_i}}$ signalling readiness.\\

 \textbf{Populate:} & $Contract_{owner}$ publishes an initial

 secret on-chain, encrypted in total or in shares by one or more

 $K_{Keep_{accepted_i}}$, or a specification for a secret to be

 generated.\\

 \textbf{Grant:} & $Contract_{owner}$ publishes another contract

 address, $Contract_{delegate}$, and a permission level, P_{read}

 or P_{admin}.\\

 \textbf{Compute:} & $Contract_{owner}$ or $Contract_{delegate}$

 publishes a function to compute over the secret, $F(S,...)$, as well

 as other arguments to F. Initially $F {\in}

 \{f_{identity},f_{rsa},f_{ecdsa}\}$, though additional functions are

 planned.\\

 \textbf{Results:} & $Keep_{accepted}$ publishes the results

 of its computation, either in whole or in part, over one or more

 invocations.\\

 \textbf{Shutdown:} & $Contract_{owner}$ or $Contract_{delegate}$

 with permission P_{admin} publishes a shutdown request.\\

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 6/18

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

 \hline

\end{tabular}

\end{table*}

Though keeps maintain state off-chain, they are provisioned and

messaged by contracts on-chain. We will describe the keep in terms of

these on-chain operations. The practical implementation of keeps,

including security guarantees, is covered in sections \ref{eliminatingRisk}

and \ref{keepProviders}.

\subsubsection{Creation and population}

A contract, $Contract_{owner}$, requests a keep by publishing a

request to the blockchain. Once a keep, $Keep_{accepted}$, has accepted a

request and finished initializing off-chain, it will respond to the request

with a set of public keys the calling contract can use to communicate privately

with the keep.

Once the keep has been created, it can be populated in a number of

ways. dApps can publish secret data to the blockchain, encrypted by

the keep's public keys, or send the data to the keep off-chain.

Alternatively, a keep can self-populate with pseudorandom data.

\subsubsection{Publishing data on-chain}

The purpose of a keep is to compute a function over its secret and

publish the results to the blockchain.

Initially, keeps will support publishing their secrets on-chain,

unmodified or encrypted with a public key provided by

$Contract_{owner}$. This enables functionality that's difficult in

today's public smart contracts, like a secret-exposing dead man

switch, useful in a variety of decentralized market schemes.

Keeps can be extended to use their secret in a variety of other ways,

including as key material for symmetric encryption and signing.

\subsubsection{Access management}

The owning contract $Contract_{owner}$ of a keep can delegate access

to the keep to other contracts.

Read and admin access can each be granted, allowing another

contract i($Contract_{delegate}$) to request that a keep's content be

published (read permission, P_{read}), or to delegate further access

to other contracts (admin permission, P_{admin}). Owners

($Contract_{owner}$) can also revoke their own access.

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 7/18

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Access management enables multi-party secret escrow and auditability

of secret access.

\subsubsection{Destruction}

Depending on the use case, keeps can be long- or short-lived.

Contracts can request that a keep shut down, and should also handle

keeps that are terminated unexpectedly, scenarios which are covered in more

detail later in section \ref{uptime}.

\section{Eliminating third-party risk} \label{eliminatingRisk}

We've described a simple black box for off-chain data storage. The

standardization of this method of secret management will enable

secrets to be bought, sold, and transferred on a public blockchain,

but doesn't inherently solve third-party risks.

Next, we'll describe techniques to eliminate third-party risk.

\subsection{Secure multi party computation} \label{sMPC}

Secure multi party computation (sMPC) is a type of cryptographic

system where a computation is distributed across multiple

participants, some of which may be dishonest. Each participant is

initially given access to a share of a secret by a dealer, and

computes a function over that share. The outputs are then reported to

the dealer, who can assemble the final output, without any participant

learning more than their initial secret share.

Intuitively, sMPC works like this:

\begin{enumerate}

 \item A dealer D wants to compute a function F over a secret,

 S.

 \item The dealer selects n parties to the computation, sending

 each of them a share of the secret, s_i.

 \item Each party computes a function over their share $f_i(s_i)$ and

 reports the result to the dealer.

 \item The dealer combines these outputs, such that

 $G(f_1(s_1),f_2(s_2),...f_n(s_n)) = F(S)$

\end{enumerate}

The shares s_i should be chosen in such a way that exposing any

share does not jeopardize the secret S. A common approach is to use

Shamir's secret sharing \cite{shamir}, such that details about the

secret remain confidential in the face of $n-1$ dishonest parties.

This explanation holds for all F including addition, subtraction,

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 8/18

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

and multiplication by a known constant. To achieve general

computation, however, we also need to be able to multiply secrets

securely.

Multiplication adds what the literature calls ``rounds''- communication

between the parties, rather than just the dealer D.

To multiply two secrets, each party P_i of the n chosen by the

dealer splits its share, s_i, into two components, s_{i1} and

s_{i2}. The party multiplies those two components, resulting in

$s_{i'}$. Each P_i then acts as a dealer among the the remaining

parties, splitting $s_{i'}$ into $n-1$ pieces.

Each P_i can now resolve their resulting share of the round of

multiplication, s'_i, given their access to $n-1$ shares of

$s_{i'}$.

With addition and multiplication, sMPC can securely execute general

computation, at the expense of communication overhead between the

computing parties.

\subsection{sMPC and the blockchain}

sMPC was originally conceived in 1982 \cite{yao1982protocols}, but its

practical application has been limited due to restrictions on the

security model. Existing sMPC solutions only maintain security in the

face of an honest majority of parties.

The advent of the blockchain enables secure usage of sMPC in

adversarial scenarios. By using a public blockchain as an immutable

ledger, sMPC can be made secure in the face of a dishonest

supermajority \cite{spdz}, and, with the requirement of a network

token, can be made strongly Sybil-resistant

(see section \ref{incentivizingProviders}).

For these reasons, sMPC and blockchains are a natural fit. In the

smart contract space, sMPC has been proposed before as a privacy

mechanic.

In 2014, Vitalik Buterin gave a strong introduction to the subject in

an early blog post on privacy on the Ethereum public blockchain

\cite{secretSharingDaos}. In 2016, a team from UMD designed Hawk

\cite{hawk}, a system that marries public and private smart contracts

via sMPC, and the Enigma project out of MIT describes a system related

to ours \cite{enigma}, with a wider focus on general private

computation.

The Keep network will incorporate these ideas into the first

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 9/18

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

production-ready sMPC system for a public blockchain.

\section{Keep providers} \label{keepProviders}

The Keep network includes a number of different provider types, each

with their own strengths and tradeoffs. The most important provider,

however, is a novel application of secure multi party computation.

\subsection{Simple sMPC}

Simple sMPC keeps are backed by n nodes, each of which maintain a

share of the provided secret, such that the secret can't be

reconstructed without all n nodes colluding.

These keeps can be populated securely by divvying up a secret into

shares via Shamir secret sharing \cite{shamir}, and encrypting each

share with its respective node's public key. The encrypted shares can

then be published to the public blockchain, or communicated off-chain.

The only computation these keeps will run is an implementation of

distributed RSA \cite{mauland2009realizing} on sMPC, used to publish

encrypted data to the blockchain.

\subsection{Signing sMPC}

The next provider will extend the sMPC keep with two new operations-

securely generating pseudorandom numbers, and signing and encrypting

data, using the keep's contents as a key.

In addition to simple pseudorandom numbers, signing keeps will be able

to generate RSA \cite{mauland2009realizing} and Bitcoin

\cite{gennaro2016threshold,coinparty} key pairs, or be populated with

them via secret sharing.

This means signing keeps will be able to sign and secure contract

communications on- and off-chain, as well as sign transactions for

Bitcoin, Ethereum, and other cryptocurrencies.

Finally, signing keeps can act as pRNG oracles, significantly

improving current methods of random number generation on public

blockchains.

\subsection{Future providers}

The off-chain keep pattern is flexible enough to include a variety of

other pluggable providers, each with their own unique benefits.

\subsubsection{Secure hardware}

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 10/18

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Keeps backed by secure hardware can be used to lower the cost of

securing private data by verifying that only signed code is run

against privileged data.

Instead of requiring n nodes to safely split a secret, a secret can

be sent to a single node that's properly responded to a challenge,

proving it's running signed code. Not only are fewer nodes required,

but these keeps wouldn't suffer the computation overhead of secure

multi-party computation.

This sort of security is fundamentally weaker than that provided by

secure multi-party computation. If a single secure hardware

manufacturer is compromised, it puts all nodes using that hardware at

risk, shifting the threat model. The cost and benefit of this approach

will depend on the application.

\subsubsection{Private smart contracts}

Unlike related work on systems like Enigma \cite{enigma} or Hawk

\cite{hawk}, which use sMPC to build off-chain and alternative-chain

computation networks for private smart contracts, we've chosen to

restrict the initial sMPC keeps to generating, securing, storing,

encrypting, and transmitting secrets. Such restrictions help to

minimize the attack surface on keeps in a production network.

In later work, sMPC schemes can be used to build more feature-rich

keeps. These keeps will enable complex use cases, like operating

private ledgers against public blockchains, or running third-party

code trustlessly on private data.

\section{Incentivizing keep providers} \label{incentivizingProviders}

Providers need to be incentivized to maintain capacity on the network.

Running and securing keeps should be a profitable way to use excess

compute and storage resources.

Consumer contracts, on the other hand, need keeps that will provide:

\begin{itemize}

 \item High availability

 \item Robustness against data loss

 \item Maintenance of confidentiality

 \item Data integrity

\end{itemize}

\subsection{Paying for keeps}

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 11/18

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

The best payment structure for keep providers will reward highly

available keeps, and punish poor performance.

<sequence diagram of deposit + per-operation payment>

The two primary costs providers incur are storage and compute, which

map naturally to paying keeps per block and per operation.

Payment per block can be accomplished via a deposit to the managing

contract at the time of keep initialization, metered out over the

lifetime of the keep, and refilled occasionally by the calling

contract. Though this seems like a good fit for payment channels,

minimizing on-chain fees, the security ramifications differ from

typical two-party channels. These differences are discussed further in

the next section.

Payment per operation is simpler. Each request to publish a keep's

contents will require payment of an amount agreed to at the

initialization of a keep.

\subsection{Concerns with uptime and reliability} \label{uptime}

Because availability is vital to using keeps in practice, improper

termination must be disincentivized.

<proper shutdown protocol>

Any keep that doesn't respond properly within a certain block count

threshold to a request will be considered aborted. Aborted keeps will

forfeit all client deposits that have yet to be disbursed. To avoid

skewing client incentives, the deposits that have been earned, but not

yet disbursed, will be burned, and the unearned deposits will be

returned to the client.

Volatility in the crypto currency markets can provide a strong

incentive for a keep provider to improperly terminate a keep. If the

value of the paid currency drops significantly relative to the cost of

running a keep, it's in a provider's best interest to devote their

limited resources to a better-paying client.

To counter this issue, keep providers will need a protocol to

optionally re-negotiate fees for a running keep.

\subsection{Concerns with active attacks}

\label{activeAttacks}

Existing open-source sMPC frameworks, such as VIFF \cite{viff}, are

secure against active attacks in the presence of a \textthreequarters\

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 12/18

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

supermajority of honest nodes. In such an attack, keeps can be forced to return

malformed data, but secrets can't be compromised unless all nodes with a unique

share backing an sMPC keep are colluding- an extremely high bar for a Sybil

attack.

Recent approaches using SPDZ proofs \cite{spdz} anchored on the

blockchain \cite{bitcoinSmpc, blockchainMultipartyComputation} make

such correctness attacks impossible, even if all nodes backing a keep

are compromised. sMPC keeps will publish proofs to the public

blockchain that can be used to verify correctness. The threat of

active attacks is then reduced to disrupting keep availability, rather

than returning malformed data.

We address the issue of network disruption by introducing two

incentives to keep providers, making active attacks on data

availability impractically expensive.

First, keep providers will be required to prove their holdings in a

token native to the system. Significant disruption of the network

should lead to a drop in the value of the token, incentivizing

provider honesty, lest they devalue their holdings. This scheme also

provides resistance to Sybil attacks--- an active attacker would need to

obtain an outsize portion of all tokens locked up by keep providers to

ensure their overwhelming selection backing new keeps.

Second, keep redundancy can be used to further minimize availability

disruptions \cite{blockchainMultipartyComputation}. All nodes can be

required to include a deposit when they publish their results. If

their results can't be verified by the included SPDZ proof, their

deposit is forfeit to competing nodes.

\section{High-level network design}

Deploying sMPC-based privacy on a public blockchain requires

supporting infrastructure. To build a functional privacy network

against Ethereum, our first target blockchain, we'll introduce

components to ensure fair keep node selection, report results, and

incentivize network actors.

\subsection{The Keep network token}

The native network token, \textit{KEEP}, will be required for

providers to participate.

To be chosen to provide a node for a new keep, a provider must lock up

a minimum stake in KEEP tokens, using a shared staking contract.

At any time, a provider can choose to retrieve their stake--- for

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 13/18

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

example, to liquidate their position. All withdrawals, however, will

be subject to a two-week waiting period to disincentivize providers from

quickly staking and withdrawing their position, which could have

adverse effects on running keeps and fair keep selection.

Requiring a native token, rather than the underlying blockchain's

currency, means providers will suffer from negative externalities in

the presence of malicious behavior (see section \ref{activeAttacks}). This sort

of staking also strengthens the system against Sybil attacks (see section

\ref{fairKeepSelection}).

\subsection{Ensuring fair keep selection}

\label{fairKeepSelection}

Contracts requesting keeps and keep providers need to be matched. An

ideal system would enable price discovery, incentivizing new providers

to join if capacity is low, across different keep types.

This matching problem is a great fit for a market. Unfortunately,

on-chain markets are a difficult problem, prone to complexity, miner

frontrunning, and orderbook manipulation. A clever attacker could

manipulate a market, giving them an unfair advantage to be chosen for

a particular keep. Essentially, a two-sided market would expose the

network to Sybil attacks.

In lieu of a market, we need a fair keep selection mechanism.

\subsubsection{Random beacons}

The best way to select providers for a new keep is with a fair coin

toss. Unfortunately, Ethereum only supports deterministic functions.

Contracts that require a random number often rely on a trusted oracle.

A system is only as decentralized as its most centralized component.

Relying on a trusted third party for such a core function of the

project isn't an acceptable risk.

Instead, we can utilize our keep providers as a decentralized source

of entropy. All staked providers can be required to take part in the

random number generation process.

There are a few design considerations for such a system:

\begin{itemize}

 \item Providers can't be allowed an unfair advantage over each other

 in the node selection process.

 \item Each block on the public chain will require at least one

 random number of sufficient size. Today's Ethereum block time is

 25 seconds, but that will likely change significantly in the

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 14/18

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

 future. The RNG process needs to be fast enough to support much

 shorter block time, if necessary.

 \item RNG needs to be resilient to node failure. Failure in

 production means no new keeps can be created, so resilience

 to partitions between providers as well as against active denial

 of service attacks is desirable.

 \item While not a hard system requirement, providing the Ethereum

 network with a trusted source of randomness will also be a great

 boon to other projects.

\end{itemize}

Most distributed key generation schemes are too slow or prone to

manipulation to be considered. Any scheme we choose should provide

good performance, regardless of the number of participating providers.

Instead, most generation schemes require rounds of communication

between participants, slowing down the key generation process and

providing a large surface for communication failure.

Fortunately, the Dfinity team has solved these issues with their

random beacon design, based on a concept they call threshold relay

\cite{thresholdRelay}.

\subsubsection{Threshold relay}

\begin{table*}[t]

 \centering

 \begin{tabular}{|rp{10cm}|}

 \hline

 \multicolumn{2}{|c|}{\textit{Iterative threshold signatures for

 randomness on existing chains}} \\

 \textbf{Registration:} & As providers join the network, they

 register with at least one threshold group G_i of all groups G,

 generating a share of the group's private key, s_i. Threshold groups are

 capped at c members, and may intersect. Groups that have reached

 this maximum size publish their public key to the blockchain. We'll

 designate such groups as $G_{registered}$. \\

 \textbf{Trusted setup:} & A trusted party posts a random value

 r_0 to the blockchain as the beacon's first output. \\

 \textbf{Bootstrapping:} & $mod(r_{0}, |G_{registered}|)$ is

 used to select a registered threshold group, G_i, from

 $G_{registered}$. G_i signs r_0 and publishes the

 result, $r_1 = threshold(r_0, s_{0\rightarrow{t}})$ where

 $s_{0\rightarrow{t}}$ is the minimal shares necessary for the group

 to produce a signature. Note that $threshold(...)$ must be a

 deterministic signature scheme to avoid share withholding attacks

 leading to a biased output. \\

 \textbf{Iteration:} & Each block published on the chain will include

 a signature from $G_{registered}$ of the random value r_i. As the

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 15/18

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

 chain grows, the signing threshold groups will change based on

 provider availability. If any group is non-responsive up to its

 threshold t, the group is removed from $G_{registered}$. \\

 \textbf{Failure:} & Each iteration is an opportunity for a

 group to fail to generate a valid signature. If a group G_i fails

 to sign the last iteration's random value, G_{i+1} will be used

 instead. \\

 \hline

\end{tabular}

\end{table*}

This work relies on the idea of threshold secret sharing schemes---secret

sharing schemes that retain confidentiality up to some threshold t of

honest actors.

Threshold signatures are a related idea. A threshold signature is a

signature across n parties that requires some minimum t actively

participating to sign. It's a similar idea to "multi-sig" as deployed

in cryptocurrencies today.

Traditional multi-sig, however, requires a smart contract on the

blockchain to validate each signature and release funds. Threshold

signature schemes actually require a threshold t to construct a

signature at all, removing a layer of complexity and coordination

between parties.

The use of threshold signatures means a number of participating

signers in a signing group can be unavailable, and the signature will

still succeed in the presence of t functioning signers. This

provides some of our beacon's required resilience in the face of

failing or misbehaving nodes.

If threshold signatures sound familiar, it might be because they're a

core functionality keeps provide. For example, a keep signing a

Bitcoin transaction does so using threshold ECDSA.

A threshold relay is a way to chain threshold signatures to create a

random beacon. Participants in a threshold relay form threshold

groups. These groups generate new public keys that identify the group

and correspond to a newly generated threshold private key, split

across the participants.

As providers join the network, they will form threshold groups. These

groups will then sign a piece of random data, initially provided by

early network contributors, to bootstrap the relay. The resulting

signature provides the random data for the next iteration, which can

be verified by the rest of the network participants and rejected if

invalid. Each iteration, a new signing group is chosen by the previous

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 16/18

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

iteration's random value. As all groups sign the previous iteration's

value, if a signature that's chosen is invalid, the signature from the

next group in line can be chosen instead.

Importantly, the threshold signature scheme needs to be deterministic

to prevent individual shareholders from biasing the signature outcome

in their favor. BLS signatures \cite{BLS} have been used in related

work.

\subsubsection{Keep selection group}

Our threshold relay system will be composed of keep providers seeking

to be chosen to back a new keep, capturing the fees from that keep.

Each block will include a random signature, published by the nominated

keep selection group. Any keeps that require new nodes will have their

providers chosen randomly, using the beacon value from the last block.

In this way, we can ensure fair chances to all staked keep providers,

keeping the cost of a Sybil attack high.

\section{The result registry}

Keeps will offer a number of methods to publish to the public

blockchain. In the case where keeps publish to a smart contract

provided by the keep owner, coordination is simple. In uses that don't

have a natural contract to communicate with, a result registry will be

provided as a default to simplify keep and owner coordination.

\section{Applications}

\label{applications}

\subsection{Dead man switch}

A dead man switch is a device that is automatically activated in case

its owner becomes incapacitated. Keeps enable a particular kind of

dead man switch- publishing a secret, under certain contract

conditions.

Examples of dead man switch applications with keeps include automated

inheritance (``send my beneficiary my private key if I don't check in

quarterly''), arbitration with time limits (``if no decision is made in

10 blocks, publish a shared secret''), as well as protection for

leakers (``publish a key to these insurance files if I don't check

in'').

\subsection{Marketplaces for digital goods}

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 17/18

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

Buying and selling digital goods on public blockchains today requires

settling off-chain. Keeps make marketplaces for digital goods, like

audio and video files, straightforward.

Without keeps, each transfer of a private digital good requires one or

more hash-reveal constructions on-chain. More complex scenarios

that require escrow, arbitrators, and other parties who might need

access to the transfered digital good will need ${n^2}$ on-chain

transactions to maintain security. They also require each party to be

online to participate.

Keeps obviate always-online requirements, and simplify the hash-reveal

protocol to access management. All keep access is auditable, and

participants can have access to a keep without viewing its contents,

allowing further optimization.

Without an always-online requirement or complex reveal protocols,

keeps can efficiently support services like iTunes on the blockchain.

\subsection{Pseudorandomness oracle}

Since keeps can populate themselves with random data, they can act as

pseudorandomness oracles, improving on currently popular methods

\cite{prngStackexchange}. sMPC and other secure keeps are a good fit for

decentralized lotteries and other games of chance, as well as offering

a building block for other on-chain algorithms that require

tamper-resistant pRNG.

This capability is an important component of advanced keep uses, like

decentralized signing.

\subsection{Decentralized signing service}

Signing sMPC keep providers are able to sign messages, including

blockchain transactions, using a generated or provided private key.

For the first time, contracts will be able to assert their identity

off-chain, without requiring the recipient's awareness of blockchain

state.

Consider a decentralized signing service for Bitcoin transactions. The

service can participate in multi-signature transactions, only signing

transactions that follow a strict set of rules, including daily

spending limits and recipient whitelists.

Other uses for such a service include second-factor authentication,

where a contract can answer a challenge-response protocol based on

rules on the blockchain.

3/29/2021 whitepaper/keep.tex at master · keep-network/whitepaper · GitHub

https://github.com/keep-network/whitepaper/blob/master/keep.tex 18/18

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

\subsection{Custodial wallets and cross-chain trading}

As a special case of a signing service, contracts can use keeps to

generate their own cryptocurrency wallets, taking full custody of any

received funds.

For example, a contract can generate a Bitcoin wallet, and sign

Bitcoin transactions in response to receiving assets on the contract's

native blockchain.

\subsection{Encryption service for blockchain storage}

Services like Filecoin \cite{filecoin} and Storj \cite{storj} are

being built to provide cheap, ubiquitous storage, accessible globally,

via smart contracts and traditional storage interfaces.

These services offer few privacy guarantees by default, leaving the

onus of file encryption on users. Keeps can provide a private bridge

to blockchain storage. By generating an AES key at keep initialization

and providing off-chain data access to the keep, smart contracts can

use keeps to secure files stored on decentralized services.

\subsection{Banking on public blockchains}

As more keep providers are developed, more applications that once

required a private blockchain can be built against public networks.

Traditional finance offers many examples. Consider lending, a basic

service provided by most banks.

There are a number of sensitive variables involved in the lending

process. Borrower credit scores are sensitive; risk assessment is

highly competitive; the terms of a loan aren't typically made public.

Keep providers that execute generic private smart contracts can

protect scores and the risk assessment process, while maintaining

auditability and all other benefits of a public blockchain.

\bibliographystyle{unsrt}

\bibliography{references}{}

\end{document}

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 1/27

1inch / 1inchProtocol

1inch Protocol – fully on-chain DeFi aggregation protocol

 MIT License

 240 stars 114 forks

Code Issues 31 Pull requests 12 Actions Projects Security I

View code

 Star Notifications

 master Go to file

k06a Fixed Mooniswap integration … on Aug 11, 2020 244

1inch on-chain DeFi aggregation protocol
First ever fully on-chain DEX aggregator protocol by 1inch

buildbuild unknownunknown coveragecoverage unknownunknown built withbuilt with OpenZeppelinOpenZeppelin

Integration
Latest version is always accessible at 1split.eth (beta on 1proto.eth)

Start with checking out solidity interface: IOneSplit.sol

How it works

This smart contract allows to get best price for tokens by aggregating prices from several
DEXes.

So far the service works with 2 types of exchages: split and wrap .

README.md

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 2/27

List of split exchanges:

let splitExchanges = [
 "Uniswap",
 "Kyber",
 "Bancor",
 "Oasis",
 "Curve Compound",
 "Curve USDT",
 "Curve Y",
 "Curve Binance",
 "Curve Synthetix",
 "Uniswap Compound",
 "Uniswap CHAI",
 "Uniswap Aave",
 "Mooniswap",
 "Uniswap V2",
 "Uniswap V2 ETH",
 "Uniswap V2 DAI",
 "Uniswap V2 USDC",
 "Curve Pax",
 "Curve renBTC",
 "Curve tBTC",
 "Dforce XSwap",
 "Shell",
 "mStable mUSD",
 "Curve sBTC",
 "Balancer 1",
 "Balancer 2",
 "Balancer 3",
 "Kyber 1",
 "Kyber 2",
 "Kyber 3",
 "Kyber 4"
]

List of wrap exchanges:

let wrapExchanges = [
 "CHAI",
 "BDAI",
 "Aave",
 "Fulcrum",
 "Compound",
 "Iearn",
 "Idle",
 "WETH",
 "mUSD"
]

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 3/27

How to use it

To use this service you have to call methods at OneSplitAudit

To swap tokens you have to figure out way from left to right points by one of paths on
scheme above.

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 4/27

For example, first of all call method getExpectedReturn (see methods section), it returns
distribution array. Each element of this array matches element of splitExchanges (see

above) and represents fraction of trading volume.
Then call getExpectedReturnWithGas to take into account gas when splitting. This method
returns more profitable distribution array for exchange.
Then call method swap or swapWithReferral (see methods section) with param
distribution which was recieved earlier from method getExpectedReturn .

Swap may be customized by flags (see flags section). There are 2 types of swap: direct
swap and swap over transitional token.

In case of direct swap each element of distribution array matches element of
splitExchanges and represents fraction of trading off token as alerady described above.

In case of swap with transitional token each element of distribution (256 bits) matches 2
swaps: second bytes are equal to swap to transitional token, lowest bytes are equal to
swap to the desired token.

Supported DEXes

Uniswap
Uniswap V2
Kyber
Bancor
Oasis
Curve
Mooniswap
Dforce XSwap
Shell
mStable
CHAI
BDAI
Aave
Fulcrum
Compound
Iearn
Idle
WETH

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 5/27

Methods

If you need Ether instead of any token use address(0) or
address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) as param fromToken / destToken

getExpectedReturn

function getExpectedReturn(
 IERC20 fromToken,
 IERC20 destToken,
 uint256 amount,
 uint256 parts,
 uint256 flags
)
 public
 view
 returns(
 uint256 returnAmount,
 uint256[] memory distribution
)

Calculate expected returning amount of desired token

Params Type Description

fromToken IERC20 Address of trading off token

destToken IERC20 Address of desired token

amount uint256 Amount for fromToken

parts uint256

Number of pieces source volume could be splitted (Works
like granularity, higly affects gas usage. Should be called
offchain, but could be called onchain if user swaps not his
own funds, but this is still considered as not safe)

flags uint256
Flags for enabling and disabling some features (default: 0),
see flags description

Return values:

Params Type Description

returnAmount uint256 Expected returning amount of desired token

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 6/27

Params Type Description

distribution uint256[] Array of weights for volume distribution

Notice: This method is equal to getExpectedReturnWithGas(fromToken, destToken, amount,
parts, flags, 0)

Example:

let Web3 = require('web3')

let provider = new
Web3.providers.WebsocketProvider('wss://mainnet.infura.io/ws/v3/YOUR_TOKEN')
let web3 = new Web3(provider)

let ABI = [{"inputs":[{"internalType":"contract
IOneSplitMulti","name":"impl","type":"address"}],"payable":false,"stateMutability":"
{"anonymous":false,"inputs":
[{"indexed":true,"internalType":"address","name":"newImpl","type":"address"}],"name"
{"anonymous":false,"inputs":
[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},
{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name"
{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract
IERC20","name":"fromToken","type":"address"},
{"indexed":true,"internalType":"contract
IERC20","name":"destToken","type":"address"},
{"indexed":false,"internalType":"uint256","name":"fromTokenAmount","type":"uint256"}
{"indexed":false,"internalType":"uint256","name":"destTokenAmount","type":"uint256"}
{"indexed":false,"internalType":"uint256","name":"minReturn","type":"uint256"},
{"indexed":false,"internalType":"uint256[]","name":"distribution","type":"uint256[]"
{"indexed":false,"internalType":"uint256[]","name":"flags","type":"uint256[]"},
{"indexed":false,"internalType":"address","name":"referral","type":"address"},
{"indexed":false,"internalType":"uint256","name":"feePercent","type":"uint256"}],"na
{"payable":true,"stateMutability":"payable","type":"fallback"},
{"constant":true,"inputs":[],"name":"chi","outputs":[{"internalType":"contract
IFreeFromUpTo","name":"","type":"address"}],"payable":false,"stateMutability":"view"
{"constant":false,"inputs":[{"internalType":"contract
IERC20","name":"asset","type":"address"},
{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"claimAsset","ou
[],"payable":false,"stateMutability":"nonpayable","type":"function"},
{"constant":true,"inputs":[{"internalType":"contract
IERC20","name":"fromToken","type":"address"},{"internalType":"contract
IERC20","name":"destToken","type":"address"},
{"internalType":"uint256","name":"amount","type":"uint256"},
{"internalType":"uint256","name":"parts","type":"uint256"},
{"internalType":"uint256","name":"flags","type":"uint256"}],"name":"getExpectedRetur
[{"internalType":"uint256","name":"returnAmount","type":"uint256"},
{"internalType":"uint256[]","name":"distribution","type":"uint256[]"}],"payable":fal
{"constant":true,"inputs":[{"internalType":"contract

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 7/27

IERC20","name":"fromToken","type":"address"},{"internalType":"contract
IERC20","name":"destToken","type":"address"},
{"internalType":"uint256","name":"amount","type":"uint256"},
{"internalType":"uint256","name":"parts","type":"uint256"},
{"internalType":"uint256","name":"flags","type":"uint256"},
{"internalType":"uint256","name":"destTokenEthPriceTimesGasPrice","type":"uint256"}]
[{"internalType":"uint256","name":"returnAmount","type":"uint256"},
{"internalType":"uint256","name":"estimateGasAmount","type":"uint256"},
{"internalType":"uint256[]","name":"distribution","type":"uint256[]"}],"payable":fal
{"constant":true,"inputs":[{"internalType":"contract
IERC20[]","name":"tokens","type":"address[]"},
{"internalType":"uint256","name":"amount","type":"uint256"},
{"internalType":"uint256[]","name":"parts","type":"uint256[]"},
{"internalType":"uint256[]","name":"flags","type":"uint256[]"},
{"internalType":"uint256[]","name":"destTokenEthPriceTimesGasPrices","type":"uint256
[{"internalType":"uint256[]","name":"returnAmounts","type":"uint256[]"},
{"internalType":"uint256","name":"estimateGasAmount","type":"uint256"},
{"internalType":"uint256[]","name":"distribution","type":"uint256[]"}],"payable":fal
{"constant":true,"inputs":[],"name":"isOwner","outputs":
[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":
{"constant":true,"inputs":[],"name":"oneSplitImpl","outputs":
[{"internalType":"contract
IOneSplitMulti","name":"","type":"address"}],"payable":false,"stateMutability":"view
{"constant":true,"inputs":[],"name":"owner","outputs":
[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutabi
{"constant":false,"inputs":[],"name":"renounceOwnership","outputs":
[],"payable":false,"stateMutability":"nonpayable","type":"function"},
{"constant":false,"inputs":[{"internalType":"contract
IOneSplitMulti","name":"impl","type":"address"}],"name":"setNewImpl","outputs":
[],"payable":false,"stateMutability":"nonpayable","type":"function"},
{"constant":false,"inputs":[{"internalType":"contract
IERC20","name":"fromToken","type":"address"},{"internalType":"contract
IERC20","name":"destToken","type":"address"},
{"internalType":"uint256","name":"amount","type":"uint256"},
{"internalType":"uint256","name":"minReturn","type":"uint256"},
{"internalType":"uint256[]","name":"distribution","type":"uint256[]"},
{"internalType":"uint256","name":"flags","type":"uint256"}],"name":"swap","outputs":
[{"internalType":"uint256","name":"","type":"uint256"}],"payable":true,"stateMutabil
{"constant":false,"inputs":[{"internalType":"contract
IERC20[]","name":"tokens","type":"address[]"},
{"internalType":"uint256","name":"amount","type":"uint256"},
{"internalType":"uint256","name":"minReturn","type":"uint256"},
{"internalType":"uint256[]","name":"distribution","type":"uint256[]"},
{"internalType":"uint256[]","name":"flags","type":"uint256[]"}],"name":"swapMulti","
[{"internalType":"uint256","name":"","type":"uint256"}],"payable":true,"stateMutabil
{"constant":false,"inputs":[{"internalType":"contract
IERC20","name":"fromToken","type":"address"},{"internalType":"contract
IERC20","name":"destToken","type":"address"},
{"internalType":"uint256","name":"amount","type":"uint256"},
{"internalType":"uint256","name":"minReturn","type":"uint256"},
{"internalType":"uint256[]","name":"distribution","type":"uint256[]"},

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 8/27

getExpectedReturnWithGas

function getExpectedReturnWithGas(
 IERC20 fromToken,
 IERC20 destToken,
 uint256 amount,
 uint256 parts,
 uint256 flags,
 uint256 destTokenEthPriceTimesGasPrice
)
 public
 view
 returns(
 uint256 returnAmount,
 uint256 estimateGasAmount,

{"internalType":"uint256","name":"flags","type":"uint256"},
{"internalType":"address","name":"referral","type":"address"},
{"internalType":"uint256","name":"feePercent","type":"uint256"}],"name":"swapWithRef
[{"internalType":"uint256","name":"","type":"uint256"}],"payable":true,"stateMutabil
{"constant":false,"inputs":[{"internalType":"contract
IERC20[]","name":"tokens","type":"address[]"},
{"internalType":"uint256","name":"amount","type":"uint256"},
{"internalType":"uint256","name":"minReturn","type":"uint256"},
{"internalType":"uint256[]","name":"distribution","type":"uint256[]"},
{"internalType":"uint256[]","name":"flags","type":"uint256[]"},
{"internalType":"address","name":"referral","type":"address"},
{"internalType":"uint256","name":"feePercent","type":"uint256"}],"name":"swapWithRef
[{"internalType":"uint256","name":"returnAmount","type":"uint256"}],"payable":true,"
{"constant":false,"inputs":
[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwne
[],"payable":false,"stateMutability":"nonpayable","type":"function"}]
let CONTRACT_ADDRESS = "0xC586BeF4a0992C495Cf22e1aeEE4E446CECDee0E"

let contract = new web3.eth.Contract(ABI, CONTRACT_ADDRESS)
contract.methods.getExpectedReturn(
 "0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE",
 "0x89d24a6b4ccb1b6faa2625fe562bdd9a23260359",
 100,
 10,
 0
).call().then(data => {
 console.log(`returnAmount: ${data.returnAmount.toString()}`)
 console.log(`distribution: ${JSON.stringify(data.distribution)}`)
}).catch(error => {
 // TO DO: ...
});

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 9/27

 uint256[] memory distribution
)

Calculate expected returning amount of desired token taking into account how gas
protocols affect price

Params Type Description

fromToken IERC20 Address of trading off token

destToken IERC20 Address of desired token

amount uint256 Amount for fromToken

parts uint256

Number of pieces source volume
could be splitted (Works like
granularity, higly affects gas usage.
Should be called offchain, but could be
called onchain if user swaps not his
own funds, but this is still considered
as not safe)

flags uint256
Flags for enabling and disabling some
features (default: 0), see flags
description

destTokenEthPriceTimesGasPrice uint256

returnAmount * gas_price , where
returnAmount is result of
getExpectedReturn(fromToken,

destToken, amount, parts, flags)

Return values:

Params Type Description

returnAmount uint256 Expected returning amount of desired token

estimateGasAmount uint256 Expected gas amount of exchange

distribution uint256[] Array of weights for volume distribution

Example:

 // TO DO: ...

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 10/27

getExpectedReturnWithGasMulti

function getExpectedReturnWithGasMulti(
 IERC20[] memory tokens,
 uint256 amount,
 uint256[] memory parts,
 uint256[] memory flags,
 uint256[] memory destTokenEthPriceTimesGasPrices
)
 public
 view
 returns(
 uint256[] memory returnAmounts,
 uint256 estimateGasAmount,
 uint256[] memory distribution
)

Calculate expected returning amount of first tokens element to last tokens element
through and the middle tokens with corresponding parts , flags and
destTokenEthPriceTimesGasPrices array values of each step.

The length of each array (parts , flags and destTokenEthPriceTimesGasPrices) should be
1 element less than tokens array length. Each element from parts , flags and
destTokenEthPriceTimesGasPrices corresponds to 2 neighboring elements from tokens

array.

Params Type Description

tokens IERC20[]
The sequence of tokens swaps
(tokens[0] -> tokens[1] -> ...)

amount uint256 Amount for tokens[0]

parts uint256[]

The sequence of number of pieces
source volume could be splitted
(Works like granularity, higly affects
gas usage. Should be called offchain,
but could be called onchain if user
swaps not his own funds, but this is
still considered as not safe)

flags uint256[]
The sequence of flags for enabling
and disabling some features (default:
0), see flags description

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 11/27

Params Type Description

destTokenEthPriceTimesGasPrice uint256[]

The sequence of numbers
returnAmount * gas_price , where
returnAmount is result of
getExpectedReturn(fromToken,

destToken, amount, parts, flags)

Return values:

Params Type Description

returnAmount uint256[]
Expected returning amounts of desired tokens in
tokens array

estimateGasAmount uint256 Expected gas amount of exchange

distribution uint256[] Array of weights for volume distribution

Example:

 // TO DO: ...

swap

function swap(
 IERC20 fromToken,
 IERC20 destToken,
 uint256 amount,
 uint256 minReturn,
 uint256[] memory distribution,
 uint256 flags
) public payable returns(uint256)

Swap amount of fromToken to destToken

Params Type Description

fromToken IERC20 Address of trading off token

destToken IERC20 Address of desired token

amount uint256 Amount for fromToken

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 12/27

Params Type Description

minReturn uint256 Minimum expected return, else revert transaction

distribution uint256[]
Array of weights for volume distribution (returned by
getExpectedReturn)

flags uint256
Flags for enabling and disabling some features (default:
0), see flags description

Notice: Make sure the flags param coincides flags param in getExpectedReturn
method if you want the same result

Notice: This method is equal to swapWithReferral(fromToken, destToken, amount,
minReturn, distribution, flags, address(0), 0)

Return values:

Params Type Description

returnAmount uint256 Recieved amount of desired token

Example:

 // TO DO: ...

swapMulti

function swapMulti(
 IERC20[] memory tokens,
 uint256 amount,
 uint256 minReturn,
 uint256[] memory distribution,
 uint256[] memory flags
) public payable returns(uint256)

Swap amount of first element of tokens to the latest element.
The length of flags array should be 1 element less than tokens array length. Each
element from flags array corresponds to 2 neighboring elements from tokens array.

Params Type Description

tokens IERC20[] Addresses of tokens or address(0) for Ether

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 13/27

Params Type Description

amount uint256 Amount for tokens[0]

minReturn uint256 Minimum expected return, else revert transaction

distribution uint256[]
Array of weights for volume distribution (returned by
getExpectedReturn)

flags uint256[]
The sequence of flags for enabling and disabling some
features (default: 0), see flags description

Notice: Make sure the flags param coincides flags param in
getExpectedReturnWithGasMulti method if you want the same result

Notice: This method is equal to swapWithReferralMulti(fromToken, destToken, amount,
minReturn, distribution, flags, address(0), 0)

Return values:

Params Type Description

returnAmount uint256 Recieved amount of desired token

Example:

 // TO DO: ...

swapWithReferral

function swapWithReferral(
 IERC20 fromToken,
 IERC20 destToken,
 uint256 amount,
 uint256 minReturn,
 uint256[] memory distribution,
 uint256 flags,
 address referral,
 uint256 feePercent
) public payable returns(uint256)

Swap amount of fromToken to destToken

Params Type Description

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 14/27

Params Type Description

fromToken IERC20 Address of trading off token

destToken IERC20 Address of desired token

amount uint256 Amount for fromToken

minReturn uint256 Minimum expected return, else revert transaction

distribution uint256[]
Array of weights for volume distribution (returned by
getExpectedReturn)

flags uint256
Flags for enabling and disabling some features (default:
0), see flags description

referral address
Referrer's address (exception with flag
FLAG_ENABLE_REFERRAL_GAS_SPONSORSHIP)

feePercent uint256 Fees percents normalized to 1e18, limited to 0.03e18 (3%)

Notice: Make sure the flags param coincides flags param in getExpectedReturn
method if you want the same result

Return values:

Params Type Description

returnAmount uint256 Recieved amount of desired token

Example:

 // TO DO: ...

swapWithReferralMulti

function swapWithReferralMulti(
 IERC20[] memory tokens,
 uint256 amount,
 uint256 minReturn,
 uint256[] memory distribution,
 uint256[] memory flags,
 address referral,
 uint256 feePercent
) public payable returns(uint256 returnAmount)

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 15/27

Swap amount of first element of tokens to the latest element.
The length of flags array should be 1 element less than tokens array length. Each
element from flags array corresponds to 2 neighboring elements from tokens array.

Params Type Description

tokens IERC20[] Addresses of tokens or address(0) for Ether

amount uint256 Amount for tokens[0]

minReturn uint256 Minimum expected return, else revert transaction

distribution uint256[]
Array of weights for volume distribution (returned by
getExpectedReturn)

flags uint256[]
The sequence of flags for enabling and disabling some
features (default: 0), see flags description

referral address
Referrer's address (exception with flag
FLAG_ENABLE_REFERRAL_GAS_SPONSORSHIP)

feePercent uint256 Fees percents normalized to 1e18, limited to 0.03e18 (3%)

Notice: Make sure the flags param coincides flags param in
getExpectedReturnWithGasMulti method if you want the same result

Return values:

Params Type Description

returnAmount uint256 Recieved amount of desired token

Example:

 // TO DO: ...

makeGasDiscount

function makeGasDiscount(
 uint256 gasSpent,
 uint256 returnAmount,
 bytes calldata msgSenderCalldata
)

3/29/2021 GitHub - 1inch/1inchProtocol: 1inch Protocol – fully on-chain DeFi aggregation protocol

https://github.com/1inch/1inchProtocol 16/27

In case developer wants to manage burning GAS or CHI tokens with developer's own
smartcontract one should implement this method and use
FLAG_ENABLE_REFERRAL_GAS_SPONSORSHIP flag. 1proto.eth will call makeGasDiscount in

developer's smartcontract.

Params Type Description

gasSpent uint256 How many gas was spent

returnAmount uint256 Recieved amount of desired token

msgSenderCalldata bytes
Arguments from swap , swapWithReferral or
swapWithReferralMulti method

Notice: There is no such method in 1proto.eth .

Flags

Flag types

There are basically 3 types of flags:

1. Exchange switch
This flags allow 1split.eth to enable or disable using exchange pools for swap. This
can be applied for exchanges in genereral, for example: split , wrap , or this can be
applied for a specific exchange type, for example: bancor , oasis .
This flags may be used in any combination.

2. Transitional token selector
This flags provide to swap from fromToken to destToken using transitional token.
This flags cann't be used in combination with the same type.

3. Functional flags
This flags provide some additional features.
This flags may be used in any combination.

Flags description

flags param in 1split.eth methods is sum of flags values, for example:

flags = FLAG_DISABLE_UNISWAP + FLAG_DISABLE_KYBER + ...

