
R3 Reports

Chain
Interoperability
Vitalik Buterin

1

For more Research, please visit R3’s Wiki here .

Contents

1. Chain Interoperability, 1
2. Types of Interoperability, 2
3. Notary Schemes, 3
4. Relays, 4
5. Relays for Cross-Chain Atomic Swaps, 7
6. Hash-locking, 7
7. Theory and Implementation, 9
8. Formal Modeling and Security, 10
9. Governance and Failure Modes, 11
10. Interoperability and Lifecycle Events, 13
11. Mitigation and Recovery from Failure Modes, 14
12. The Road to Interoperability in Practice, 16

Disclaimer: These white papers are for general information and discussion only and
shall not be copied or redistributed outside R3 membership. They are not a full
analysis of the matters presented, are meant solely to provide general guidance and
may not be relied upon as professional advice, and do not purport to represent the
views of R3 Holdco LLC, its affiliates or any of the institutions that contributed to these
white papers. The information in these white papers was posted with reasonable
care and attention. However, it is possible that some information in these white
papers is incomplete, incorrect, or inapplicable to particular circumstances or
conditions. The contributors do not accept liability for direct or indirect losses resulting
from using, relying or acting upon information in these white papers. These views are
those of R3 Research and associated authors and do not necessarily reflect the
views of R3 or R3’s consortium members.

R3 Research aims to
deliver concise
reports on DLT in
business language
for decision-makers
and DLT hobbyists
alike. The reports
are written by
experts in the space
and are rooted in
practical
experience with the
technology.

Chain Interoperability

Vitalik Buterin

September 9, 2016

Chain Interoperability

Whereas in the first few years of the blockchain industry one may be forgiven for thinking that
there would be only "one blockchain to rule them all", in recent times such a possibility has been
receding further and further from reality. Within the public blockchain space, different projects
have been staking out different regions of the tradeoff space between security, privacy, efficiency,
flexibility, platform complexity, developer ease of use and even what could only be described as
political values. In the private and consortium chain space, the notion that there exist different
chains for different industries - and even different chains within the same industry - is even less
controversial and arguably universally understood as obvious. In such a world, one natural question
that emerges is: how do these chains interoperate? One of the advantages of using platforms where
cryptographic authentication is naturally baked into every single operation is that we can actually
provide much tighter and more secure coupling between platforms than is possible with previously
existing systems. We can go far beyond the approach most common in centralized systems of
simply having an API from one chain to the other, and in some cases even go so far as to have
smart contract code on one chain verify the consensus finality of events on other chains directly,
requiring no trust in intermediaries at all.

Interoperable chains open up a world where moving assets from one platform to another, or
payment- versus-payment and payment-versus-delivery schemes, or accessing information from
one chain inside another (eg. "identity chains" and payment systems may be a plausible link)
becomes easy and even implementable by third parties without any additional effort required from
the operators of the base blockchain protocols. So far the notion of chain interoperability has seen
much theory and little practice, primarily because a live example of successful chain interoperabil-
ity requires not one, but two, already existing, stable and sufficiently powerful blockchains to build
off of, but this is slowly starting to change.

Research in chain interoperability, up until this point, has largely been undertaken in a public
blockchain context, and as this document is to some extent a “literature review” of work done
so far it does reflect this. Although many of these techniques are just as applicable to private
and consortium chain settings, such settings will also have their own unique challenges that are
outside the scope of this document. For example, there has not yet been a single permissioned
chain that has seen substantial use or adoption, and so it is not fully clear to what extent the
consensus algorithms and other features of current experiments will translate. Additionally, a
large part of “interoperability” will necessarily entail interoperating with traditional systems and
protocols (SWIFT, SEPA, FIX, etc); this research is unfortunately not dual-purposeable for public
blockchains because it seems very unlikely that public chains will be connected to such systems
directly in the near or medium-term future.

1

Types of Interoperability

From a technical perspective, there are three primary categories of strategies for chain interop-
eration:

• Centralized or multisig notary schemes, where a party or a group of parties agree to
carry out an action on chain B when some event on chain A takes place.

• Sidechains/relays, systems inside of one blockchain that can validate and read events
and/or state in other blockchains

• Hash-locking, setting up operations on chain A and chain B that have the same trigger,
usually the revelation of the preimage of a particular hash

There are also several potential use cases that interoperability can achieve:

• Portable assets - for example, being able to take one unit of Fedcoin (a hypothetical
government-issued digital asset)1 from its “home ledger” that is ultimately authoritative on
its ownership, securely move it to another chain, trade it, use it as collateral or otherwise
take advantage of it on that chain, and be confident that the option to move the Fedcoin
back to its home ledger is always available if desired (ie. trust-minimized 1-for-1 backing).

• Payment-versus-payment or payment-versus-delivery - in technical circles, this con-
cept is also often called "atomic swap", where "atomic" is used in the word’s original Greek
meaning of "uncuttable", ie. there is a guarantee that either both transfers happen or neither
transfer does. Essentially, the goal is to allow user X to transfer digital asset bundle A to
user Y in exchange for Y transferring digital asset bundle B to user X (where A and B are
on different chains, and X and Y have accounts on each chain), in a way that is guaranteed
to be atomic and secure.

• Cross-chain oracles - for example, one might imagine a smart contract on one chain that
performs some action with some address only when it receives proof that an identity oracle
on another chain specifies that the address is a particular unique identity. Note that the
chain that is being read does not change over the course of this kind of interoperation event.

• Asset encumbrance - lock up asset bundle A on chain X and have locking conditions be
dependent on activity on chain Y. Use cases include liens, collateral in financial derivatives,
bankruptcy clawbacks, court orders and various use cases involving security deposits.

• General cross-chain contracts - for example, paying dividends on chain X to holders of
an asset whose ownership is registered on chain Y.

Out of these use cases, the two that have received the most attention are cross-chain digital assets
and cross-chain exchange (ie. payment-versus-payment and payment-versus-delivery); however,
later sections will describe solutions to the problems of interoperability in generic terms that are
applicable to all applications and then zero in on security and other concerns related to cross-chain
portable digital assets and cross-chain asset exchange specifically. However, it’s worth noting that
cross-chain asset portability is only one way to accomplish its desired objectives; in the world of
unbacked cryptographic- only assets such as BTC and ETH, it is indeed the only way to achieve
the desired objective, but if we are dealing with issuer-backed assets then alternative approaches
(eg. separately issuing assets on multiple chains, and having the implied convertibility be at the
legal layer rather than the blockchain layer) are also possible.

The word “sidechain” is often used in reference to cross-chain portable digital assets, although
much of the use of this language is misleading and confusing in several ways. First of all, Block-
stream’s formal definition of a “sidechain” is that “a sidechain is a blockchain that validates data
1The word “Fedcoin” is shorthand for a number of different schemes that revolve around the concept of “fiat currency
issues and secured using (some) cryptocurrency technology”; some proposals include David Andolfatto’s Fedcoin
proposal http://andolfatto.blogspot.ca/2015/02/fedcoin-on-desirability-of-government.html with cash-
like privacy properties, as well as central bank-based digital currency (CBDC) schemes run on top of permis-
sioned ledgers that would present an interface to consumers more similar to the traditional banking system; see
the recent Bank of England papers for explanations of such a scheme’s possible benefits. The concept of Fedcoin
itself implies little about the details; it could be run on a public chain or a consortium chain, have varying levels
of access restriction or KYC, etc.

2

http://andolfatto.blogspot.ca/2015/02/fedcoin-on-desirability-of-government.html
http://www.bankofengland.co.uk/research/Documents/workingpapers/2016/swp605.pdf

from other blockchains.”2 However, this language is very expansive; under this definition, thanks
to BTCRelay (described in a later section), Ethereum is a sidechain to Bitcoin already3. In nor-
mal discourse, the term “sidechain” is more frequently used to refer to what Blockstream calls a
“pegged sidechain”, where the functionality of a blockchain reading data from other blockchains is
used to facilitate cross-chain asset portability. This is a more advanced step; it requires either both
chains to be sidechains of each other or the existence of a trustworthy federation (see the later
section on notary schemes), as well as a scheme layered on top of such a cross-chain communication
mechanism that actually implements the cross- chain asset portability logic.

Second, the phrase “chain A is a sidechain of chain B” implies a relationship of subservience that
in many cases cannot be reasonably said to exist; to re-use an example from above, Ethereum
is technically now “a sidechain to” Bitcoin, but Ethereum is clearly not subservient to Bitcoin in
any meaningful way. The phrases “sidechain” and “pegged sidechain” originally came about in a
context where a blockchain is home to a single dominant asset, and so it was natural to view
a chain containing a pegged token as being a “pegged sidechain”. In reality, however, “pegged
sidechaining” is a property of individual assets on top of blockchains much more than it is a
property of blockchains themselves.

For example, the Ethereum blockchain contains ether, an asset native to Ethereum itself, but
if other blockchains implement the appropriate required protocol changes (or if a trustworthy
federation emerges), then Ethereum may well end up containing an asset “e-BTC”, backed 1-for-1
by BTC on the Bitcoin blockchain, e-DOGE backed 1-for-1 by DOGE on the Dogecoin blockchain,
etc; hence, Ethereum would be a “sidechain” to all of these blockchains simultaneously. However,
it is clear that the Ethereum blockchain itself is not “pegged” to anything in any meaningful sense
as a result of these applications existing. Hence, it is arguably better to use phrases such as “chain
B can read chain A”, “a relay of chain A exists on chain B” or “D is a cross-chain portable digital
asset with home ledger A that can also be used on chain B“ rather than talking about whether or
not a given chain is a “sidechain”.4

Notary Schemes

The technologically simplest way to facilitate most cross-chain operations is through the use of
notary mechanisms. In a notary mechanism, a trusted entity or set of entities that is trusted as
a group is used in order to claim to chain X that a given event on chain Y took place, or that a
particular claim about chain Y is true. Such entities may be active, listening and automatically
acting based on events in some chain, or reactive, issuing signed messages only when asked. The
most advanced effort that has taken steps in this direction is the Interledger project5 developed by
Ripple. Interledger, at least in what it describes as “atomic mode”, uses a Byzantine-fault-tolerant
consensus algorithm in order to achieve consensus among a set of notaries on whether or not a given
event took place, and then issues a signature that can be used to finalize payments conditional on
this consensus6.

Interledger also envisions the notion of a payment chain where this notary mechanism can be
composed. If parties X and Y desire to make an exchange of digital asset bundles, but these bundles
exist on chains A and F, where A and F have no direct link, then one can find intermediaries on
intermediate ledgers B, C, D, and E, where each pair of adjacent intermediate ledgers does have a
direct link (ie. there exist notaries and exchange opportunities between A and B, B and C, etc),
2http://blockstream.com/sidechains.pdf
3Even more trivially, a sofa is also a sidechain: http://www.ic.unicamp.br/~stolfi/EXPORT/projects/bitcoin/
posts/2015-06-10-my-sofa-is-a-sidechain/main.html

4A further concept that often gets confused with sidechains is merge-mining, where one chain leverages another
chain’s consensus. This is arguably a relationship of subservience, but is completely independent from the discussion
about cross-chain digital asset portability. Chains A and B can be merge-mined but have no cross-chain portable
assets between each other, or they may share many cross-chain portable assets, perhaps even some home-based on
A and some home-based on B, without any kind of merge-mining relationship.

5Note: many statements on Interledger come from old/outdated information; Interledger’s latest protocols are based
entirely on the hash-lockcing trust model rather than M-of-N oracles.

6Similarly to BTCRelay with Ethereum (see later sections), the Interledger team is looking at implementing Ripple-
Bitcoin cross-chain trade as an initial test case; More recent developments in the Interledger project have favored
a direction more similar to what is described in this document as “hash locking.”

3

https://interledger.org/interledger.pdf
http://blockstream.com/sidechains.pdf
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/bitcoin/posts/2015-06-10-my-sofa-is-a-sidechain/main.html
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/bitcoin/posts/2015-06-10-my-sofa-is-a-sidechain/main.html

then one can determine a bundle of exchanges that will satisfy A and F’s preferences while at the
same time earning small arbitrage revenues for the intermediaries, and then use a single consensus
process for the entire exchange, ensuring that either all transfers happen or none do.

Note that this is not the only way to accomplish such atomicity; hash locking (described in a later
section) also accomplishes this function, and is used for that role for cross-chain transfers in the
Lightning Network7. However, it is relatively technologically simple, and accomplishes its desired
goal under its trust model (namely, that less than some fraction of chosen notaries are Byzantine).
The set of notaries could be determined individually for a particular exchange; one can imagine a
negotiation protocol where all participants submit their trust list and the intersection of all parties’
trust lists is agreed upon as the notary set for that exchange8. One can also imagine notaries being
used in combination with schemes described below, creating an inter-chain exchange protocol where
the security of the exchange tries to achieve the highest security level possible, but falls back to
notary schemes if the underlying chain does not yet support a more trustless relay mechanism.

Another related scheme is the notion of a federated pegged sidechain. The intention here is to have
a cross-chain-movable asset, where pegging in one or both directions is accomplished by means of
a multisig scheme. This has been implemented in Liquid, a BTC-backed sidechain created by
Blockstream9, where one can move BTC into a multisig address controlled by a federation of
participants and then receive a token which we can call “L-BTC”, conjured into existence on the
Liquid chain once the Liquid chain consensus sees that the BTC transaction has taken place. L-
BTC can then be freely traded on Liquid, and one can also destroy L-BTC, at which point the
federation that controls the multisig will send an equivalent amount of BTC from the multisig to
the party that destroyed the L-BTC (ie. 1-for-1 backing).

Note that one can have a federated peg between two public chains, or between a public chain
and a consortium chain. In the latter case, it is arguably simplest to have the entities that make
up the consortium also be the entities that control the multisig. In the former case, the scheme
arguably only has value if the “sidechain” is also home to applications independent of that particular
pegged asset; otherwise, the use of public chain consensus only adds expense with no corresponding
improvement to the system’s actual security properties, which inherently rely on the honesty of
the federation as part of the trust model.

Relays

Relays are a more “direct” method for facilitating interoperability10, where instead of relying on
trusted intermediaries to provide information about one chain to another, the chains effectively
take on the task of doing that themselves. The general approach is as follows. Suppose that a smart
contract executing on chain B wants to learn that either a particular event took place on chain
A, or that some particular object in the state of chain A contained some value at some particular
time. Suppose also that chain A is designed similarly to Bitcoin or Ethereum in that it has a
notion of “blocks” and “block headers”, where a “block header” is a compact piece of information
that “represents” the block (and possibly state data) in some cryptographically authenticated way,
most likely using Merkle trees11.

We can create a contract on chain B that takes one of these block headers of chain A, and uses
the standard verification procedure for chain A’s consensus algorithm to verify this block header
- in proof of work, this would involve verifying that a sufficiently greater amount of proof of
work has been generated for the given header than for any conflicting header12, and in traditional
7http://lightning.network
8There are subtleties in designing such protocols; for example, one may want to require the intersection of the trust
lists to make up a majority of each individual trust list, as otherwise an adversary that knows a small portion of
corrupt notaries within their counterparty’s trust list could issue a small trust list and thereby try to trick their
counterparty into accepting an exchange that is adjudicated by only those notaries.

9https://blockstream.com/2015/11/02/liquid-recap-and-faq/
10See http://btcrelay.org/ for the first live running example of a relay, between Bitcoin and Ethereum.
11See these links (1) (2), (3) and (4) for more information on Merkle trees as used in Bitcoin, Ripple and Ethereum.
12A “conflicting header” in this context means a header B which is not an ancestor or a descendant of header A; this
implies that A and B are on different forks, and so in a proof of work model, the process of verifying A involves
verifying that forks containing A have a much higher “total difficulty” than any forks not containing A.

4

http://lightning.network
https://blockstream.com/2015/11/02/liquid-recap-and-faq/
http://btcrelay.org/
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
https://wiki.ripple.com/Hash_Tree
 https://en.bitcoin.it/wiki/Protocol_documentation#Merkle_Trees

Byzantine-fault-tolerant consensus algorithms that are popular in consortium chains it would con-
sist of verifying that 2/3 of validators’ signatures have signed the block header. Once the relay has
verified that the block header has been finalized, the relay can then verify any desired transaction,
or account/state entry, separately by verifying a single branch of the Merkle tree against the block
header.13

This use of this so-called “light client verification” technology is ideal for relays because of how
fundamentally resource constrained a blockchain is. In fact, it is impossible for a mechanism inside
chain A to fully validate chain B and a mechanism inside chain B to fully validate chain A at
the same time, for the same simple mathematical reason why two boxes cannot simultaneously
contain each other: A would need to re-run the part of B that re-runs A, including the part of
A that re-runs B, and so forth. With light client verification, however, a protocol where chain
A contains small pieces of chain B and chain B contains small pieces of chain A that are pulled
on-demand is entirely feasible. A smart contract on a relay on chain B that wants to verify a
particular transaction, event or state information on chain A would, much like a traditional light
client, verify a branch of the cryptographic hash tree of chain A, then verify the block header that
the root of this branch is inside, and if both checks pass it would accept that the transaction, event
or state information is correct (note that because blockchains are fully self- contained environments
and have no natural access to the outside world, the relevant bits of chain A would need to be fed
into chain B by a user; however, because the data is in a cryptographic sense "self- verifying", this
user that feeds this information in need not be trusted.)14

Relays are very powerful; they can be used for asset portability, atomic swaps or any other more
complex use case essentially without restriction (refer to the above figure for a view of an asset-
portability system on top of a relay).

Note that in general, the complicated cryptographic verifications behind relays can easily be ab-
stracted and made invisible to developers. Event verification itself can be made into a smart con-
tract that other contracts can call as an event verification oracle. Event reading can be abstracted
into an asynchronous operation: one can imagine a cross-chain smart contract programming lan-
guage containing a primitive createEvent(destinationChain, params), which registers an event and
assigns it a unique ID, and a function onReceiveEvent(senderChain, params){ ... }, which can be
called only if a cryptographic proof of the event is passed in, and when such a proof is provided it
saves a record in storage preventing the function from being called with the same event again.
13This use of Merkle tree technology was originally pioneered by Satoshi Nakamoto in the Bitcoin protocol design,
the original use-case being facilitating rapid validation of transactions by resource-constrained clients; see the
section on “simplified payment verification” in https://bitcoin.org/bitcoin.pdf for details.

14The security of “light client verification” is not absolute; see later sections.

5

https://bitcoin.org/bitcoin.pdf

One may note that this asynchronous event reading model can be viewed as a hybrid of an Ethereum
1.0-style stateful blockchain scheme and an "unspent transaction output" model similar to Bitcoin,
where the equivalent of a UTXO is an unconsumed event record; the above asynchronous event
architecture assumes that events are consumed quickly, but one can also imagine programming
languages where events are not consumed until needed, and unconsumed events become a very
meaningful part of long-term state.

A sketch of the cross-chain portable “Fedcoin” code might look as follows:

function sendCrossChain(destChain, to, value) {

if (balances[msg.sender] < value) throw;

createEvent(destChain, {name: SEND, to: to, value: value});

balances[msg.sender] -= value;

crossChainBalances[destChain] += value;

}

function onReceiveEvent(senderChain, params) {

if (params.name == SEND) {

if (crossChainBalances[senderChain] < params.value) throw;

balances[params.to] += params.value;

crossChainBalances[senderChain] -= params.value;

}

...

}

This contract would be initialized on both the main Fedcoin chain and on secondary chains. The
logic of the code is simple. The sendCrossChain function first checks if the sender has enough
Fedcoin to send; if they do not then it exits with an error. If the sender does have sufficient
funds, it creates an event stipulating that the coins should be created on the destination chain,
subtracts the sender’s balance, and increases the destination chain’s balance. The part of the
code that manages the destination chain’s balance is a safety feature: even if the consensus of the
destination chain is in some way broken, the destination chain can only send back to the main chain
as much Fedcoin as the main chain sent it, preventing errors in potentially untrusted sub-chains
from allowing attackers to create unbounded quantities of assets on chains that are still intact.

The onReceiveEvent function makes sure that the sender chain can send the given amount of Fed-
Coin, and if so it increments the balance of the recipient and decrements the balance of the sender
chain. Note that on each secondary chain, crossChainBalances[mainChain] (where mainChain is
an identifier for the main Fedcoin chain) would be initialized to essentially infinity; this signifies
that the secondary chains accept the main chain as the authoritative issuer of Fedcoin.

A relay contract has successfully been implemented between Bitcoin and Ethereum in the form of
BTCRelay, a smart contract on Ethereum that can read the Bitcoin chain. However, note that
the interoperability is one-way: Bitcoin cannot read the Ethereum chain, as its scripting language
is not sophisticated enough to do so. BTCRelay is already seeing a small amount of usage; at
the time of this writing there is an application called EthereumLottery.io where the lottery smart
contract logic itself lives on the Ethereum public chain, but it uses Bitcoin block headers as a source
of randomness because each Bitcoin block header has a larger reward and so is more expensive
to manipulate.15 This is a primitive, albeit technologically excellent, example of what can be
15The cost of manipulating a lottery that is based on block header randomness is much smaller than the
cost of 51% attacking a blockchain (see https://blog.ethereum.org/2016/07/27/inflation-transaction-fees-
cryptocurrency-monetary-policy/ for some estimates for 51% attacking bitcoin: $50-150m USD now, $1.2-4m
in a transaction fee- only model assuming the Bitcoin ecosystem stays constant). To manipulate a block header-
based lottery, all that is required is for the miner who created a block that influences the randomness to refuse to
publish the block if they see that the result is unfavorable, sacrificing a single block reward ($7300 for Bitcoin,
$60 for Ethereum as of the time of this writing; unfortunately Ethereum’s fast block time makes its block headers

6

http://btcrelay.com/
https://ethereumlottery.io/
https://www.reddit.com/r/ethereum/comments/4rf03b/why_ethereumlotteryio_uses_bitcoin_blocks_as_a/d51518k/?context=3
https://blog.ethereum.org/2016/07/27/inflation-transaction-fees-cryptocurrency- monetary-policy/
https://blog.ethereum.org/2016/07/27/inflation-transaction-fees-cryptocurrency- monetary-policy/

described as a “cross-chain oracle” application, and the use of a relay plays an important role in
increasing the application’s security.

Relays for Cross-Chain Atomic Swaps

Going beyond asset portability and cross-chain oracles, the next natural use case for relays is
cross-chain atomic swaps, ie. exchanging asset M on chain A for asset N on chain B. In the case of
BTCRelay and Ethereum, the MakerDAO team is working on implementing this already; however,
any such system unfortunately will necessarily have weaknesses of its own due to fundamental
limitations of the Bitcoin protocol itself. One particular concern is race condition attacks. For
example, suppose that party A wants to sell 50 ETH for 1 BTC, and deposits the 50 ETH into a
contract that essentially says “whoever provides a proof that they sent 1 BTC to address X gets
50 ETH”. Party B comes along and sends the 1 BTC. Party A can now themselves send 1 BTC
into their own contract, and try to claim the ETH from themselves before party B can; with some
probability they will succeed, leaving party A with 2 BTC and 50 ETH and party B with nothing.

If the Bitcoin blockchain had Ethereum-like smart contract capabilities, this would not be a prob-
lem: the target address on Bitcoin could simply be a contract that auto-refunds all incoming
transfers except for the first one. Without such a capability, the best that we can do is to use
semaphores on the Ethereum side: allow the buyer to reserve the exclusive rights to make a trade
for some time, and then safely make the claim within that window; this is indeed the solution
that the MakerDAO is using. However, the semaphores themselves may become a denial-of-service
vector, as someone may try to repeatedly reserve trading rights and never claim them. Making
reservations costly resolves this problem, but it does lead to the user-experience issue that one
must already have ether in order to purchase more ether through this scheme (there are ways to
use untrusted third parties to resolve this, but they are complex and require complex 2-of-2 escrow
and locktime techniques on the bitcoin side). Regardless of interpretation details, however, the
broader point is that race conditions are a legitimate security concern for applications that are
based on relays, and developers should be mindful of them similarly to how developers should be
mindful of re-entrancy when writing single-chain Ethereum applications or SQL injection attacks
when writing web apps.

A related weakness of relays is their asynchrony itself; especially if one or both chains are using
a consensus algorithm that finalizes slowly, it takes a long time for one chain to verify that the
other chain has consensus on some operation, and this limits the speed of cross-chain operations.
This is a particularly unfortunate weakness for cross-chain atomic asset exchange, as the market
exchange rate may well change over the course of an atomic swap operation. Hence, relays can
work very well on chains that have rapid finality, but in those cases where they are too slow the
approach may be problematic (although the use of deposits on a third chain with very fast block
times may be one way to overcome any issues.)16

Hash-locking

There is another well-known technique for achieving cross-chain atomic operations, one that re-
quires the blockchains to know much less about each other: hash-locking. Hash locking is often
associated with the Bitcoin forum user TierNolan1718 and is more recently being actively explored
by the Interledger protocol as a means of removing the trust requirement of notaries. The simplest
description for this mechanism, in the case of cross-chain digital asset exchange, is as follows:

very insecure as a source of randomness for secondary use cases). Bentov et al provide techniques to increase the
expected cost of manipulating block header-based randomness to O(sqrt(n) * r) where r is the block reward and
the system is allowed to sample n blocks.

16“Fast block time” in this context is relative; Ethereum is fast relative to Bitcoin and Dogecoin, but slow relative
to well-implemented consortium chains. If sub-250ms finality times are required, the chain can even be a fidelity-
bonded centralized server.

17https://en.bitcoin.it/w/index.php?title=Atomic_cross-chain_trading&oldid=60657
18The Lightning Network team is designing their technology in a cross-chain fashion, so cross-chain hash lock trading
may well be one of the use cases.

7

https://github.com/makerdao/btc-market
https://stackoverflow.com/questions/34519/what-is-a-semaphore
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
https://arxiv.org/abs/1605.04559
https://bitcointalk.org/index.php?topic=146307.0
https://bitcointalk.org/index.php?topic=146307.0
https://en.bitcoin.it/w/index.php?title=Atomic_cross-chain_trading&oldid=60657

1. A generates a random secret s, and computes the hash of the secret, hash(s) = h. A sends h
to B.

2. A and B both lock their asset into a smart contract with the following rules (A locks first, B
locks after seeing A’s asset successfully locked). On A’s side, if the secret is provided within
2X seconds, then the asset is transferred to B, otherwise it is sent back to A. On B’s side,
if the correct secret (ie. the value whose hash is h) is provided within X seconds, then the
asset is transferred to A, otherwise it is sent back to B.

3. A reveals the secret within X seconds in order to claim the asset from B’s contract. However,
this also ensures that B learns the secret allowing B to claim the asset from A’s contract.

Note that this is provably atomic. If A reveals s within X seconds, then this provides at least an X
second window within which B can claim their asset. A could make a mistake and reveal s too late,
preventing them from recovering their own asset, but this would be their own fault and is easily
avoidable. If A reveals s between X seconds and 2X seconds, then A would not get their asset but
B does, but once again this would be A’s fault. If A reveals s after 2X seconds (or never), then
both sides recover their own asset. If A never locks their asset, B doesn’t lock their asset either. If
B doesn’t lock their asset (or locks it incorrectly, eg. with the wrong deadline for s), A can simply
never reveal s, and thereby recover their asset.

Note that in a world with exchange rate fluctuations, the financial safety guarantee is imperfect,
as a malicious A can wait for X/2 seconds and only publish s if the exchange rate after that
time moved in a favorable direction; by participating in this hash lock, B is effectively giving A a
free option. One could argue that in equilibrium, we may expect B to simply expect A to act in
such a way, and expect a fair premium in exchange for this option (a public chain decentralized
swap exchange would be a great opportunity to test this hypothesis), though even this scenario is
imperfect as it effectively means that much of the time someone wishing to exchange their assets
will have to either try several times or pay a sufficiently high premium to reliably entice honest
behavior from their partners (or be the offeror without claiming an option premium, once again an
economic loss), and this weakens market participants’ ability to efficiently hedge their exposure.

Cross-chain hash locking can also be combined with state channel techniques in order to create
faster exchanges that mitigate this problem by taking advantage of state channels’ greater speed
compared to the base blockchain layer; this is still an active area of research and development.
Note that hash locking is only useful for atomic operations; it is not useful for asset portability

8

http://www.jeffcoleman.ca/state-channels/

or cross- chain oracle use cases. The reason why it is not useful for cross-chain oracle use cases is
simple: accessing a cross-chain oracle is inherently a passive operation with respect to the chain
that is being read, and hash-locking is an inherently active operation on both sides. The reason
why it is not useful for asset portability is somewhat more subtle: the hash-lock atomic swap
protocol preserves the invariant that the total supply of each asset on each chain remains the
same, and hence it cannot actually move assets from one chain to another. However, hash-locking
can be combined with relays as an efficiency improvement: the possibility of using relays to move
assets from one chain to another ensures that exchange rates of one asset for the same asset on a
different chain remain very close to 1:1 as any other rate would create an arbitrage opportunity,
but ordinary users simply use hash-locking mechanisms to move their coins from one chain to the
other by trading with someone who wants to move in the opposite direction.19

Theory and Implementation

As described earlier, there are many different situations in which interoperability is desirable. From
a high-level application standpoint, the use cases range from finance to identity verification to
potentially any application that is deemed blockchain-worthy. From a computer-science-theoretic
statement, however, we can create a much simpler classification of interoperability types. We can
define these as cause-effect graphs, and refer to them as forward causation, backward causation
and dependency; we can view them as follows:

Those with a basic statistics background may recognize this chart as representing the three pos-
sible categories of causes of correlation, not including coincidence, and this is for good reason:
interoperability is, to some extent, fundamentally about (reliable) correlation. Forward causation
is simple: chain A can cause an event on chain B (this can also be expressed as "chain B can read
chain A"). Reverse causation is when chain B can cause an event on chain A - a similar relation-
ship, but one that is worth considering as separate (intuitively, think of this as causation that goes
in the opposite direction from the direction you want causation to be possible). Dependency is
when actions on both chains can arise dependent on some additional outside event. Relays can
provide forward and reverse causation, depending on the capabilities of the chains. Notaries can
provide any kind of causation. Hash locking, however, can only provide cross-dependency, using
the revelation of a hash value as a “common cause”; this is another way of understanding why hash
locking is fundamentally weaker than relay techniques.

If we have some of these forms of causality and not others, we could ask the question: is there
perhaps some way to convert any one of the three into something equivalent to the others? As
it turns out there is one approach, relying on one or more parties that are incentivized by an on-
chain security deposit (or possibly, in a consortium chain setting, the strength of a binding legal
contract20), but its capabilities are limited and it carries important caveats. The argument is that
19This technique was proposed by Blockstream as a way to overcome the inefficiencies of the claim process in their
model for Bitcoin sidechains: “Fortunately, they are not necessary for most transfers: holders of coins on each
chain may exchange them directly using atomic swap” https://blockstream.com/sidechains.pdf

20Legal contracts are not absolute; they depend on both the reliability of the underlying legal system and the
solvency of the participants, and so some approach will be required for evaluating their reliability. Arguably,

9

https://blockstream.com/sidechains.pdf

if chain A can read chain B, then one can create a smart contract on chain A containing a deposit
that pays that deposit back only if an event is created on chain B every time a corresponding trigger
is created on chain A. One possible example use case of this is a kind of “ghetto two-way peg”, where
there exists a multisig that stores BTC on the bitcoin blockchain where the participants also hold
their own ETH collateral on ethereum, and the participants are required to send transactions from
this multisig as needed in order to allow conversion from an “e-BTC” IOU token on ethereum back
into BTC on the bitcoin chain (conversion from BTC into e- BTC is easier: just use BTCRelay)21.
Note that such a scheme does have high ETH collateral requirements to be “cryptoeconomically
safe”, as if ETH/BTC rate falls too much there may not be enough collateral to disincentivize the
multisig from stealing the BTC22.

Hash locking can also be to some extent converted into direct causality, although the possibilities
are much more limited and difficult to implement. A simple scheme involves a series of hashes being
placed both on chain A and chain B, where on chain A the preimages for the hashes are needed
to claim a security deposit when a cross-chain message is triggered, and on chain B the preimages
trigger the receiving side of the cross-chain message. When a cross-chain message is triggered on
chain A, the party with the deposit has no choice but to reveal the preimage, thereby also triggering
the event on chain B. However, note that this requires the specific event data to be pre-arranged.
An approach that has better properties involves switching from hash-locking to signature-locking:
mechanisms on chain B treat messages from some oracle as cross-chain messages, but then these
messages can be re-imported by third parties into a mechanism on chain A, which checks that the
correct message and only the correct message was signed, destroying the oracle’s security deposit
in the event of nonfeasance or malfeasance. But even still, the complexities involved in the above
discussion only serve to show that these approaches are inferior substitutes at best, and optimum
interoperability can be achieved by having all forms of causality be available between all chains
directly.

If we want to satisfy the maximum possible set of use cases with these primitives, we may want
to come up with a high-level cross-chain programming language that expresses these concerns.
Causation can be expressed through event creation and event listener primitives; cross-dependency
can also be expressed through the use of events, though these events would be triggered by a hash
commitment being revealed rather than an event on a chain. The ideal would be for a programmer
to write an application with components on chain A and chain B, where both contain a line of
code that says, for example, onPreimageReveal(0x172db5b4...), and the programmer can then be
confident that if the preimage is revealed, then the code triggered by the event will be run; the
compiled version of this code would output not just smart contract code but also a daemon (or a
plugin for a daemon) that would check both blockchains and cross-post the event if it is published
to one chain. The daemon can be run by anyone and does not need to be trusted; a copy could be
run by the parties that are beneficiaries to the contract, or may also be organized by the users or
developers or a given chain as a public service.

Formal Modeling and Security

Formal verification of these cross-chain scripts could be done using a model that assumes that some
notion of timestamp on chain A is correct to within some error margin δ1, a timestamp on chain B
is correct to within δ2, and that message-passing latency between the chains is less than δ3 (these
deltas would incorporate block times, risk of short-range 51% attacks, short-range censorship, etc),
and thereby reason that, for example, an onPreimageReveal event will happen on chain A and

a large part of the value proposition of “collateralized smart contracts” in general is that while purely economic
guarantees are in some ways less powerful than legal ones, it is much easier to see and formally evaluate exactly how
strong they are, so techniques that rely purely on the “wet code” of law should be used carefully. Combining legal
agreements with decentralization (requiring multiple parties to act in some way and relying on only a majority of
them to be honest) is another possible middle road.

21Much more discussion on the economic safety and limits of such “ghetto two-way peg” schemes in general can be
found in the discussions around “stablecoins”. See these links (1),(2), (3) and (4).

22One way of addressing this is via a “hybrid trust model”, where the parties involved are selected to be maximally
trustworthy as well as economically incentivized. This is similar to the approach taken by Rootstock for its
blockchain security, where the chain is secured by a trusted federation if less than 50% of Bitcoin miners are
participating, and control slowly turns over to Bitcoin miners as enough of them become involved for a merge-
mining model to be secure.

10

https://github.com/rmsams/stablecoins
https://makerdao.com/
https://blog.ethereum.org/2014/11/11/search-stable-cryptocurrency/
 https://bitshares.org/technology/price-stable-cryptocurrencies/ for examples

chain B with maximum time discrepancy δ1 + δ2 + δ3, or that an event created by a contract on
chain A will be read by chain B with some other maximum time discrepancy. This would then
allow for, say, a cross-chain payment-versus-delivery contract to have a formal proof of atomicity
given those assumptions23.

Note that in a cross-chain context, incorporation of such assumptions into a formal model is
required. In a single-chain context, modelling the protocol that the application is running on is
much less necessary, with the possible exception of a censorship-resistance assumption ("if A really
wants to get transaction X into the chain, they will be able to do so within 10 minutes"). This is
because, from the point of view inside the decentralized computer, the decentralized computer is
perfectly secure: every single operation is 100% guaranteed to work as planned. In a multi-chain
context, however, chain A and chain B’s security models are separate, cross-chain information
transmission needs to be modelled, verification of chain A inside of chain B needs to be modelled,
etc. Hence, complexities arise, and these complexities become more interesting once we get into
the discussion on failure modes in the next section.

Additionally, in the case of public blockchains particularly, it is impossible to avoid discussing
economics. For example, 51% attacks, transaction spam attacks, and other similar measures. Such
attacks are always a possibility, but they also have a cost, and so a richer formal model may even
produce claims of the form "this algorithm with these parameters is safe for up to $200,000, but
not more, because at those scales attacks become economically feasible and you need to increase
the time windows"24.

However, this is not always that easy to model, one particular reason being the possibility of attacks
that affect multiple applications at the same time. For example, censorship through transaction
spam is generally ineffective for stealing funds from high-value applications, as the legitimate sender
only needs to get one transaction in in order to be safe whereas the attacker needs to fill every
block, and in a public chain context the sender can just add to their transaction a very high fee
that would only set them back slightly but would require an attacker to potentially burn through
hundreds of thousands of dollars per hour in order to block them. However, such an attack harms
all applications on the chain simultaneously, and so if a chain has near-full usage under normal
circumstances, and if these operations are time-sensitive (eg. state channel settlements), then a
transaction spam attack may well cause enough of those operations to fail simultaneously to be
worth the cost25. 51% attacks have a similar property; even if every single application is designed
in such a way that losses from a 51% attack never exceed $50,000, if there are a thousand such
applications at the same time then a 51% attack at a cost of $5 million that attacks all of these
applications in parallel may well be profitable. Hence, a form of risk modeling similar to that used
for financial collateral and risk exposure management may be appropriate in public chain settings.

Governance and Failure Modes

The above discussions make sense in a context when both chains involved in an interoperating
application are working normally. However, what happens when one or both of those chains either
fails or experiences an irregular governance event?

A quick listing of possible irregularities, both positive and negative, that may happen to a chain
is as follows:

1. 51% attacks leading to reversion of transactions
23To see why these timing assumptions are necessary, consider the case of hash-locked atomic swaps described in a
previous section. In that protocol, A can recover their asset if the secret is revealed and pushed into A’s chain
within X seconds, and B can recover theirs if the secret can be pushed into B’s chain within 2X seconds. However,
if there are ways to attack the chains to create a time lag greater than X, then A may be able to claim their asset,
and prevent B from claiming theirs long enough for A to be able to withdraw it.

24See here for an example of an attempt at modeling security concerns of applications on top of a public blockchains
in the asset issuance (“colored coin”) use case.

25This is one argument against the combined philosophy of “full blocks” being a default state, a fixed vertical supply
curve for transaction space in blocks and the use of the lightning network as an exclusive scaling paradigm in the
context of public blockchains: the three factors together may create a “perfect storm” of incentives for attackers
to steal funds by manipulating channel settlement.

11

http://www.ofnumbers.com/2015/11/02/integrating-mining-and-attacking-analyzing-the-colored-coin- game/

2. 51% attacks leading to successful (total or partial) censorship

3. 51% attacks leading to the creation of an invalid chain that is not accepted by “full nodes” on
the chain, but that is accepted by “light nodes” and relays. This invalid chain may contain
invalid state transitions (eg. you do not need to actually have 10 trillion Fedcoins in order
to trick a relay into thinking you do you have the ability to conduct 51% attacks).

4. "Soft forks" changing functionality (if undesirable, this is arguably equivalent to (2))

5. "Hard forks" where all or nearly all of the user base of a chain effectively agrees to switch to
using a new chain with either a rule change or an irregular state transition, and the level of
coordination is sufficient that the name, brand and community of the old chain is essentially
entirely moved over to the new chain.

6. Network splits leading to a chain "splitting" into two and the split persisting for some time.26

7. A chain using a consistency-favoring consensus algorithm losing so many nodes that no new
blocks can be produced and the chain "fail-stops" (this can be viewed as equivalent to (2),
but also would in almost all circumstances lead to (4)).

How would a cross-chain application deal with one of these kinds of events happening on one or
both of the chains that it "lives" on? If no failure mode handling exists, then the effects differ by
situation. For example:

• A transaction reversion event can lead to loss of atomicity for otherwise atomic cross- chain
operations, as one part of a trade may be reversed but not the other.

• A replay spoofing event can lead to loss of atomicity for otherwise atomic cross-chain opera-
tions, as one part of a trade may not actually happen.

• A censorship event can sometimes lead to loss of atomicity for atomic cross-chain operations,
as it could prevent withdrawal transactions long enough for a counterparty to withdraw from
an agreement. However, the ability to do this depends on each application, and it is not
always the case that such problems exist.

• A hard fork of one chain can potentially lead to "relays" tracking that chain breaking,
although this is not nearly always the case, and in fact depends heavily on the specifics
of both the fork and the implementation of the relay mechanism.

• A network split is a complicated case, because depending on the details of the consensus
algorithm and the relay it may resemble either a reversion event or a fail-stop event. Proof of
work network splits lead to reversions; network splits on traditional byzantine fault tolerant
consensus algorithms lead to fail-stops; Ethereum’s Casper proof of stake model is a hybrid,
allowing the relay design to choose which "degree of confirmation" it waits for and thereby
choose between the two fault modes on a per-application basis.

In general, one can make the observation that consistency-favoring consensus algorithms27 lead to
"safer" consequences for cross-chain operations. To see why, consider the example of "Fedcoin"
from above, which is based on some home ledger and which has M extant coins on some external
chain A. Suppose that chain A suffers a repeated reversion or spoofing attack. Then, chain A
can send an arbitrary number of SEND messages to the home chain by sending a SEND message,
waiting for the message to be confirmed in the relay on the home ledger, reverting to a block
before the message was sent, and repeating. The home chain would accept M coins’ worth of such
messages from chain A, and credit M coins to the attacker, but then it would stop; the home
chain’s accounting of child chain balances protects it from suffering undue losses, though the loss
26Aside from accidental splits caused by network failures, in a consortium-chain context splits may also happen for
geopolitical reasons (eg. sanctions against Iran, Brexit); see below for more details.

27“Consistency-favoring consensus algorithms” is a term used by Ethereum researcher Vlad Zamfir to differentiate
between some properties of traditional Byzantine-fault-tolerant consensus and Bitcoin-style consensus (which he
calls “availability-favoring”). Consistency-favoring algorithms tend to require a supermajority of validators (eg.
2
3
+1) to finalize a transaction, and so require 1

3
Byzantine failures to experience a fail-stop event or 2

3
Byzantine

failures to experience a reversion event or a light-client/relay-spoofing event. Note that these probabilities can be
adjusted; for example, we can achieve 3

4
robustness against reversion or spoofing failures at the cost of reducing

robustness against fail-stops events to 1
4
. Availability-favoring algorithms can tolerate any number of crash faults

among validators, but at the cost of not having such a strong notion of finality; they are vulnerable to reversion
or spoofing failures at the 1

2
Byzantine failure level.

12

of M coins is unavoidable. Note that a converse attack also applies: if the home chain can suffer
reversion attacks, then an attacker can fill all child chains with an arbitrary number of coins,
effectively making them worthless.

Now, suppose that chain A suffers either a censorship attack or a fail-stop - the failure mode that
would be more likely if chain A was consistency-favoring rather than availability-favoring. Actors
on chain A may now be prevented from moving their Fedcoins to the home chain, but an attacker
cannot steal anything - hence, the failure mode is less harmful and there is no gain to the attacker
in making the attack28.

Another important consideration is the type of ledger environment in question. If the home ledger is
a consortium chain, then taking emergency action (eg. a remedial hard fork, freezing the attacker’s
assets) to mitigate the damage would be easier, and so the total damage may be much less. If a
public chain is used, then the damages may depend on other considerations, including the degree of
“permissionlessness” of the asset itself. However, no technology can prevent attackers from profiting
entirely, as they may be able to exchange the funds into assets based in other jurisdictions or even
permissionless cryptocurrencies more quickly than any administrators can detect and stop a theft.

Note that going from a single chain to a model with cross-chain portable assets, under normal
assumptions, changes little about a process except for adding asynchrony, but under failure modes
it weakens the security model in a subtle way: reversion attacks become theft vulnerabilities. This
is similar to the way that the security model is changed by state channel technologies, although
the claim in that case is subtly different: censorship attacks become theft vulnerabilities. This
has particular relevance in a public chain context: a common argument for why miners do not
collude to 51% attack their own chain is that they do not benefit from destroying the ecosystem
that supports them; however, in the case of a cross-chain movable asset, it is entirely possible to
come up with excuses for why attacking one particular “sidechain” actually helps the main chain29,
and so sidechains find themselves in an uneasy political relationship with the miners of the home
chain that their asset lives on.

Interoperability and Lifecycle Events

One class of event that is particularly interesting to analyze particularly in a consortium chain
setting is lifecycle events. This includes:

• Change of economic boundaries (eg. Brexit)

• Implementation and removal of sanctions (eg. as against Russia and Iran)

• Currencies ceasing to exist (eg. introduction of the Euro in 1999)

• Currencies “forking” (eg. the Iraqi Swiss dinar)

This may lead to several kinds of event:

• A chain winding down because it’s raison d’etre (one particular currency) ceases to exist.

• A chain starting up ex nihilo to accommodate a new asset

• A chain literally forking, in a similar style to the ETH/ETC fork (literally splitting an asset
into two in this way has precedent mainstream finance only in the fork of spinoffs, as in
the case of Ebay and Paypal, but it may well end up being used for currencies in secession
scenarios)

28This is true in the case of movable assets, but in other cases such as financial derivatives there are ways for
attackers to gain by triggering consistency failures; however, (i) those gains are much smaller than the gains from
literally being able to steal all assets from chain A, and (ii) this is why the bias toward favoring consistency is a
general observation and not an absolute rule.

29See Paul Sztorc for an example argument: “Peter Todd emphasizes a key sidechain characteristic: miners can
destroy/steal-from any sidechain that they merged-mine ...at no direct cost. But with the bad comes the good:
miners (as a group) can and should censor any sidechain which threatens the value of the “sidechain portfolio” (or
affects it superfluously)” link.

13

https://en.wikipedia.org/wiki/Iraqi_Swiss_dinar
http://www.truthcoin.info/blog/contracts-oracles-sidechains/

• Certain kinds of interoperability between two chains being blocked because of a sanction.
There is also the possibility of “de-facto soft sanctions” where a particular kind of interoper-
ation event suddenly carries a much higher compliance burden due to legal changes30.

Special care should be taken in scenarios similar to the 1999 Euro introduction: a scenario that is
best avoided is one where a new asset is created that has no single home ledger but instead has
multiple chains that are all authoritative over a subset of balances. It is arguably a large part of
the whole advantage of blockchain technology that the complexities associated with such scenarios
can be prevented. One possible introduction path is for the home ledgers of the old currencies to
remain, but become subordinate to a new home ledger (ie. equal status to “chain A” in our previous
Fedcoin examples), and for balances to be simply multiplied by the exchange rate in-place31.

Preventing interoperation for regulatory reasons is in some ways more difficult; the reason is that
anyone can create a verifier for one chain inside another chain, and hash locking is even easier; it
may well even be possible to hide a hash lock inside of something that looks like a mathematically
complex financial derivative. However, there are still obvious actions that can be taken: for
example, if the central bank of country A wishes to freeze access to its currency for country B,
it can simply freeze the balances associated with any chains in that country. Softer measures
like restricting cross-chain claims to $X per person per year are also possible. In general, nearly
arbitrary controls on movement of assets from one chain to another may be implemented; however,
preventing exchange between assets on the same chain is much more challenging and would likely
be dealt with only through heuristic pattern- detection techniques similar to those employed today
to deal with fraud32 and structuring33.

One highly desirable goal in all of these scenarios is that regardless of what unexpected events
occur, the transition for applications on the chain, including contracts on the chain, should be
maximally smooth. This can happen through a combination of advance notice, use of maximally
“clean” techniques for implementing the change, and the use of appropriate mitigation and recovery
techniques within any financial or other contracts on the chain. Technically chaotic splits, freezes
and other black swans should only happen during rare exigencies such as wars (or possibly lower-
grade political retaliations, one possible example being a government disrupting financial access
to a region during a rapidly unfolding secession scenario), in which case damage prevention and
recovery techniques at contract level are likely the only form of mitigation.

Mitigation and Recovery from Failure Modes

From experience we know that the concept of everlasting, unchanging and immutable protocols
that never experience either attacks or governance events is an unrealistic fantasy. Needs change,
priorities change, the unexpected happens, and implementations themselves often end up contain-
ing bugs. If the notion, held by many in the Bitcoin community34, that the Bitcoin Core C++
code literally is the specification of the Bitcoin protocol was true, then the attacker who created
93 billion BTC out of thin air through an integer overflow attack should never have been denied
his rightful gains through the coordinated soft fork that ended up reverting 12 hours of history
and removing the vulnerability. Given these inevitable realities, how do we manage the risks?

One possible response is to limit interaction to being between chains that have similar governance
policies and consensus mechanisms, or at least governance policies and consensus mechanisms that
trust each other. Some prefer to stay within the realm of private and consortium chains for this
30See FATCA and Swiss banks’ response to the law for an instructive example.
31Technically, this multiplication-in-place does not even require a hard fork: the balances could remain exactly the
same, but different fixed exchange rates with the home ledger would be introduced for each chain; however, in
the user interface this could still be presented as a single currency. This is in fact a cleaner and better way to
do it, as it ensures that balances stored inside applications on the chain are also converted correctly (eg. if a
conversion is done through protocol-level multiplication-in-place, then one possible risk is that a financial contract
that contains some formula dealing with asset quantities or prices would see the formula not get converted along
with the rest of the currency, leading to unexpected results).

32http://www.ibmbigdatahub.com/blog/how-improve-bank-fraud-detection-data-analytics
33http://www.prnewswire.com/news-releases/what-is-structuring-and-how-do-banks-detect-this-form-of-
money-laundering-56903762.html

34See Bitcoin’s own wiki page for an example: “The Bitcoin protocol is specified by the behavior of the reference
client, not by this page.” https://en.bitcoin.it/wiki/Protocol_documentation

14

https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5139
http://www.ibmbigdatahub.com/blog/how-improve-bank-fraud-detection-data-analytics
http://www.prnewswire.com/news-releases/what-is-structuring-and-how-do-banks-detect-this-form-of-money- laundering-56903762.html
http://www.prnewswire.com/news-releases/what-is-structuring-and-how-do-banks-detect-this-form-of-money- laundering-56903762.html
https://en.bitcoin.it/wiki/Protocol_documentation

reason, seeing "anarchic" public chains as being the oil to traditional finance’s water. But then,
different consortium chain governance mechanisms may also end up disagreeing with each other,
or even trying to actively attack each other; deliberate attempts to prevent interoperability have
precedent in the form of financial sanctions, eg. those against Russia and Iran. A government of
one country may try to commandeer a chain with the majority of its nodes based in that country,
and conduct attacks against services of hostile countries that try to interface with that chain as
a form of cyber-warfare. Hence, if we want to have a maximally globally applicable model, a
model where each chain only trusts itself and assumes the possibility of arbitrary behavior from
other chains, ie. where every chain is "anarchic" seems like a reasonable place to start; after all,
describing geopolitics itself as literally anarchic is not at all inaccurate. Hence, we want to deal
with the possibility that chains will fail.

At this point, you may ask, if chains can fail then what is the difference between analyzing
chain interoperability and analyzing interoperability between centralized systems? What is it
that blockchain technology brings into the discussion that creates fundamentally new considera-
tions that do not exist between, say, SWIFT and national banking systems? One argument is that
what we call "blockchain technology", or "crypto 2.0", is in fact a package of related technologies
and philosophies, including digital signatures, hashes, Merkle trees, peer-to-peer networking, and
a general notion of "mistrust first" and "push, not pull", and a consequence of these philosophical
choices taken together is that, even in the context of various forms of 51% attacks, the blockchain
environment presents unique properties that we can take advantage of in order to design safer
systems.

Technologically speaking, we can start the discussion with one particular property: a blockchain
leaves a hash and signature-based cryptographically verifiable trail of every transaction that it
processes and every state change that it makes. Even if a 51% attack takes place, the old chain still
exists, and is cryptographically - not just cryptoeconomically or socially, but also cryptographically
in the sense of being secured by hard math - immutable. The fact that the attack did take place
can be seen by all, and if a given actor (or relay) viewing a blockchain has its own memory and
its own block it can even see which branch came first. If no new blocks get created for some time,
this can be seen too.

Some of the consequences of this are fairly mundane and include what we have already discussed:
it is only because of the heavy use of hashes and signatures in blockchains for cryptographic
authentication that we can construct relay-style interoperability mechanisms as well as constructs
like hash-locking. Neither of these techniques is remotely a possibility in the world of traditional
centralized APIs. The ability to detect failure modes, however, is even more interesting. For
example, suppose that we wanted to have an event, onChainReverted(chainID, k). The event
could automatically be triggered in a proof of work context if a relay sees that at some point, block
M was the head of the chain, and then the head switches to block N, where N and M only share a
common ancestor more than k generations behind each other - a k-block revert.

Another example would be an onFailStop(chainID, s) event that triggers when a blockchain fails
to create a new block in s seconds. A more complex one to implement would be a censorship
detection oracle where anyone could submit a transaction and the oracle would reply yes if the
transaction appears worthy of inclusion in a block but does not get included within, say, 30 blocks.
A protocol hard fork event could be triggered in a way that voluntarily includes a state change to
a “flag contract” signifying a fork, allowing an onFork event to be automatically triggered. A more
centralized solution to all of the above is, of course, a multisignature notary oracle that signs a
message when it detects a particular chain undergoing an irregularity.

When an application receives one of these messages, what should it do? There is naturally a limit
to how far you can go; it is fundamentally impossible to stop attackers from draining a sidechain
by repeatedly reverting it, so attackers breaking our hypothetical "chain A" in the previous section
would be able to steal M Fedcoins no matter what kind of programming-language computer science
magic is done at the high level, although it is possible to use smart contracts together with reversion
oracles to create a kind of low-trust “blockchain failure insurance”35. However, in other cases (eg.
fail-stops), it is possible to achieve better properties where no one need bear any risk.
35One side benefit of such an insurance market is that it may also serve as a decentralized way of preventing or
mitigating combination attacks, as the existence of such a market encourages participants to effectively report
their exposure to a fork at any particular time, allowing the total exposure to be estimated.

15

One strategy is simple: have each contract appoint an "emergency curator", where the curator
only gains powers over the contract in the event that a fork oracle claims that one of the chains
that the contract in question is interacting with experienced an irregularity. This curator could
then individually attempt to execute contracts to the best of its ability given their original intent.
The curator could be a bank, a regulatory body, an NGO or even itself a consortium consisting
of any combination of the three; even though the curator will not be leaned on often, it is a role
requiring trust and so a trustworthy body is strongly preferred to fill the role. This strategy is
easiest to code, simple for human beings to understand (including understanding why it introduces
no additional centralization in the normal case), and so is most likely to be implemented in the
short term.

Another approach is to try to handle certain cases automatically; for example, if a given chain
experiences a fail-stop event, timeouts can be extended until it recovers. Orderly hard forks can
carry flags in the onFork event arguments that specify the level and type of intrusiveness, and
actions can be taken based on the type in question. In some cases, fallbacks may work: if identity
information from chain A is sought by a contract on chain B, and chain A is unavailable, then it
could try to get the same information from other sources, or appoint a “fallback KYC curator”.
In some cases (eg. cross-chain interest coupon payments), one can simply register a payment as
failed and try again some time later.

Altogether, we can see that interoperability adds a whole new layer of complexity to applications.
This complexity brings great promise, and in many cases even with this added complexity, cross-
chain smart contracts may well still be far less complex, and far less vulnerable, than the processes
that govern inter- system transfers, contracts and exchanges today. However, it also brings its
own unique challenges, its own unique risks, and a need to understand what these risks, and
the mitigation strategies to resolve them, are. In the long term, we hope to see research in
interoperability be designed around this notion of cross-chain programmable languages so that the
challenges of implementing the basic building blocks of interoperability securely, and the challenges
around taking advantage of such features and implementing them into real-world applications, can
be handled separately; however, we are still in the early stages and there remains a long way to
go.

The Road to Interoperability in Practice

Notaries Relays Hash-locking
Interoperability
types

All All (if relays exist on
both chains; other-
wise one-way causality
only)

Cross-dependency only

Trust model Majority of notaries
honest

Chains do not fail or
get "51% attacked"

Chains do not fail or
get "51% attacked"

Usable for cross-
chain exchange

Yes Yes Yes

Usable for cross-
chain asset porta-
bility?

Yes (but requires uni-
versal long-term no-
tary trust)36

Yes No

Usable for cross-
chain oracles?

Yes Yes Not directly

Usable for cross-
chain asset encum-
brance?

Yes (but requires long-
term notary trust)

Yes In many cases, but
with difficulty

Ease of implemen-
tation

Medium Hard Easy

36“Universal” here means that every user of an asset must trust the same notaries; this is distinct from the asset
encumbrance scenario where different users can still trust different notaries.

16

Use cases involving chain interoperability are among the few that may take the longest to come
to fruition, simply because the set of dependencies is so large. Such a use case requires (i) some
chain A that is mature enough to build off of, (ii) some chain B that is mature enough to build
off of, and (iii) some application or need that cannot be served by implementing it on a single
blockchain. (iii) itself arguably can only be met if (i) and (ii) themselves both have reasonably
mature applications on top of them that have a need to interoperate.

Hence, short term interoperability use cases will likely have to do with public blockchain cryp-
tocurrency exchange and possibly public blockchain cryptocurrency derivatives. Projects such as
MakerDAO may be most interested in the cryptocurrency derivatives use case, as they deliberately
intend to diversify their holdings across many assets based on many blockchains. Consortium chain
use cases will take much longer, because Liquid is perhaps the only consortium chain that is seeing
any significant usage, and even that has a primary use case that is entirely dependent on public
blockchain cryptocurrencies; the use of consortium chains in mainstream finance is still very far
away. Hence, public chain cryptocurrency financial systems will likely be the primary testbed for
cross-chain interoperability mechanisms in the short term, giving ample time for the technology to
become mature once it can be applied for other use cases.

In the longer term, building interoperable applications is something that should be done on a basis
of responding to actual need; while the underlying technology can certainly be developed in the
abstract, it would likely be a waste of resources to try to build applications that “connect the
chains together” without a clear underlying use-case-driven reason for why such a thing would be
useful. In the meantime, it seems clear that notaries, relays and hash locking schemes are excellent
building blocks to start building on top of, and a possible next step is to continue working on
developing these tools while proving their applicability in some simple example test-cases, including
payment-versus-payment, delivery-versus-payment, asset portability and cross-chain oracles. If the
technology is built to be sufficiently generic, then its applicability in whatever applications end up
being optimal will emerge naturally over time.

17

http://makerdao.com/

Is an enterprise software firm
using distributed ledger technology to
build the next generation of financial
services infrastructure.

R3's member base comprises over 80
global financial institutions and regulators
on six continents. It is the largest
collaborative consortium of its kind in
financial markets.

Is an open source,
financial grade distributed ledger that
records, manages and executes
institutions’ financial agreements in
perfect synchrony with their peers.

Corda is the only distributed ledger
platform designed from the ground up
to address the specific needs of the
financial services industry, and is the
result of over a year of close
collaboration between R3 and its
consortium of over 80 of the world’s
leading banks and financial institutions.

Consortium members have
access to insights from projects,
research, regulatory outreach,
and professional services.

Our team is made of financial
industry veterans, technologists,
and new tech entrepreneurs,
bringing together expertise
from electronic financial
markets, cryptography and
digital currencies.

