
Scaling Blockchains
Without Giving up Decentralization and Security

A Solution to the Blockchain Scalability Trilemma

Gianmaria Del Monte
Engineering Dept.

Roma Tre University
Roma, Italy

gia.delmonte@stud.uniroma3.it

Diego Pennino
Engineering Dept.

Roma Tre University
Roma, Italy

pennino@ing.uniroma3.it
0000-0001-5339-4531

Maurizio Pizzonia
Engineering Dept.

Roma Tre University
Roma, Italy

pizzonia@ing.uniroma3.it
0000-0001-8758-3437

Abstract—Public blockchains should be able to scale with
respect to the number of nodes and to the transactions workload.
The blockchain scalability trilemma has been informally conjec-
tured. This is related to scalability, security and decentralization,
stating that any improvement in one of these aspects should
negatively impact on at least one of the other twos. In fact,
despite the large research and experimental effort, all known
approaches turn out to be tradeoffs.

We theoretically describe a new blockchain architecture that
scales to arbitrarily high workload provided that a corresponding
proportional increment of nodes is provisioned. We show that,
under reasonable assumptions, our approach does not require
tradeoffs on security or decentralization. To the best of our
knowledge, this is the first result that disprove the trilemma
considering the scalability of all architectural elements of a
blockchain and not only the consensus protocol. While our result
is currently only theoretic, we believe that our approach may
stimulate significant practical contributions.

Keywords—Blockchain, Distributed Ledger Technology, Scla-
bility, Security, Decentralization, Trilemma.

I. INTRODUCTION

Scalability of public blockchains is extremely important for
their success. All communities and companies engaged in the
development of public blockchains strive to create solutions
to support a large number of nodes and/or large workloads (in
terms of transactions per second). While distributed systems
or peer-to-peer systems can scale very well with respect to
these parameters, blockchains, till now, have represented a
very hard challenge. The difficulty comes from the interplay
of contrasting requirements in the blockchain design. Vitalik
Buterin, founder of the Ethereum project, summarized his
understanding about this problem by introducing the so-
called blockchain scalability trilemma. This trilemma states
that regarding scalability, security and decentralization, any
improvement in one of these aspects negatively impacts on at
least one of the other twos.

Intuitively, consider an ideal blockchain, in which nodes are
all equal (with same and constant cpu, bandwidth, storage,
etc.). If we double both load and number of nodes, the ratio
between load and available processing resources is constant,

and scalability might, in principle, be possible. The obvious
question is if it is possible to design a blockchain in which
all activities (consensus, storage, and communication) are
distributed (and not just replicated) across nodes, keeping both
high security and high decentralization, independently from
the load and the number of nodes.

Current blockchains broadcast all pending transactions and
accepted blocks to all nodes. Hence, each node is a scalability
bottleneck, since its processing power and its bandwidth are
bounded. While a large literature addresses the scalability of
the consensus algorithm, this is only a part of the story. The
sharding approach, propose to partition the whole network
(comprising nodes, blocks, consensus, and transaction history)
into several smaller networks (shards), with some form of
coupling among them (to handle inter-shard transactions).
However, shards have less nodes than the whole network,
reducing decentralization and security, and inter-shard trans-
actions may pose a scalability challenge.

In this paper, we theoretically describe a novel blockchain
architecture for which the maximum workload that can be pro-
cessed is proportional to the number of nodes involved in the
blockchain. Our scalability result is related to all architectural
aspects, i.e., no node is ever forced to receive, process or store
a quantity of data that is proportional to the whole workload.
In our approach, decentralization and security, are not affected
when the number of nodes is increased. This derives from the
adoption, as a building block, of a randomized committee-
based consensus, like the one described in [5].

The value of our contribution is twofold. Firstly, it shows
that, under realistic assumptions, it is possible to solve the
blockchain scalability trilemma. Secondly, it provides a con-
struction that can be of inspiration for practical realizations.

The rest of the paper is structured as follows. In Section II,
we quickly review some related literature. In Section III, we
provide basic definitions, assumptions and some background.
In Section IV, we focus on scalability problems of current
solutions. In Section V, we first present the main ideas of
our architecture and then we detail the tasks performed by

ar
X

iv
:2

00
5.

06
66

5v
2

 [
cs

.D
C

]
 4

 J
un

 2
02

0

each committee. In Section VI, we formally prove correct-
ness. In Section VII, we show a formal scalability result. In
Section VIII, we discuss the effectiveness of our approach and
some other aspects. In Section IX, we draw the conclusions.

II. STATE OF THE ART

Despite its practical relevance and its potential theoretical
impact, the blockchain scalability trilemma [22] has not a for-
mal definition in scientific literature. However, “the trilemma”
is often cited in research works. For example, a taxonomy
of consensus algorithm based on the scalability trilemma is
provided in [1] and surveys on blockchain scalability explicitly
cite it [24], [27].

Concerning scalability, the most interesting results are about
sharding. However, all of them suffer, in different ways,
from the strong partitioning of the whole blockchain. Rapid-
Chain [26] requires strong synchronous communication among
shards which is hard to achieve. AHL [7] is an approach
that turns out to be expensive when a transaction involves
multiple shards. Omniledger [13] requires every participant
in the consensus protocol (a subset of the nodes in each
shard) to broadcast a message to the entire network to verify
transactions. It also requires the users to participate actively in
cross-shard transactions verification. Elastico [15] and Monox-
ide [21], require to execute expensive proof-of-work to decide
which shard should process a transaction. Other proposals
are targeted to scalability of consensus algorithms, like the
EOS network, which is analyzed in [25], Algorand [5], and
Ouroboros [8], [12].

A fundamental role in blockchain scalability is played by
Authenticated Data Structures (ADS) and related techniques.
The works [5] and [3] propose to use authenticated data
structures to scale with respect to the size of the blockchain
state. Other works related to scalability of ADSes are [18],
[17], [10], [16], [9].

III. BASIC DEFINITIONS AND ASSUMPTIONS

In the following, we introduce some definitions and assump-
tions that are used in the rest of the paper.

We call candidate (or pending) transactions those that
are generated by users but are not (yet) processed by the
blockchain. A confirmed (or accepted or committed) trans-
action is a transaction that was successfully processed by
the blockchain. The history of the blockchain is a totally
ordered sequence of confirmed transactions. For simplicity, in
the rest of the paper, we mostly focus on a simple model of
blockchain that realizes a pure cryptocurrency. In other words,
each address (or account) is associated to a wallet with a non
negative balance and a transaction just moves currency from
a wallet to another changing balances, accordingly. While the
results of this paper may be applicable in a more powerful
model, for simplicity, we do not consider more complex cases.
The state of the blockchain is the balances of all addresses,
at a certain instant. Since confirmed transactions are totally
ordered, the state of the blockchain is defined between two
consecutive accepted transactions. The sequence of confirmed

transactions is split into blocks that are sequentially numbered.
Pending transactions are confirmed when a new block is
created (or mined). The mining of a new block requires to
(1) select a subset of pending transactions, (2) order them,
and (3) verify that certain consensus rules are fulfilled when
a transaction is applied to the previous state. In practice,
consensus rules may be complex, but, in our model, they are
limited to keeping non-negative balances.

The nodes of a blockchain network act as peers in the sense
that they perform the same actions. Commonly, they broadcast
candidate transactions (even though, in the approach described
in this paper this is not true). Each node keeps a set of candi-
date transactions it knows. Nodes jointly perform a consensus
algorithm (or consensus protocol) to reach consensus on the
transactions to be included in the next block. This also implies
a consensus on the state after that block (i.e., after the last
transaction of the block). We assume that consensus does not
introduce forks as in [5]. In our approach, the transactions to
be included in the next block are decided by a joint work of a
number of committees, each of them performing a consensus
algorithm. This paper describes in detail how this can be done.

We consider all nodes to have always the same constant
amount of resources in terms of CPU, storage, and network
bandwidth. For simplicity, we also assume that honest nodes
are reliable, that all communications between nodes are in-
stantaneous, and that the backbone of the underlying network
does not introduce any bottleneck and is reliable.

The stream of candidate transactions is the workload (or
simply load) of the blockchain and its magnitude is a fre-
quency measured in transactions per seconds. In the following,
we assume that accounts whose balance is changed by can-
didate transactions are uniformly distributed on the address
space. The time a candidate transaction takes to be confirmed
is called (confirmation) latency. The maximum throughput of
the blockchain is the frequency of candidate transactions that
it is possible to confirm with bounded latency, i.e., avoiding
indefinitely growth of the set of pending transactions. When
workload is less than the maximum throughput, we say that the
blockchain is well-provisioned (for that workload). Since we
are interested in investigating scalability of blockchains, we
compare situations in which the same blockchain architecture
is adopted with different number of nodes and different
workload. We say that a blockchain architecture scales when
starting from a well-provisioned blockchain, it is possible to
give a new well-provisioned blockchain with proportionally
increased load and nodes. For simplicity, we do not deal with
dynamically changing number of nodes.

In the rest of the paper, we also assume knowledge of
Merkle trees. A Merkle tree T is a complete binary tree in
which each leaf contains a balance of an address and each
internal node contains the cryptographic hash of the content
of its children. The root of T contains the root-hash of T .
From T , it is possible to provide a (logarithmic length) proof
of the value of each of the leaf v of T , by providing the
content of the siblings of the nodes on the path from v to the
root. The proof can be verified only against the root-hash of

T from which it is derived and it is hard for an attacker to
synthesize a valid proof. If proofs are needed for only a subset
S of the leaves of T , it is possible to prune T so that size of
T is proportional to |S| and it is still possible to obtain proofs
for each element of S. Further details about the use of pruned
Merkle trees in blockchains can be found in [3].

IV. PROBLEMS OF CURRENT APPROACHES

In this section, we list some relevant aspects that make
current common public blockchains architecture not scalable
(according to the scalability definition given in Section III).

In this paper we focus on the following problems.

1) New candidate transactions are always broadcasted to all
(validating/mining) nodes.

2) There exists a set of (validating/mining) nodes (possibly
comprising all nodes), each processing all candidate
transactions that have to be included in the next block.

3) Each new block is broadcasted to all nodes.

Each of these aspects implies that, to well-provision the
blockchain, individual nodes have to increase computing
power and bandwidth even under proportionality condition.

We purposely avoid to mention scalability problems related
to the computational complexity of the consensus protocol,
since these three aspects are independent from it and are rele-
vant even for blockchains that adopt light consensus protocols.
We also avoid to mention the problem of storing the whole
blockchain state in each node, which is already addressed in
other works [3], [14].

In literature, most of the proposals that address the above
scalability problems introduce some form of sharding, which
is a way to partition the blockchain network and the transac-
tions, in effect, creating a sort of federation of a multiplicity
of blockchain networks. The sharding technique suffers of a
number of problems. The most hard-to-solve ones derives from
the fact that state is partitioned across shards. Hence, if shards
are many, most transactions turn out to change the state of
more than one shard. These are called inter-shard transactions.
Clearly, each transaction should be atomic, which is not so
simple to achieve in a sharded environment. Typically this
introduces inefficiencies related to inter-shard communication
(usually performed using some form of broadcast) and the
need of techniques similar to a two-phase commit to ensure
that all transactions executions are atomic. Another strong
criticism is about security, since smaller shards are supposed
to allow for better scalability but are deemed to be less secure
than larger ones.

The contribution of this paper is the description of an
architecture that aims at addressing the three above-mentioned
scalability problems. We do this without relying on sharding,
in the sense, in our case, the blockchain is one. However,
we introduce a way of dynamically sharing the load among
nodes. Our solution intends to apply a parallel version of the
Algorand consensus approach [5]. We also leverage the idea
of distributing the storage of the state, as described in [3].

V. A SCALABLE BLOCKCHAIN ARCHITECTURE

In this section, we describe an architecture that achieves
scalability, as defined in Section III. We first informally de-
scribe ideas that make scalability possible in our architecture,
then we list in detail all the components of the architecture
and their behavior.

A. Main Ideas

a) Committees: In our approach, there are a number of
committees that collectively work to perform the computation
needed to validate and confirm transactions and to compute
the new block. Each committee is made of a number of
nodes called members. The way members of each committee
are selected is not important to understand our architecture.
However, for security reasons, a randomized approach that
regularly change committee members can be adopted (like
for example in [5]). We assume that all committees are equal
sized. Their size is fixed and does not change when the number
of nodes in the network changes. The committees cooperates
by exchanging messages. A discussion about inter-committee
communication and of periodically changing the committee
members is provided in Section VIII.

b) Blocks: Differently from the common approach, in
our architecture, a block conceptually aggregates transactions,
but transactions are never explicitly represented in the broad-
casted block. In fact, the transactions related to a block are
proportional to the workload. Forcing a node to receive all of
them would impair scalability. Instead, for each new block, we
only broadcast constant size data. We call block this constant
size data. Our block can be considered equivalent in content
to the block header of other traditional approaches. For our
theoretical analysis, it is only relevant to know that the block
contains the hash of the previous block, and the hash of the
blockchain state after the application of all transactions of the
block. The state hash is computed on the basis of a Merkle tree,
hence we call it state root-hash. In the following, we explain
how the computation of the state root-hash is shared across
several committees. In principle, blocks might also contain a
hash of the transactions of the block. However, this is not
strictly needed for the correctness of the execution, which
computes the new state on the basis of the previous one.
Hence, we ignore it. Consider also that techniques similar
to those that we propose for scaling with respect to the
computation the state root-hash could be adopted for a root-
hash that summarizes the transactions of the block.

c) Storage: In our solution, we are interested in storing
the state of the blockchain (a similar approach can be adopted
for transaction history, but we do not include it in our model).
For scalability reasons, it is not possible for all nodes to store
the whole state. This is not only because of the size of the
needed storage, but also because processing updates to the
whole state would require an amount of resources proportional
to the workload. Bernardini et al. [3] and Vault [14] propose
approaches that do not require for all nodes to store the
whole blockchain state. In these approaches, a node may not
even store any state at all and still be able to participate

in transactions confirmation and block creation activities. In
the following, we refer to a node that stores a part of the
blockchain state as a storage node. The cited works, consider
a (complete and binary) Merkle tree on the whole address
space in which each leaf is an address (comprising unused
addresses). We denote this Merkle tree by W . Storage nodes
store only a part of the state (a subset of all accounts) and the
corresponding part of W , that covers all the paths from stored
addresses to the root, pruning the rest of W (see details in [3]).
The root-hash of W is the state root-hash. Since blockchain
state changes, the block contains the state root-hash of the
state after the application of the last transaction of the block.

d) Transaction creation: As in [3] and [14], in our
approach, a node n that intends to create a transaction has
the responsibility to provide cryptographic proofs of the bal-
ances of the accounts that are going to be changed by the
transaction (i.e., of the accounts involved in the transaction).
These cryptographic proofs are asked by n to one or more
storage nodes. Since each storage node stores a pruned Merkle
tree, they are able to provide that proof for the accounts they
store. However, as will be clear in the following, the balances
provided by storage nodes are related to a state that is delayed
by a few blocks. The proof p obtained from a storage node
is related to a state of the blockchain after a certain block B,
intending that its is valid with respect to the state root-hash in
B. We also simply write that p is related to B. Since nodes
keep only a truncated list of blocks (see below), proofs that are
too old cannot be validated and we say that they are expired.

e) Pipelining: Consider the computation needed to vali-
date and confirm transactions and then to compute the new
state root-hash to be included in a new block. The effort
needed for this task is clearly proportional to the workload.
To scale, it is important to distribute this computation over
several committees. For this reason, we introduce a pipeline
in which the computation is performed in several stages. In
each stage, the computation can be further distributed across
several committees, using a parallel processing approach. The
output of the last stage is a new block.

We suppose that the time is spliced into equal length rounds.
Rounds are sequentially numbered. In each round, each com-
mittee performs its task for a certain pipeline stage. The result
of the computation of a committee is communicated to the
committees that, in the next round, need it for the next pipeline
stage. For simplicity, we assume that all communications are
instantaneous. A discussion on communication problems is
provided in Section VIII.

We denote by Bi the block produced as output of the
last stage in round i. We denote the block that contains the
transactions that entered the pipeline at round i by Bi. If the
pipeline has q stages, the transactions that enter the pipeline
at round i, and that are accepted, will be part of the block
produced as output by the last stage that runs at round i+q−1.
Hence, we have that Bi = Bi+q−1. The first round in which
Bi can be used by any node is round i + q. In Figure 2,
an example of pipeline with q = 4 is depicted. Details are
explaind in the following.

Each produced block is propagated to all nodes. Each stor-
age node replies only with proofs related to already produced
blocks. We assume that a node that creates a transaction x
takes one round to retrieve all the proofs for balances of
addresses involved in x. These proofs are validated in the first
stage of the pipeline. Note that, at that time, these proofs are
old by at least q rounds.

f) Truncated block history: As in [3], we assume each
node does not keep all the blocks, but only the last d
blocks received. That is, at round i, each node stores blocks
Bi−1 = Bi−q, . . . , Bi−d = Bi−q−d+1 and previous blocks
are forgotten. A proof p related to Bj is expired at round i
if j < i− d (i.e., nodes have forgotten Bj needed to validate
p). Since in round i the last available block is Bi−1, a storage
node replies with proofs related to that block. In our model, we
assume a node takes one round to create a transaction (asking
for proofs to the storage). Hence, for the nodes participating
in committees of the first pipeline stage to be able to verify
balance proofs, it should be d ≥ 2. In the following we
assume d = 2. In a practical realization, d might be larger
to compensate delays of the network [3].

B. The architecture

In Figure 1a, we show the proposed architecture and the
flow of information within it. We describe it from left to right.

Any node can create a candidate transaction. As described
above, a new candidate transaction should come with balances
of the involved accounts and with corresponding proofs of in-
tegrity, related to a previous round. This can be obtained from
a storage node. Candidate transactions are not broadcasted
into the network (nothing is broadcasted in our approach but
constant size blocks), instead, they are sent to a limited number
of nodes as described below.

The validation of the set of transactions that have to be
included in a block is performed by Confirmation Committees
(CC). We denote each distinct CC by Ck with k = 1, . . . , Nc,
where Nc is the number of CCes. When relevant, we write Ci

k

intending to denote the k-th confirmation committee that runs
in the i-th round. The node that creates a new transaction x
sends it to Ci

k, with k = (hash(xsrc) mod Nc), where xsrc is
the account whose balance is charged by x. We intend that x
is received by Ci

k before the start of round i and hence Ci
k can

process it during round i. We say that Ci
k is responsible for that

transaction. The set of candidate transactions for which Ci
k is

responsible is denoted P (Ci
k). We denote by P i =

⋃
k P (Ci

k)
the set of candidate transactions processed by all confirmation
committees in round i. The result provided by Ci

k is a sequence
of transactions denoted Ai

k, with Ai
k ⊆ P (Ci

k).
A fundamental aspect of the algorithm performed by Ci

k is
to obtain, for each transaction x, the balance of xsrc related
to Bi−1 to check that x complies with the non-negative
balance rule. Since proofs attached to transactions are related
to Bi−2 = Bi−q−1, those proofs are for balances that are
old. In fact, they might have been outdated by transactions
accepted in the last q rounds, for which the corresponding
block is not yet available. Hence, each Ci

k should also be

Nc

Confirmation
Committes

account balance + proof

account balance query

block
(with state root hash, constant size, broadcasted)

Transaction
Creation

any node

NR

Root hash Pipeline
Committees

hash pruned node

hash pruned node

confirmed transactions

sub-root hashes

Storage nodes

(a)

le
v
el

1

le
v
el

2

le
v
el

3
=
h

000000

111111

Leaf RPCesInner RPCes

(b)

Fig. 1: In 1a, the flow of data within the proposed architecture. In 1b, The tree conceptual Merkle tree W partitioned into
underlying trees of RPCes. White nodes are pruned.

tr
an

sa
ct
io
n
s

B
lo
ck

P i

P i−1

P i−2

P i−3

P i−4

P i−5

Bi = Bi+3

Bi−1 = Bi+2

Bi−2 = Bi+1

Bi−3 = Bi

Bi−4 = Bi−1

Bi−5 = Bi−2

Round Number

i− 5 i− 4 i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3

Ci−5
0 , .. ., Ci−5

k , .. . Ri−4
0 , .. ., Ri−4

m , .. .

Ci−4
0 , .. ., Ci−4

k , .. . Ri−3
0 , .. ., Ri−3

m , .. .

Ci−3
0 , .. ., Ci−3

k , .. . Ri−2
0 , .. ., Ri−2

m , .. .

Ci−2
0 , .. ., Ci−2

k , .. . Ri−1
0 , .. ., Ri−1

m , .. .

Ci−1
0 , .. ., Ci−1

k , .. . Ri
0, .. ., R

i
m, .. .

Ci
0, .. ., C

i
k, .. . Ri+1

0 , .. ., Ri+1
m , .. .

time

Ai−5

Ai−4

Ai−3

Ai−2

Ai−1

Ai

Accounted in
Bi−2

each Cj
k contributes to

Aj with Aj
k

P i: proofs related to
Bi−2 = Bi−5

Bi−2 = Bi−5

Bi−1 = Bi−4

P iStorage

P
ro
of
s

Each Ri+1
m receives from Ci−4

k , .. ., Ci
k

Sm(Ai−4
k), .. ., Sm(Ai

k) respectively.
Equivalently, each Ci

k sends Sm(Ai
k) to Ri+1

m , .. ., Ri+q+1
m

Transaction
Creation

Fig. 2: An example of execution of a pipeline with four stages. In the picture, inputs to Ci
k and to Ri+1

m are evidenced.

aware of state changes induced by transactions accepted by
Ci−q

k , . . . , Ci−1
k , that is, of Ai−q

k , . . . , Ai−1
k , respectively (see

Figure 2). These transactions are considered to update all
account balances involved in P (Ci

k) to match state related
to Bi−1. We call time-updating this process. In Figure 2,
we depicted the pipeline and put in evidence the inputs for
a generic Ci

k.
In our model, each Ci

k performs the following algorithm
(by a suitable consensus protocol).

Algorithm 1 (Confirmation).

1) It checks that each transaction in P (Ci
k) fulfills syntac-

tic rules and proofs are not expired. It discards non-

compliant transactions, resulting in P ′(Ci
k) ⊆ P (Ci

k)
2) It selects an arbitrary order T for P ′(Ci

k).
3) Let T̃ be the concatenation of Ai−q

k , . . . , Ai−1
k . For each

account that appears as source in transactions of T ,
consider the last balance from T̃ and from the balances
provided by the proofs of transactions in T .

4) It executes T and checks that the resulting balance of
each transaction fulfills the non-negative balance rule.
Transactions the do not fulfill this rule are discarded.
The resulting Ai

k is derived from T where discarded
transactions are omitted.

Transactions in Ai
k should be considered confirmed (or

accepted) in the sense they have passed all checks to be

inserted in Bi. To allow the confirmation committees of
subsequent rounds to perform time-updating, Ai

k is made
available to Ci+1

k , . . . , Ci+q
k and also to other committees, as

explained in the following.
The sequence of accepted transactions for that round is

denoted Ai =
⋃

k A
i
k, where Ai is an arbitrary sequence that

respects the order of each Ai
k.

Even if Bi is yet to be computed, storage nodes can receive
from Ci

k state changes that will be part of Bi. Transactions
in Ai

k are selectively sent to the storage nodes that need it, to
update the part of the state they manage.

The actual computation of Bi = Bi+q−1 requires to
compute its state root-hash, which means computing all the
hashes of the conceptual Merkle tree W related to the whole
state space. This is performed by NR committees, called Root-
hash Pipeline Committees (RPCes). Each RPC is associated
to a part of W as shown in Figure 1b, called the underlying
tree of the RPC. Each underlying tree is rooted to a node
whose hash is named sub-root-hash. RPCes themselves form a
tree denoted by WRPC, whose internal nodes have 2k children,
with the exception of the root that have at most 2k children.
Dimensioning of k, and other parameters, is described in
Section VII. Upon state changes, each RPC is responsible
to compute all hashes for its underlying tree. There are two
kinds of RPCes. Leaf RPCes, that are the leaves of WRPC,
and inner RPCes, that are all other RPCes. Each leaf RPC
is responsible for the interval of contiguous addresses that are
leaves of its underlying tree. Since most addresses are unused,
leaf RPCes consider a pruned version of the underlying tree
containing only the paths from used addresses to its root. The
underlying tree of each inner RPC is a complete binary tree
(see Section VII). RPCes are partitioned in levels numbered
from 1 to h. Level 1 contains all leaf RPCes. Level h contains
only the root of WRPC. Each level is one stage of the pipeline.
Hence, the total number of stages of the pipeline (comprising
CCes) is q = h + 1. Each RPC at level i < h computes a
sub-root-hash that is fed as input to its parent in WRPC. The
root of WRPC outputs and broadcasts the new block with the
corresponding state root-hash. Theorem 2 of Section VII states
that it is possible to dimension WRPC and the underlying trees
of leaf and inner RPCes to ensure scalability.

We write Ri+1
m to denote a generic leaf RPC that runs in the

(i+ 1)-th round and is responsible for the m-th portion of the
addresses space. As mentioned above, leaf RPCes constitutes
the second stage of our pipeline and have to receive as input
Ai, which is the output of the first stage. However, a leaf RPC
does not need the whole Ai. More in detail, each leaf RPC
Ri+1

m receives all and only the transactions in Ai that modify
the balance of an address for which Ri+1

m is responsible. In our
cryptocurrency model, a single confirmed transaction is sent
to two leaf RPCes. If x is a transaction in Ai

k, Ci
k sends x to

Ri+1
m only if the source or the destination of x is an address

for which Ri+1
m is responsible. We denote with Sm(Ai) ⊆ Ai

the set of transactions in Ai that have one of its involved
addresses in the m-th portion of the address space and have
to be received by Ri+1

m .

The task performed by Ri+1
m is to calculate the sub-root-

hash of its underlying tree related to Bi. To do this, it needs
the status of its underlying tree related to Bi−1. Since, proofs
attached to transactions in Sm(Ai) are related to Bi−2 =
Bi−q−1, they cannot be used alone to compute all hashes of
the underlying tree related to Bi−1. In fact, they might have
been outdated by transactions accepted in Ai−q, . . . , Ai−1 for
which the corresponding block is not yet available. Hence,
each Ri+1

m should also be aware of Sm(Ai−q), . . . , Sm(Ai−1).
Each Ri+1

m considers the proofs of these transactions according
to their order to calculate all hashes of the pruned underlying
tree related to Bi−1. We call time-shifting this process (a
similar process is described in [3]). To allow the leaf RPCes
of subsequent rounds to perform time-shifting, each Ci

k sends
Sm(Ai

k) to Ri+1
m , . . . , Ri+q+1

m , as well.

VI. CORRECTNESS

In this section, we formally prove the correctness of the
architecture introduced in Section V.

The following lemma state the correctness of Algorithm 1
when run on only one committee.

Lemma 1 (Correctness of the confirmation algorithm). Algo-
rithm 1 never returns a sequence that entails a violation of
the non-negative balance rule.

Proof. By construction of the result in Step 4 of Algorithm 1.

Theorem 1 (Correctness). Given a set of transactions P i pro-
cessed, at round i, by confirmation committees Ci

k producing
accepted transactions sequences Ai

k, the following statements
are true.

1) In any sequence Ai =
⋃

k A
i
k such that Ai respects

the order of each Ai
k, the non-negative balance rule is

respected.
2) The state root-hash of Bi = Bi+q−1 is the root-hash of

the new state after the application of Ai.
3) Storage nodes knows the proofs of the addresses they

store.

Proof. Concerning Statement 1, observe that Ai
k satisfy the

non-negative balance rule (Lemma 1) and their order is pre-
served by hypothesis in Ai. Since for each k the addresses
charged in Ai

k are not charged in any Ai
j with j 6= k, the

statement follows.
Concerning Statement 2, note that each leaf RPC Ri+1

m

considers all the transactions that involve addresses for
which Ri+1

m is responsible that are present in sequences
Sm(Ai−q), . . . , Sm(Ai−1), respecting their order. RPC Ri+1

m

can correctly compute its sub-root-hash to pass to its parent
RPC. In fact, if an internal node of its underlying tree is
involved in a transaction, Ri+1

m receives the proofs attached
with the transaction. If an internal node of its underlying tree is
not involved in any transaction either it is pruned or it is a root
of a pruned tree. In the first case, Ri+1

m does not need it. In the
latter case, Ri+1

m receives its hash in one of the proofs available
to it. Since, internal RPCes always receive, form their children,

the hash values for all the leaves of their underlying tree,
computing their sub-root-hash is trivial. Hence, the statement
follows.

Concerning Statement 3, note that RPCes compute the root-
hash on the basis of a pruned version W ′ of W , where leaves
of W kept in W ′ are all used addresses U . Each storage node
n stores a pruned version Wn of W , where leaves of Wn are
all addresses Un that n intends to store. Since Un ⊆ U , also
Wn ⊆W ′. Hence, all sub-root-hash of pruned subtrees in Wn

are known to one of the RPCes, which can communicate it to
n.

VII. SCALABILITY

In this section, we formally show the scalability of our
approach. For real systems, the workload is usually charac-
terized probabilistically. For simplicity, we reason assuming a
deterministic workload. Indeed, similar arguments hold when
reasoning with expected values. We also assume balance
changes in a round are uniformly distributed across the whole
address space. We start by introducing some assumptions and
notation.

We denote by f the frequency of transactions of the
blockchain workload. We denote by ∆ the duration of a round.
We denote by m = 2f∆ the number of addresses whose
balance changes in each round, assuming transactions involve
distinct addresses. Let W̃ a pruned version of W where only m
leaves are kept, i.e., those related to the addresses that change
balance in one round. We note that there is a level l of W̃ ,
above which W̃ is a complete binary tree. As m grows, the
pruned part get smaller and l get closer to the leaves.

We denote by j the maximum number of hashes that an
RPC can compute in a round. Note that j is constant, since
it depends on the CPU power of committees members. We
denote by e the maximum number of balance changes that a
leaf RPC R can process in one round. Clearly e depends on
j and on how changes are distributed in the address space for
which R is responsible, since this determines the number of
nodes of the pruned underlying tree that R has to deal with.
However, by the uniform distribution assumption, e is the same
for all leaf RPCes. For simplicity, we assume j to be large
enough so that the root of the underlying tree of leaf RPCes
is above level l. Hence, the underlying tree U of an inner
RPC R is a complete binary tree, as stated in Section V-B.
Let k be the number of the levels of U . The nodes of U are
2k − 1. The children RPCes of R are 2k−1. For each round,
the inner RPC has to compute one hash for each node of U .
The maximum number of nodes in the underlying tree of an
inner RPC is ĵ = 2k̂ − 1, where k̂ is the largest possible
integer such that ĵ ≤ j, or equivalently k̂ = blog2(j + 1)c.
The maximum number of levels of the underlying tree of an
RPC is also k̂. We denote by S(N, f) a blockchain system S,
with the architecture described in Section V, with N nodes
and with a workload at frequency f .

Lemma 2. Consider a blockchain system S(N, f), of N nodes
with workload f . Let e be the maximum number of balance

changes that a leaf RPC can handle per round, and ĵ be the
maximum number of hashes an inner RPC can compute per
round. If S is well dimensioned, the number of leaf RPCes
is at least 2dlog2(m/e)e and the number of inner RPCes is at
least

⌈
2dlog2(m/e)e−1

ĵ

⌉
, where m = 2f∆ and ∆ is the round

duration.

Proof. Leaf RPCes should at least be dm/ee, however, since
they have to be the leaves of a complete binary tree, underlying
to inner RPCes, their number have to be a power of 2. Hence,
we they have to be 2g with g = dlog2(m/e)e. Consider the
union of the underlying graphs of all inner RPCes WI , its
number of levels is g, as well.

As m increases, the resource usage of each leaf RPC
increases. When resources of leaf RPCes are fully used, their
number is doubled. Note that, doublings occur when m/e is
a power of 2. Right after a doubling, their resources are half
used. Increasing m, their resource usage goes from half of its
processing capacity to maximum capacity, which occurs right
before a doubling.

When leaf RPCes (at level 1 of WRPC) are doubled, also
inner RPCes at level 2 of WRPC are doubled. All inner RPCes
have their underlying tree with the maximum number of levels,
except for the root of WRPC (see Figure 1b), for which its
number of levels is increased by one at each doubling. This
occurs until the levels of the underlying tree of the root of
WRPC reaches k̂. After that, g increases by one and a new
root with only one node as underlying tree is added at the
top. Since, leaf RPCes are 2g , the nodes of WI are 2g − 1.
Hence, the number of inner RPCes is given by

⌈
(2g − 1)/ĵ

⌉
.

Note that both numerator and denominator represent the size
of a complete binary tree, with g and k̂ levels, respectively.
The integer part of the result of the division is the number of
inner RPCes with full-sized underlying tree. The reminder is
the size of the underlying tree of the root of WRPC , which is
not full-sized, in general.

The following theorem states the scalability of our approach
when nodes and workload are proportionally increased.

Theorem 2 (Scalability). There exists a well-provisioned
blockchain system S(N, f), with N nodes and workload
frequency f , such that, for all α > 1 such that αN is integer,
it is possible to provide a well-provisioned blockchain system
S̄(αN,αf).

The above statement holds under the assumption that the
balance changes induced by the workload are uniformly
distributed across the address space.

Proof. We choose as S(N, f) a well-provisioned system, right
after a doubling, i.e., with minimum resource usage for the leaf
RPCes. In our setting, committees of S and S̄ have the same
processing capabilities. We want to prove that αN nodes in S̄
are enough for the number of committees needed to process a
workload αf . We first derive the needed number of CCes in
S̄ compared to that of S and then we do the same for RPCes.

Then, we show that they are compatible with the increment of
the nodes.

A workload at frequency f , generates f∆ transactions per
round. Let NC be the number of CCes in S. Since S is well-
provisioned, each CC is able to process f∆/NC transactions
per round. The load of S̄ is αf , hence, with αNC CCes, we
obtain in S̄ the same resource usage of each CC as in S.

Note that, the fact that each CC have to re-process transac-
tions accepted in a constant number of previous rounds does
not impact this reasoning. This is true also for the following
argument about RPCes.

We use symbols, m, e, ĵ, and g with the same meaning as
before. To simplify the proof, in accordance with Lemma 2, we
choose to provision S and S̄ with

⌈
2dlog2(m/e)e

ĵ

⌉
inner RPCes,

possibly leaving one of the inner RPCes without workload.
Note that, S is well-provisioned and with minimum resource
usage of leaf RPC, i.e. with f right after a doubling. Hence, in
our case, m/e is a power of two, g = log2(m/e) + 1, and by
Lemma 2 and the above choice for the number of inner RPCes,
the total number of RPCes in S is NR = 2g +

⌈
2g/ĵ

⌉
=

2m/e +
⌈
2m/(eĵ)

⌉
. We now consider the total number N̄R

of RPCes needed by S̄(αN,αf). For α = 2t with t positive
integer, it should be N̄R = 2αm/e +

⌈
2αm/(eĵ)

⌉
. Since,⌈

2αm/(eĵ)
⌉
≤ α

⌈
2m/(eĵ)

⌉
, we have that N̄R ≤ αNR.

Hence, αN nodes are enough for S̄ to be well-provisioned.
Our assumptions imply that S̄(αN,αf) is again right after a
doubling and with only half of the resources of leaf RPCes
used. Hence, with the same N̄R, S̄ is well provisioned till
the next doubling, which covers all the values of α such that,
2t < α < 2t+1.

Hence, the needed increment of the number of CCes and of
the number of RPCs from S to S̄ is at most by a factor of α,
and S̄ has αN nodes. This proves that S̄ is well-provisioned
regarding processing aspects.

Additionally, we note that the messages sent and received by
each committee in S̄ in each round is no more that the double
of the number of messages sent and received in S. Further,
we note that the storage can be realized so that the number of
storage nodes that store a certain account is bounded.

The above observations complete the proof of the statement.

VIII. DISCUSSION AND FUTURE WORKS

In this section, we discuss the effectiveness or our approach
and certain aspects that are not analyzed in the rest of the
paper. In particular, it is important to understand if the pro-
posed approach is a better solution to the blockchain trilemma
than the previously known ones. This means understanding if
scaling requires to limit security and/or decentralization, since
the scalability of our appraoch has been formally stated in
Section VII.

a) Decentralization: Concerning decentralization, note
that in our system all nodes cooperate in the creation of a
new block. Further, even if the committees do not have all the

same role, we can assign nodes randomly to each committee,
possibly changing them periodically (like, for example, in [5]).
In this way, the role of the nodes is statistically homogeneous.
Due to these considerations, we think that scaling in our
approach does not affect decentralization.

b) Security: Considering security, many other research
works and practical systems relay on the security of a con-
sensus algorithm run by a restricted set of nodes forming a
committee. In this setting, many attacks require the attacker
to control the majority of the committee members. However,
when committees are randomly selected, this becomes harder
as the number of nodes increases. In conjunction with a proof-
of-stake approach (for example) this protects against Sybil
attacks. If consensus algorithm is robust enough, the presence
of several committees has a negligible impact on security. In
this sense, security of our approach increases when scaling to a
higher number of nodes. Clearly, security is about many other
aspects, but the difficulty to subvert the consensus is usually
considered in the context of discussions about the blockchain
trilemma.

It is worth to note that for the correctness of our approach
nodes need to keep only a constant amount of blocks. How-
ever, for security reasons, nodes can keep more blocks (or
other related information). For example, in Vault [14] the join
of a new node is securely performed without downloading the
whole blockchain. Analogous approaches can be adopted in
our context.

A security analysis with respect to a formally stated threat
model is leaved as future work.

c) Committee members selection: Our approach is appli-
cable independently from the way members of each committee
are selected. Their selection can be done using a public shared
source of randomness or using verifiable random functions,
as in [5]. However, there is a caveat regarding this in our
approach. Since intermediate results of the pipeline are passed
to committees that need them in the next rounds, if members
of committees change, these have to be decided and published
before data is sent to them. Note that, resorting to broadcast
is not possible since this would impair scalability.

d) Inter-committee communication: In Section V, we
often relayed on the possibility for a committee to commu-
nicate data to other committees that need them in the next
rounds. Inter-committee communications should be part of
the consensus protocol, in the sense that each receiver should
accept a message m from a sender committee S only after
having checked that m was sent by a number of members
above a certain threshold.

e) Network communications: In our architecture, most
messages are sent from nodes to a bounded number of other
nodes (members of a certain committee or storage nodes
storing a certain account). We note that, using unicast com-
munications, the number of actual messages turns out to be
quadratic in the size of the committees. While practically this
might be a problem, from a theoretical point of view this is not
the case, since the size of committees is constant. However,
a critical aspect is that unicast communications require the

destination to be known, which is not easy to obtain in a
scalable manner when the committees change regularly.

We think that a multicast approach can be used to fulfill
our needs. The formal statement of the requirements of this
underlying multicast layer as well as its design is leaved
as future work. However, it may be worth to mention that
the use of standard multicast techniques may not completely
suite our needs. In particular, the following aspects should
be considered when adopting multicast for inter-committee
communications or for submission of new transactions to the
proper confirmation committee.

1) The members of a multicast group might change rapidly,
depending on the round duration.

2) The preparation of the multicast groups can be performed
in advance with respect to when they are needed, even
if this requires to anticipate the disclosure of committee
members.

3) The multicast groups are needed for only one round and
then discarded. This might simplify the development of
a specific technique for this application.

Regarding the use of multicast for messages destined to
storage nodes, we note that the number of needed multicast
channels might very large: one for each used address.

Many research works about scalable multicast routing are
available in literature (see, for example, [20], [11], [23], [19],
[2], [4]). Fast-join multicast routing was studied in [6].

f) Synchronization and committee decision failing: In
our description, we essentially assumed a sort of global
synchronization. In practice, synchronization spread across a
large number of nodes (although partitioned in committees)
might be difficult to achieve. The problem of modifying our
approach to relax synchronization requirements is left as a
future work. A related problem is the failure of a committee
to reach an agreement, which is unlikely to for a direct attack,
but may occur under large network faults. Again, we left the
investigation of these aspect as a future work.

IX. CONCLUSIONS

We showed a novel blockchain design that distributes the
burden to create the next block on many parallel executing
committees (involving “almost” all nodes) and that avoids
broadcast in all cases that are critical for scalability. We
provided formal proof of the scalability of our approach and of
its correctness. We also discussed how scaling does not impair
decentralization and security. Hence, our architecture can be
regarded as a solution to the blockchain scalability trilemma,
in the studied setting.

Some future works were already mentioned in Section VIII.
In particular, from a theoretical point of view, a formal
security proof is needed, as well as a further investigation
of synchronization and behavior under committee consensus
failure. Further, since we assumed to have a scalable mul-
ticast protocol, it should be interesting to understand how
to realize this protocol and how it is possible to rely on
current technology to realize an efficient one. From a practical

point of view, an experimentation or simulation with realistic
parameters would be desirable.

X. ACKNOWLEDGMENTS

We are extremely grateful to Ciro Oliviero for his important
contribution in the beginning of this research.

REFERENCES

[1] Amani Altarawneh, Tom Herschberg, Sai Medury, Farah Kandah, and
Anthony Skjellum. Buterin’s scalability trilemma viewed through a state-
change-based classification for common consensus algorithms. In 2020
10th Annual Computing and Communication Workshop and Conference
(CCWC), pages 0727–0736. IEEE, 2020.

[2] Rajesh I Balay, Girish Bhat, Gregory Lockwood, and Rama Krishnan
Nagarajan. Scalable ip-services enabled multicast forwarding with
efficient resource utilization, July 3 2012. US Patent 8,213,347.

[3] Matteo Bernardini, Diego Pennino, and Maurizio Pizzonia. Blockchains
meet distributed hash tables: Decoupling validation from state storage.
In Paolo Mori, Massimo Bartoletti, and Stefano Bistarelli, editors,
Distributed Ledger Technology Workshop (DLT 2019), volume 2334,
pages 43–55, 2019.

[4] Andrei Broder and Michael Mitzenmacher. Network applications of
bloom filters: A survey. Internet mathematics, 1(4):485–509, 2004.

[5] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theoretical Computer Science, 2019.

[6] Sungyean Cho and Myong-Soon Park. Fjm: fast join mechanism for
overlay multicast. In Proceedings of 2003 IEEE Conference on Control
Applications, 2003. CCA 2003., volume 2, pages 1333–1338. IEEE,
2003.

[7] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang,
Qian Lin, and Beng Chin Ooi. Towards scaling blockchain systems
via sharding. In Proceedings of the 2019 International Conference on
Management of Data, pages 123–140. ACM, 2019.

[8] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-
stake blockchain. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 66–98. Springer,
2018.

[9] Federico Griscioli and Maurizio Pizzonia. Securing promiscuous use of
untrusted usb thumb drives in industrial control systems. In Proceedings
of the 14th Annual Conference on Privacy Security and Trust (PST
2016), pages 477–484, 2016.

[10] Federico Griscioli, Maurizio Pizzonia, and Marco Sacchetti. Us-
bcheckin: Preventing badusb attacks by forcing human-device interac-
tion. In Proceedings of the 14th Annual Conference on Privacy Security
and Trust (PST 2016), pages 493–496, 2016.

[11] Björn Grönvall. Scalable multicast forwarding. Computer communica-
tion review, 32(1):68, 2002.

[12] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain
protocol. In Annual International Cryptology Conference, pages 357–
388. Springer, 2017.

[13] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 583–598. IEEE, 2018.

[14] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. Vault:
Fast bootstrapping for the algorand cryptocurrency. In NDSS, 2019.

[15] Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth
Gilbert, and Prateek Saxena. Scp: A computationally-scalable byzantine
consensus protocol for blockchains. See https://www. weusecoins.
com/assets/pdf/library/SCP, 20(20):2016, 2015.

[16] E. Etchevès Miciolino, D. Di Noto, F. Griscioli, M. Pizzonia, J. Kippe,
X. Clotet, G. Leòn, F.B. Kassim, D. Lund, and E. Costante. Preemptive:
an integrated approach to intrusion detection and prevention in indus-
trial control systems. International Journal of Critical Infrastructures
(IJCIS), 13(2/3):206–236, 2017.

[17] D. Pennino, M. Pizzonia, and A. Papi. Overlay indexes: Efficiently
supporting aggregate range queries and authenticated data structures in
off-the-shelf databases. IEEE Access, 7:175642–175670, 2019.

[18] Diego Pennino, Maurizio Pizzonia, and Federico Griscioli. Pipeline-
integrity: Scaling the use of authenticated data structures up to the cloud.
Future Generation Computer Systems, 2019.

[19] János Tapolcai, József Bı́ró, Péter Babarczi, András Gulyás, Zalán
Heszberger, and Dirk Trossen. Optimal false-positive-free bloom filter
design for scalable multicast forwarding. IEEE/ACM Transactions on
Networking, 23(6):1832–1845, 2014.

[20] Jining Tian and Gerald Neufeld. Forwarding state reduction for sparse
mode multicast communication. In Proceedings. IEEE INFOCOM’98,
the Conference on Computer Communications. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Gateway to the 21st Century (Cat. No. 98, volume 2, pages 711–719.
IEEE, 1998.

[21] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with
asynchronous consensus zones. In 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19), pages 95–
112, 2019.

[22] Ethereum wiki project. On sharding blockchains. https://github.com/
ethereum/wiki/wiki/Sharding-FAQ [Accessed 2020-05-25].

[23] Tina Wong and Randy Katz. An analysis of multicast forwarding state
scalability. In Proceedings 2000 International Conference on Network
Protocols, pages 105–115. IEEE, 2000.

[24] Junfeng Xie, F Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, and
Yunjie Liu. A survey on the scalability of blockchain systems. IEEE
Network, 33(5):166–173, 2019.

[25] Brent Xu, Dhruv Luthra, Zak Cole, and Nate Blakely. Eos: An
architectural, performance, and economic analysis, 2018.

[26] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain:
Scaling blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
931–948. ACM, 2018.

[27] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. Solutions
to scalability of blockchain: A survey. IEEE Access, 8:16440–16455,
2020.

