
Building Smart Contract Applications:
Python, Solidity, & Flask
September 18, 2019
Michael Free

WatPy + Bitcoin Bay KW Meetup @ Terminal.io

Learning Outcomes

● Provide a Python “cheatsheet” for the upcoming ETHWaterloo 2 Hackathon in November

● Learn how to work with Ganache-CLI and Python to Perform Basic Ethereum Functions

● Build a Basic Storage Solidity Smart Contract

● Becoming familiar with Web3.py to Build a dApp

● Using Flask to Build a Web-based Python Application with Ethereum

Install Requirements

● GitHub Repository: https://github.com/Michael-Free/PyDemo
● Built on top of a vanilla Ubuntu Server 18.04 LTS install:

● Solc v0.4.25 is required:

● This demo/tutorial uses Ganache-CLI and requires other libraries in requirements.txt

https://github.com/Michael-Free/PyDemo

Getting Started - Ganache-CLI
● An Ethereum Blockchain Emulator. Lightweight no need to run a node.
● When started with no parameters: 10 ETH addresses created
● Each address will have 100 ETH by default.
● Other information displayed:

○ HD Wallet mnemonic key: used to import these accounts into a wallet or other applications
■ Metamask, Parity, etc

○ Gas Limit and Gas Price:
■ Gas Limit - The amount of fuel is required to execute an operation or run a particular smart

contract function.
■ Gas Price - Price set by the contract or the network, to execute the operation. This is

variable. Choosing a lower gas price, means a lower-priority to execute the transaction
(takes longer).

■ Transaction Cost = Gas Limit * Gas Price
○ Host address and port ganache-cli is listening on

Getting Started - Ganache-CLI

Getting Started - Web3.py

● Web3 is an API to the Ethereum Blockchain to build applications.
● There are many implementations. The most widely used implementation is Web3.js, which Web3.py is

derived from.
● Let’s startup a python terminal and import the web3 libraries:

● Set Gananche-CLI as the Blockchain Provider:

Getting Started - Web3.py

● Let’s see if we can find out the gas price:

● Let’s see if we can get the balance of one of our ethereum accounts:

● Create a new account for yourself:

● The new balance of that account is zero:

Getting Started - Web3.py

● Interacting with Ganache-CLI with Python and Web3.py
○ Get a list of your personal accounts:

○ Notice that this lists the ethereum addresses started by ganache-cli.
○

○ The call from python to Web3.py can be observed from the ganache-cli terminal as well.

● Send some ETH to your new account from your other accounts:

● The response is the transaction hash registered on the blockchain. Here is the output of the transaction
in ganache-cli:

Getting Started - Web3.py

● Self-Executing contracts that exist on a blockchain

○ Think of it like a computer program

● Contracts can store terms between a buyer and a seller directly written into lines of code (soldity)

● Transactions with the contract are recorded on the blockchain.

● The goal is to provide fully self-executing and self-enforcing contracts, improving on our existing

framework.

Explaining Smart Contracts

● Moving Parts in the Next Step:
○ Solidity - the smart contract language that is most commonly used. This is what this

demo/tutorial will be using.

○ Solc - Solc is a binary and commandline interface for the Solidity Compiler (LLLC).

○ LLLC - the Lovely Little Language Compiler. This binary will translate Solidity Contracts into a

Ethereum-Blockchain executable format.

○ Py-Solc - The python wrapper for the the solc binary.

Explaining Smart Contracts

Building a Smart Contract

Learning More About Solidity
There are plenty of online resources for learning more about Solidity. For exploring more, take a

look at some of the provided documentation and sample contract-implementations:

● Solidity Documentation: https://solidity.readthedocs.io/en/v0.4.24/

● OpenZeppelin: https://github.com/OpenZeppelin/openzeppelin-contracts

● BlockGeeks: https://github.com/blockgeeks/workshop/tree/master/src/contracts

https://solidity.readthedocs.io/en/v0.4.24/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/blockgeeks/workshop/tree/master/src/contracts

Deploying Contracts (deploycontract.py)

● 2 ways to deploy a contract with Python:
○ Inline Code

■ What this demonstration will use.

○ Importing the Contract as a File

■ Not covered by this demo, but best practices provided in README.md

Deploying with Inline Solidity Code

deploycontract.py

Deploying Contracts

deploycontract.py

Using Flask to Build a dApp - Libraries

Flask Requirements

Web3 Requirements

dapp.py

dapp.py

Using Flask to Build a dApp - Input Form

dapp.py

Define an Input Form

Using Flask to Build a dApp - App Routing

dapp.py

Application Routing: 3 Basic Routes

Application Routing - home (/)

dapp.py

HTML Templates - index.html
Basic template for application:

All other routes will
inherit this HTML
template.

Their content will be
shown between these 2
tags in index.html:

{% block content %}
{% endblock %}

Variables can be passed to
HTML templates.

The ’contractaddress’
variable is inserted into
the template with double
curly brackets:

{{ contractaddress }}

templates/index.html

HTML Templates - home.html

This template is part of
index.html

Nothing too interesting
happening here.

Basically selecting the 1
menu option.

Just showing how to insert
some code into a template.

Insert this HTML between
these two tags in
index.html:
{% block content %}
{% endblock %}

templates/home.html

What it looks like

Application Routing - Register (/register) - GET

dapp.py

Call the form class created
earlier.

Add +1 for each address
created by ganache-cli
(0-9).

Return the form into the
register.html template.

Return the contract
address to the
register.html template.

n creates an index for each
ethereum address.

HTML Templates - register.html

Import the index.html
template

Call the serial number
input field & label from the
registerform class.

Call the ethereum
addresses dropdown
menu & label from the
registerform class.

templates/register.html

What it looks like

Application Routing - Registered (/registered) - POST

dapp.py

Call the setRegistration
contract function.

Pass the address and
serial number string from
the form to the contract

Print some of this info in
the flask server window

Pass some variables to the
templates. Not all are
used - add them yourself!

Create some vars to pass
to the template from the
contract transaction

HTML Templates - registered.html

Import the index.html
template

templates/registered.html

Call vars passed from the
dapp.py /registered route

What it looks like

