
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343625450

Performance of Bitcoin network with synchronizing nodes and a mix of regular

and compact blocks

Preprint · August 2020

CITATIONS

0
READS

209

3 authors:

Some of the authors of this publication are also working on these related projects:

random access in LTE/LTE-A networks View project

IOT proxy design View project

Jelena Mišić

Ryerson University

431 PUBLICATIONS   4,268 CITATIONS   

SEE PROFILE

Vojislav Misic

Ryerson University

388 PUBLICATIONS   3,459 CITATIONS   

SEE PROFILE

Xiaolin Chang

Beijing Jiaotong University

129 PUBLICATIONS   744 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jelena Mišić on 13 August 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/343625450_Performance_of_Bitcoin_network_with_synchronizing_nodes_and_a_mix_of_regular_and_compact_blocks?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/343625450_Performance_of_Bitcoin_network_with_synchronizing_nodes_and_a_mix_of_regular_and_compact_blocks?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/random-access-in-LTE-LTE-A-networks?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/IOT-proxy-design?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jelena-Misic-3?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jelena-Misic-3?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ryerson-University?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jelena-Misic-3?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vojislav-Misic-2?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vojislav-Misic-2?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ryerson-University?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vojislav-Misic-2?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaolin-Chang?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaolin-Chang?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beijing-Jiaotong-University?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaolin-Chang?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jelena-Misic-3?enrichId=rgreq-062baa699d0e2da384647d19b74b4fe6-XXX&enrichSource=Y292ZXJQYWdlOzM0MzYyNTQ1MDtBUzo5MjM4ODAzOTQ4Nzg5NzZAMTU5NzI4MTY1OTA5MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Performance of Bitcoin network with synchronizing
nodes and a mix of regular and compact blocks
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Abstract—Compact blocks and compact block protocol are a
recent addition to the Bitcoin (BTC) data propagation protocol
that aims to reduce bandwidth requirements and, possibly, reduce
latency as well. In this work we evaluate operation of BTC net-
work under a mix of regular and compact block traffic, assuming
that nodes randomly leave and re-join the network, and perform
block and, optionally, transaction pool (mempool) synchronization
upon returning. Our analysis begins by evaluating block and
transaction deficits accumulated during the node absence and
block synchronization. Then, we analyze mempool behavior and
show that mempool synchronization is necessary since it decreases
probability of transaction deficit and the need for transaction re-
trieval actions. Finally, we analyze the impact of synchronization
activities and transaction deficit on data distribution times in the
BTC network with high and low bandwidth distribution modes
for a mix of compact and regular blocks. Results demonstrate
resilience to node absence and subsequent synchronization, as
well as substantial performance improvements for small protocol
changes. Furthermore we show that the low bandwidth mode is
more resilient to potential security attacks.

Index Terms—Bitcoin; block and transaction propagation;
compact blocks

I. INTRODUCTION

Excessive bandwidth usage is among the foremost network-
ing problems that Bitcoin (BTC) community is trying to solve.
Namely, the standard data relay protocol [3] uses a three-way
handshake so the average latency includes the actual transmis-
sion time for the INV, GETDATA, and BLOCK messages, plus
1.5 round trip times (RTT) between the participating nodes. In
reality, each of the messages is packaged into one or more TCP
segments [10]. The first two messages are typically short and
thus likely to fit within a single TCP segment, but the third
one will require many TCP segments as block size is close
to the current limit of 1MByte. Furthermore, the need to use
unicast communications for data dissemination in the Bitcoin
peer-to-peer (P2P) network causes many duplicate messages as
transactions and blocks are advertised, and occasionally even
transmitted, to peers that already have received and processed
them. As the result, a lot of bandwidth is actually wasted.

To reduce bandwidth usage and/or latency, a number of
additions to the basic functionality of Bitcoin were made over
the years [2], most notably the following.
• Unsolicited block push allows a miner node to immedi-

ately send the newly mined block to its full node peers,
as they cannot possibly know about it [3]. This reduces
latency from 1.5RTT to only 0.5RTT, but bandwidth

savings are not high as the omitted messages (INV and
GETDATA) tend to be rather short in comparison with the
BLOCK message. However, this option does not apply
to relay blocks so the impact of those benefits is rather
limited.

• Direct header announcement allows nodes to send the
entire header of a new block instead of the header hash
contained in an INV message. This allows the recipient
node to partially verify the header before asking for the
full block.

• Compact blocks contain only a subset of block transac-
tions, presumably known to the recipient, sent in raw for-
mat while others are sent in compressed form [4]. As the
result, the size of that message (CMPCTBLOCK) can be
substantially reduced compared to the equivalent BLOCK
message; for further savings, even the INV/GETDATA
handshake can be omitted, similar to unsolicited block
push described above.

The other source of excess bandwidth usage is the process of
initial or re-synchronization of the local copy of the blockchain
ledger by the nodes that join the Bitcoin network as well
as for nodes that return to the network after a period of
absence. Following the established practice in peer-to-peer
networks, such absences are often referred to as node churn.
To synchronize their ledgers, such nodes need to find out
which blocks they are missing and then download them from
one or more peers. In addition, nodes that want to take part
in the mining process must find out which transactions have
been propagated through the network but not yet included
in accepted blocks, and download them from their peers so
that their pools of unconfirmed transactions (mempools) are
updated. Downloading of blocks and transactions puts an extra
burden on the peers that supply them, essentially wasting their
bandwidth at the expense of regular block and transaction relay.

Savings that can be obtained by using the compact block
relay without churn have been investigated in [13]. Some
experimental results regarding node churn have been presented
in [8], [21], and a probabilistic analysis of node churn but with
block synchronization only has been reported in [15]. However,
an in-depth analysis of the impact of absence and subsequent
re-synchronization and its performance in the network that uses
both standard and compact block relay is still missing.

In this work we address the issue of node re-synchronization
in the BTC network that relays both regular and compact
blocks. When compact blocks are used, we consider the case
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where mempools of returning nodes must be updated as well.
We include models of high and low bandwidth modes for the
distribution of the mix of standard and compact block traffic
[4]. In high bandwidth mode we deploy three TCP connections
as stipulated by the proposal [4] while other TCP connections
carry regular blocks. For low bandwidth proposal we use three
or six TCP connections while the rest of connections carry
regular blocks.

Our main contributions are as follows.
• We have developed a comprehensive probabilistic model

of block and transaction synchronization phases, followed
by an M/G/1 queuing model of node mempool which
models the interplay of steady state, node absence and
synchronization using vacations due to block inter-arrivals
and node absence.

• We have modified the queuing network of the BTC
network initially developed in [14] to include the impact
of synchronization on the number of available TCP con-
nections, the effective number of nodes that participate in
regular block relay, and the mix of regular and compact
blocks. For complete justification and model of connec-
tivity, RTT and block size please refer to [14].

• We have performed a detailed performance evaluation of
the BTC network in the scenarios with high bandwidth
mode with three TCP connections, and low bandwidth
mode with three and six TCP connections, both with and
without mempool synchronization. Our analysis shows an
improvement of block and transaction delivery times of
around 13% and 35%, respectively, and a reduction of
forking probability by about 22%. Using low bandwidth
mode with six TCP connections for compact blocks
improves previous results by additional 15%.

• Overall, the use of compact blocks shows noticeable
performance improvements and demonstrates resilience
to the additional load incurred by the re-synchronization
process. Most notably, low bandwidth mode has potential
for more bandwidth savings while keeping resiliency to
double spending and variation of eclipsing attacks.

The rest of the paper is organized as follows. Section II
explains the compact block relay protocol and block and
transaction synchronization, while Section III presents the
probabilistic models of block sizes, node’s TCP connectivity
and round trip times (RTTs). Section IV presents probabilistic
model of block and transaction synchronization activities after
returning after an absence. Section V presents a M/G/1 queuing
model with vacations that represents steady state and synchro-
nization for mempool. Section VI presents and discusses the
results of performance evaluation obtained from two stages of
the model: the first of mempool only, the second of the entire
blockchain network. Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Compact block relay

Standard BTC block relay includes exchange of three mes-
sages [3]. The new block is first announced with an INV
message sent by the relay node; the recipient node will ask for
the unknown block by responding with a GETDATA message.

node peer

INV

BLOCK

GETDATA

(a) Low bandwidth relay handshake.

...

transaction count

Block header (80 bytes)

Coinbase transaction

Raw transaction 

Raw transaction 

(b) BLOCK message.

Fig. 1. Standard block relay.

The relay then sends the BLOCK message containing the entire
block: its header as well as all the transactions in full – the
so-called raw format. This exchange is schematically shown in
Figs. 1(a) while the format of the BLOCK message is shown
in Fig. 1(b).

The compact block protocol has been proposed, together
with a number of appropriate messages, to reduce bandwidth
requirements [4]. Namely, mining of a block lasts much longer
than mean transmission propagation time and it is safe to
assume that most, if not all, of the transactions contained in
the newly mined block have already propagated throughout the
network at the moment the block is finally mined. Therefore,
those transactions need not be sent with the block itself;
instead, it suffices to send some short piece of information,
referred to as ’short transaction IDs,’ that will uniquely identify
the transaction in question. Short transaction IDs are obtained
by hashing the transaction ID and the beginning of the block
header hash, and then dropping the two most significant bytes
from the result to obtain a six-byte value. As the standard
transaction hash is 32 bytes and a block can have more than
2,000 transactions, savings can be substantial.

Relaying of compact blocks can be achieved in one of
two modes. In the so-called low bandwidth mode, relay node
announces a new block with a regular INV or HEADERS
message, and compact block is sent only if the peer responds
with a GETDATA message with the appropriate option set,
as shown in Fig. 2(a). The delay allows the relay node to
perform block validation before forwarding. Low bandwidth
mode can be performed on any number of TCP connections
from a node without any restrictions on RTT towards the peers.
In the so-called high bandwidth mode, the compact block is
sent without prior announcement, similar to the unsolicited
block push, perhaps even before its validation is completed, as
shown in Fig. 2(b). On account of this, the original proposal
recommends that the high bandwidth mode is used with no
more than three peers [4].

Not all transactions in a given block will be known to all
peers in the network. At the very minimum, the coinbase
transaction containing the miner information and related fees
cannot be known before the block is actually mined and
sent out. A few other transactions may not have propagated
either. To account for this, the compact block allows a number
of transactions, referred to as prefilled transactions, to be
included in their original form similar to the standard BLOCK
message, but with extra bytes that indicate the size of the
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(in case of 
transaction deficit)

node peer

CMPCTBLOCK

BLOCKTXN

GETBLOCKTXN

INV

GETDATA /cmpctblock

new block

(validation)

(a) Handshake, low bandwidth mode.

(in case of 
transaction deficit)

node peer

CMPCTBLOCK

BLOCKTXN

GETBLOCKTXN

new 
block

(validation)

(b) Handshake, high bandwidth mode.

prefilled transaction count

Short transaction ID (6 bytes)

...

short transaction ID count

Block header (80 bytes)

Short transaction ID (6 bytes)

...

Coinbase transaction

Prefilled (raw) transaction

Prefilled (raw) transaction

(c) CMPCTBLOCK message.

Fig. 2. Compact block relay (after [4]).

transaction. The format of the resulting message, referred to
as CMPCTBLOCK, is shown in Fig. 2(c).

The recipient may still miss some of the transactions
identified through their short IDs as the relay node cannot
know which transactions the recipient does not have. This
scenario is referred to as compact block transaction deficit
and it is resolved by explicitly asking the relay node for
missing transactions using a GETBLOCKTXN message that
lists the corresponding short IDs. The relay node responds with
a BLOCKTXN message that contains those transactions in
full. In both messages, the order of transactions should match
the order of their respective short IDs in the CMPCTBLOCK
message. The resulting exchange is schematically shown in
Figs. 2(a) and 2(b) for the low- and high bandwidth mode,
respectively. The exchange takes 0.5RTT and 1.5RTT for high
and low bandwidth modes, respectively, if all transactions with
short ID are known to the recipient peer, or 1.5 and 2.5RTT
otherwise.

Either way, peers must explicitly request the use of compact
block relay; those that do not, as well as those nodes with an
older version of Bitcoin daemon that does not support this
mode, will still relay blocks using regular BLOCK messages
[4]. The proposal recommends that high bandwidth mode is
used with up to three peer nodes, preferably those with shortest
measured RTT [4], but otherwise does not specify how to
decide whether to use compact blocks at all.

B. Synchronization upon joining or rejoining the network

All nodes should maintain an up-to-date blockchain ledger
in order to validate and relay blocks. A node that joins the
network for the first time, or rejoins after a period of absence,
must synchronize its blockchain first. To this end, the returning
node must ask a peer, referred to as the sync node, for headers
of blocks that the node is missing using the GETBLOCKS

message. The list begins with the last confirmed block or, in
case of joining the network for the first time, with the genesis
block itself. The sync node will respond with one or more INV
messages that contain the headers of those blocks in reverse
order, i.e., oldest blocks first. The returning node then sends
GETDATA messages to the sync node in order to obtain the
missing blocks. This approach is known as Blocks-First.

In the more recent Headers-First approach, the synchro-
nization process is accelerated by using GETHEADERS and
HEADERS messages to obtain block headers, and by request-
ing and downloading actual blocks from up to eight of the
returning node’s peers (possibly including the sync node) in
parallel.

However, block synchronization does not include transac-
tions which have not been packaged into a block yet. As the
result, the pool of non-confirmed transactions (mempool) of
the returning node will not include all transactions propagated
during its absence, and the node cannot begin mining despite
synchronizing its blockchain ledger. To synchronize its mem-
pool, the returning node must request a list of transactions
from a peer using the MEMPOOL message; the peer will then
send the hashes of the transactions in its mempool using one
or more INV messages. The returning node can then request
full transactions it is missing using GETDATA message or
several of them. The peer will send them using TX messages.
Although transaction sizes are small, there can be many of
them missing, and each requires a separate TX message. Note
that there’s no intrinsic order for transactions in the mempool,
unlike blocks which are linked into the blockchain.

III. MODELING BLOCK SIZE AND TCP CONNECTIVITY

Let us assume that each compact block contains Ml regular
(i.e., prefilled) transactions and Ms transactions identified with
their respective short IDs, for a total of M = Ml + Ms.
The sizes of Bitcoin message header, block header, and short
transaction ID are 24, 80, and 6 bytes, respectively. Let Θ
denote the average size of a transaction in bytes. Then, the
size of a CMPCTBLOCK message will be

Bc = ΘMl + 6Ms + 80 + 24 (1)

Regular BLOCK messages contain complete transactions
only. According to the tracking web sites1, block size ranges
between 0.7MB and 1.25MB. Assuming mean transaction
size of Θ = 270 bytes, block size expressed in number of
transactions can be described with the probability generating
function (PGF) of

B∗tr(s) =
e−2518s+2e−2700s+e−3074s+2e−3222s+7e−3330s

13
(2)

Assuming a single TCP connection has the throughput of
2Mbps [6] and that transmission time for regular and CM-
PCTBLOCK message with Ms = 2500 short transaction IDs

1https://bitinfocharts.com/bitcoin/ and https://www.blockchain.com/en/
charts/avg-block-size, last accessed June 27, 2020.
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are given by (1) and (2), respectively, we can obtain Laplace-
Stieltjes transforms (LSTs) for regular and compact BLOCK
message transmission times, expressed in seconds, as

B∗r (s) =
e−2.8s+2e−3s+e−3.4s+2e−3.6s+7e−4.4s

13
(3)

B∗c (s) =
e−0.08s+2e−0.32s+e−0.68s+2e−0.84s+7e−0.96s

13
(4)

with mean values equal to br = −B‘∗
r (0) and bc = −B‘∗

c (0)
respectively.

Regarding connectivity, we may distinguish between two
large categories of nodes in the Bitcoin P2P network, depend-
ing on the number of TCP connections [14]. Ordinary nodes
have fewer TCP connections and their probability distribution
corresponds to a truncated binomial distribution with the PGF
of Cn(z) =

∑13
k=5 pkz

k and mean value of about 8 [5], [12],
[18]. Gateway nodes have a larger number of TCP connections
which can be modeled using a long-tail distribution [11]
with much higher node degrees. PGF which describes their
connectivity distribution is

Lt(z) = L

60∑
k=14

1

kκ
zk (5)

where the shape and scaling factors are 2 ≤ κ ≤ 2.4 and
L = 1/

∑60
k=14

1
kκ , respectively.

Following [5], [11], [12], [19] we assume that final con-
nectivity distribution can be obtained by combining those two
distributions as

Mx(z) = knLt(z) + (1− kn)Cn(z) =

i=nmax∑
i=nmin

mxiz
i (6)

where nmin = 5 and nmax = 60. Coefficient kn is in the
range 0.3 ≤ kn ≤ 0.7. Mean number of connections per node
is therefore obtained as Mx = Mx′(1).

Exchange of INV, GETDATA, and BLOCK messages takes
1.5RTT plus the actual message transmission times, for which
the appropriate LST of L∗1.5RTT (s) (for the entire network
coverage) has been derived in [14]. Round trip time of a TCP
connection depends on physical distances between peers and
delays through the routers. In the original BTC implementa-
tion, peer nodes can be located anywhere in the world [1],
[6]. However, the compact block proposal [4] recommends
that high bandwidth mode is used to exchange compact blocks
with peers where RTTs are small. For that reason, we assume
that peers that communicate using compact blocks are placed
in proximity to the sender node, which means they are on
the same continent. RTT within a given continent, say, North
America, is obtained in a similar fashion by considering RTTs
limited to 100ms using probability density function (pdf) and
its LST, respectively, as

fcRTT (x) =0.3CfµNAe
−µNA(x−0.01)H(0.1−x)H(x−0.01)

L∗c1.5RTT (s) =

∫ 0.15

x=0.015

fc1.5RTT (x)e−sxdx (7)

where Cf is derived from the condition of total probability,
while H(x) denotes the Heaviside function with the values of

1, for x ≥ 0, and zero elsewhere. In high bandwidth mode only
0.5RTT is needed, and the corresponding LST L∗c,0.5RTT (s)
can be derived analogously to (7).

IV. MODELING NODE ABSENCE AND SYNCHRONIZATION

We assume that both compact and regular blocks arrive to a
node with exponentially distributed inter-arrival times at a rate
of λb = 1/600 blocks per second. Let kr denote the proportion
of regular blocks so that the arrival rates of regular and compact
blocks are λbr = krλb and λbc = λb(1−kr), respectively. LST
of block interarrival time is V ∗b (s) = λb

λb+s
. Transaction arrival

rate to the whole network is denoted with λt. Consequently,
PGF for the number of transaction arrivals to the mempool
during compact block inter-arrival time is [20], [9]:

F (z) = V ∗b (λt − zλt) =

∞∑
k=0

fkz
k (8)

We assume that nodes are absent from the network up to
once over a period of 24 hours, and that the duration of the
absence period has an arbitrary probability distribution with
LST T ∗off (s) and mean Toff = −T ∗′off (0). Let Tday denote the
period of 24 hours expressed in seconds; then, the period when
the node is present and active in the network (i.e., the active pe-
riod) can be described with LST of T ∗act(s) = e−sTday/T ∗off (s)

with mean of Tact = Tday − Toff .
Upon returning to the network, the node needs to retrieve

all blocks distributed in the network during its absence. To this
end, it will establish TCP connections to up to eight peers and
ask for the headers of the blocks it is missing. The number of
such blocks can be described with the PGF of

Nb(z) = T ∗off (λb − zλb) =

kmax∑
k=0

nkz
k (9)

where limit kmax can be set to a reasonably high multiple,
say five to eight, of mean number of block arrivals during
the period of absence. Assuming Headers-First approach is
used, headers of the missing blocks will arrive in a single
message as long as the backlog is smaller than 2000 blocks.
This appears to be a reasonable limit for the block backlog if
the period of absence is limited to one day, although extension
to multiple HEADERS messages is straightforward. Since each
block header has 80 bytes and throughput of TCP connection
towards the peer which supplies the headers is 2Mbps, the LST
for the time (in seconds) needed to download headers has the
form

H∗(s) = L∗RTT (s)Nb(e
−s·0.00024) (10)

Upon getting the headers, node will attempt to get full blocks
in parallel from up to eight directly connected peers. For
simplicity, we assume the number of such peers is exactly
eight (although random probability distribution of the number
of peers can be readily introduced) and that each peer is asked
to provide the same number of blocks which can be described
with the PGF of

Nbd(z) =

kmax∑
k=0

nkz
dk/8e (11)
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Since download of each block requires RTT and block trans-
mission time, LST for the full block download time becomes

T ∗dld(s) = Nbd (L∗RTT (s)B∗r (s)) (12)

Then, total time to achieve block synchronization is

T ∗sync(s) = H∗(s)T ∗dld(s) (13)

Some of the transactions in the compact block referenced
via their short IDs may be absent from the node’s mempool,
thus creating a compact block transaction deficit. Regular
blocks don’t create this deficit since they contain complete
transactions. Transaction deficit may occur during active state
due to finite propagation time of transactions, but is much
more pronounced during the synchronization process. If newly
downloaded blocks deliver all transactions generated during
the absence period, a deficit can only occur during retrieval
of block headers and block download. We will refer to this as
synchronization deficit δ(z), and its PGF can be derived from
(13) as δ(z) = T ∗sync(λt − zλt).

Transaction deficit, denoted by the PGF of β(z), occurs if
downloaded blocks do not contain all transactions that arrived
during the period of absence. This distribution is virtually
impossible to estimate, hence we adopt the approximation
β(z) ≈ δ(z). The PGF for the total number of missing
transactions after the synchronization process is completed is

α(z) = δ(z)β(z) ≈ δ(z)2 (14)

The returning node may decide to retrieve only missing
blocks but not missing transactions, which will result in more
interactions with its peers upon future block arrivals and,
ultimately, slow down node operation. The synchronization
process may be completed by requesting missing transactions
using MEMPOOL message(s), which lasts Tmemp = 2LRTT+
α(8Θ)/(2 · 106) seconds.

In the analysis that follows, we will evaluate system perfor-
mance with and without transaction synchronization.

V. QUEUING MODEL OF THE NODE MEMPOOL

Assuming that a node is absent from the network with mean
absence period of Toff per 24 hours, the probability that the

node is active (inactive) is ξ = 1 − Toff
Tday

(
Toff
Tday

= 1 − ξ),

respectively. If compact blocks are used, we assume that
the relay node sends most recent received transactions as
prefilled and older ones in the short form, so as to increase the
probability of finding the latter transactions in the recipient’s
mempool.

To model the transaction deficit, let us consider the mempool
as a queue which is serviced by up to M transactions at a time.
Namely, a regular block contains M full transactions which
are temporarily added to mempool and subsequently removed
from it after validation. A compact block has Ml prefilled
transactions which are processed in the same way; it also has
Ms transaction identified by their short IDs which need to be
verified against the mempool. Now, if the queue has M or
more transactions, we assume that the block can be validated
and transactions can be removed from the mempool. However,

if the queue has less than M transactions at the arrival of a
compact block, the node cannot validate all transactions (it
knows only their short ID hashes). It then needs to retrieve
their full versions from the sender of the compact block which
creates additional traffic towards the peer that diminishes the
bandwidth savings offered by the compact block transmission.

To model the transaction pool, we use an M/G/1 system
with vacations and batch service. In this system, block inter-
arrival time is a vacation which occurs in regular working
regime as the result of relaying or mining by the target node.
In addition, the absence of a node is a vacation too. The
timing for this scenario is schematically presented in Fig. 3.
Initially, we assume a constant number of transactions and
constant transaction size in the block; random block size will
be considered in the following Section. PGFs for the number of
transaction arrivals during regular and compact block service
times in high- and low bandwidth modes, respectively, given
in (3), are:

A(z) = B∗r (λt − zλt)L∗1.5RTT (λt − zλt) =

∞∑
k=0

akz
k (15)

Uh(z) = B∗c (λt − zλt) ((1− Pd)L∗c0.5RTT (λt − zλt)

+PdL
∗
c1.5RTT (λt − zλt)) =

∞∑
k=0

uh,kz
k (16)

Ul(z) = B∗c (λt − zλt)L∗1.5RTT (λt − zλt)·

((1− Pd) + PdL
∗
RTT (λt − zλt)) =

∞∑
k=0

ul,kz
k (17)

For simplicity, we denote PGF for arrival process during
compact block service only as U(z) =

∑∞
k=0 ukz

k where
uk = ul,k or uk = uh,k, depending on the relaying mode.

A. Markov points

We also need to choose Markov points which are charac-
terized by the property that the number of transactions in the
mempool at the current Markov point depends only on the
previous Markov point and transaction arrivals between the two
[20]. In this model, there are three types of Markov points, as
shown in Fig. 3:

1) Moments of returning from block inter-arrival vacations,
at which time the mempool contains k transactions with
the probability qk.

2) Moments of block departures from the node, at which
time the mempool contains k transactions with the
probability hk.

3) Moments of returning from an absence (sleep) vacation
(including block and transaction synchronization), at
which moment the mempool contains k transactions with
the probability sk.

Let ξ = 1 − Toff
Tday

denote probability that a vacation is just
a block vacation in steady state; the probability that it is an
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absence vacation is, then, 1 − ξ. Equations that model the
number of transactions in the mempool at Markov points are:

sk = (1− ξ)
k∑
j=0

hjαk−j

qk = ξ

k∑
j=0

hjfk−j +

k∑
j=0

sjfk−j (18)

hk =



M−1∑
j=0

qj (krak + (1− kr)uk) , j < M

M+k∑
j=M

qj (krak−j+M+(1−kr)uk−j+M ) , j ≥M

This system can be reduced to only two equations as the first
equation (the one that models the number of transactions in the
mempool upon return from synchronization) can be eliminated:

qk = ξ

k∑
j=0

hjfk−j + (1− ξ)
k∑
j=0

hj

j∑
i=0

αk−i−jfi (19)

hk =



M−1∑
j=0

qj (krak + (1− kr)uk) , j < M

M+k∑
j=M

qj (krak−j+M+(1−kr)uk−j+M ) , j ≥M

The last system can be used to form PGFs of the state of
mempool in two Markov points as Q(z) =

∑∞
k=0 z

kqk and
H(z) =

∑∞
k=0 z

khk, respectively. After multiplication of left-
and right-hand sides of the equations with zk and summation
over k = 0 . .∞, we obtain

Q(z) = ξ

∞∑
k=0

zk
k∑
j=0

hjfk−j

+ (1− ξ)
∞∑
k=0

zk
k∑
j=0

hj

j∑
i=0

αk−i−jfi (20)

H(z) =

∞∑
k=0

zk
M−1∑
j=0

qj (krak + (1− kr)uk) (21)

+

∞∑
k=0

zk
M+k∑
j=M

qj (krak−j+M + (1− kr)uk−j+M )

After changing the order of indicated summations and com-
pleting them, we obtain the PGFs as

Q(z) = H(z)F (z) (ξ + (1− ξ)α(z)) (22)

H(z) = Au(z)

(
QM (1) +

Q(z)−QM (z)

zM

)
(23)

where QM (z) =
∑M−1
k=0 qkz

k, and Au(z) = krA(z) + (1 −
kr)U(z) denotes the PGF for the composite transaction arrival
process during block service time; and Au = Au′(1).

sk

GETBLOCKTXN
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hk
qk

time

BLOCK

node

BLOCK
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Fig. 3. Pertaining to the M/G/1 model of transaction memory pool (mempool).

We can further decouple Q(z) and H(z) as

Q(z) =
Au(z)F (z) (ξ + (1− ξ)α(z))

(
zMQM (1)−QM (z)

)
zM −Au(z)F (z) (ξ + (1− ξ)α(z))

(24)

H(z) =
Au(z)

(
zMQM (1)−QM (z)

)
zM −Au(z)F (z) (ξ + (1− ξ)α(z))

(25)

Function QM (z) can be found from the normalization
condition that Q(1) + H(1) = 1. By using L’Hôpital’s rule
we get:

Q(1) =
MQM (1)−Q′M (1)

M −Au− λt
λb
− (1− ξ)α

H(1) = Q(1) (26)

The last equation can be represented as a differential equation:

MQM (1)−Q′M (1) = 0.5(M −Au− λt
λb
− (1− ξ)α) (27)

which can be solved by substitution QM (z) = ewz:

Mew − wew = 0.5(M −Au− λt
λb
− (1− ξ)α) (28)

Solving the previous equations allows one to obtain complete
PGFs Q(z)/Q(1) and H(z)/H(1).
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B. Computing performance descriptors

Results from the previous Section hold when the block size
is constant in the number of transactions. However, real block
sizes are following a random distribution as shown in (2). For
compact blocks, we assume that randomness in block size is
coming from the random number of short transactions while
the number of prefilled transactions is constant. In this case we
need to compute a series of PGFs Qi(z) and Hi(z) for each
block size from the distribution, and compute total PGFs as

Qtot(z) =

imax∑
i=1

piQi(z)/(

imax∑
i=1

piQi(1)) (29)

Htot(z) =

imax∑
i=1

piHi(z)/(

imax∑
i=1

piHi(1)) (30)

Mean number and standard deviation of number of transactions
in the mempool upon arrival of block can be obtained as

Qtot = Q′tot(1) (31)

σ(Qtot) =

√
Q′′tot(1)−Qtot

2
+Qtot (32)

The receiving node will experience transaction deficit if
some of the transactions identified through their short IDs are
not in the mempool; they must be obtained from the peer with
an extra handshake. Assuming random block size, probability
of transaction deficit for compact blocks is

Pd =

imax∑
i=1

pi

Ms,i∑
j=0

qi,j (33)

where Qi(z) =
∑∞
j=0 qi,jz

j and mean number of retrievals
of deficit transactions upon a compact block arrival during the
active time of the node is

Ndt = PdλbcTact (34)

C. Impact on TCP connectivity

TCP connection towards a peer may be busy due to the
following activities.

1) Block header download after the node absence period,
as per (10).

2) Missing block download, as per (12).
3) Retrieving missing transactions that arrived during block

synchronization or during node absence, but were not
included in blocks; the number of such transactions is
given in (14).

4) Retrieving deficit transactions that did not exist in the
mempool when a compact block arrived in steady state;
the number of such transactions is given in (34).

Mean value of the total time that the node is involved in the
activities listed above is Toh = H+Tdld+Tmemp+NdtRTT .
This has to be mapped to probability that TCP connection
between ordinary node and its peer is not available for regular
transaction and block traffic. However proposal [4] recom-
mends that the returning node synchronizes with more than
one peer for reliability and security reasons. This impacts
the probability that the TCP connection is unavailable for

regular block and transaction traffic so it is in the range
Toh

CnTact
≤ Ptcp ≤

Toh

Tact
.

PGFs for TCP connectivity in presence of absence, synchro-
nization and update have to be modified from the values Cn(z)
and Lt(z) (presented in Section III) as follows:

Cnm(z) = ξ

Cn∑
i=0

(
Cn

i

)
P itcp(1− Ptcp)(Cn−i)

Cn(z)

zi


+ (1− ξ) (35)

Ltm(z) =

Lt∑
i=0

(
Lt

i

)
P itcp(1− Ptcp)(Lt−i)

Lt(z)

zi
(36)

where polynomials Cn(z)/zi and Lt(z)/zi contain positive
integer powers of variable z obtained by rounding non-integer
exponents to closest lower value. These PGFs are further used
to form PGF for overall connectivity and effective number of
nodes, respectively, as

Mxm(z) = knLtm(z) + (1− kn)Cnm(z) (37)
Neff (ξ) = knN + (1− kn)ξN (38)

which are used in the blockchain queuing model.

VI. PERFORMANCE EVALUATION

To evaluate the performance of the network with block
and, optionally, mempool synchronization in the presence
of block traffic consisting of regular and compact blocks,
we have solved the system of equations presented above.
Absence period was assumed to follow Erlang-k distribution
with k = 2 and its mean value was varied from 2 to 16
hours. Mean transaction size was Θ = 270 bytes, while the
block size distribution was set as per (2). Total number of
short transactions in a compact block was set to Ms = 2500
while the remaining ones were prefilled. Regular blocks had
Ml = 2500 raw transactions. We have evaluated both high
bandwidth mode with three TCP connections carrying carried
compact blocks, and low bandwidth mode with three and six
TCP connections carrying compact blocks, respectively.

A. Mempool evaluation

In the first experiment, we have considered scenarios with
and without mempool synchronization upon returning from
absence and block synchronization. Total transaction deficit
at the end of these synchronization phases was modeled as
α(z) = δ(z)2. In the second case only block synchronization
was performed but without subsequent mempool synchroniza-
tion. Transaction arrival rate for the entire network was varied
between 3.2 to 4.5 transactions per second, which corresponds
to the mean and peak daily average values from January 2019
to end of June 2020 provided on the tracking web sites listed
above. As any given node has to eventually receive all the
transactions injected into the network and all the blocks mined,
size of the network does not matter in this case.

Performance descriptors for the case with mempool syn-
chronization are shown in Fig. 4. Results are mostly affected
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Fig. 4. Mempool performance with mempool synchronization.

with length of absence period; as the results for high and low
bandwidth modes are very similar, we show only the former.
Mean number of transactions in mempool upon return from
absence, Fig. 4(a), including absence, block, and mempool
synchronization, increases super-linearly with transaction rate
and mean absence period; however, its coefficient of variation,
Fig. 4(b), decreases. Values of the coefficient of variation
larger than one correspond to small transaction arrival rates
and short absences in which case sub-geometrically distributed
block size strongly affects the distribution of a comparatively
small number of transactions in the mempool. At higher
transaction arrival rates and longer absence periods, mempool
size is affected by the increased number of Poisson-distributed
transactions arrivals and the coefficient of variation is closer
to one.

Mean transaction backlog, Fig. 4(c), increases almost lin-
early with the absence period, but shows a very mild de-
pendence on transaction arrival rate due to the linear depen-
dence of block synchronization time on these two parameters.
Probability of transaction deficit for compact blocks, shown in
Fig. 4(d), exhibits the behavior similar to that of the coefficient
of variation for PGF Q(z). It drops to 0.05 at large transaction
arrival rates and large absence periods where mempool is
saturated with transactions. For short absences of two hours
and small transaction arrival rate of 3.2 transactions per second,
the probability of deficit reaches 35%; at this point, there are
(on the average) slightly more than 2700 transactions in the
mempool upon block arrival.

Probability that node is active and busy with synchronizing
its ledger and mempool is the ratio of total mean overhead time

and mean active time; it increases with the absence period but
is virtually unaffected by the transaction arrival rate, as can
be seen from Fig. 4(e). This is caused by comparatively short
absences which limit the number of blocks and transactions to
retrieve during the synchronization period.

Performance descriptors for the case without mempool syn-
chronization are shown in Fig. 5. As expected, the curves
are independent of the value of mean absence period. At
small transaction arrival rates, mean number of transactions
in the mempool, its coefficient of variation, and probability of
transaction deficit have similar values to those in case with
mempool synchronization, which is due to the comparatively
small number of transaction arrivals during block synchroniza-
tion time. However, when the transaction arrival rate exceeds
about 3.5 transactions per second, the differences becomes
more pronounced. For example, probability of transaction
deficit for compact blocks at mean absence of 16 hours and
transaction arrival rate of 4.4 transactions per second is as
high as 15%, compared to 5% for the case with mempool
synchronization from Fig. 4(d). Probability that the node is
active and busy in overhead activity, Fig. 5(d), is slightly
lower than in the case with mempool synchronization; the price
to pay is noticeably higher probability of transaction deficit,
Fig. 5(c).

B. Connectivity and node/transaction traffic

Connectivity of each node was modeled using PGF Mxm(z)
defined in (37) with kn = 0.4, while the long-tail parameter
in (5) was set to κ = 2. Consequently, the effective number of
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Fig. 5. Mempool performance for high bandwidth mode without mempool synchronization.
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Fig. 6. Connectivity and data distribution properties
of the network.

nodes in the network was Neff = 0.4N + 0.6ξN . Transaction
arrival rate for the entire network was set to λt = 4.3
transactions per second.

Each node in high bandwidth mode was receiving compact
blocks over three TCP connections from the peers in its
proximity and regular blocks over remaining connections, as
recommended by [4]. In low bandwidth mode, we assumed
that nodes receive compact blocks over kc = 3 and 6 TCP
connections, without requirements for peer proximity. Total
LST for block service time can then be expressed for high and
low bandwidth mode as

B∗h,mix(s) =
Mxm − 3

Mxm
B∗r (s)L∗c1.5RTT (s) +

3

Mxm
B∗c (s)

· ((1− Pd)L∗c0.5RTT (s) + PdL
∗
c1.5RTT (s)) (39)

B∗l,mix(s) =
Mxm − kc
Mxm

B∗r (s)L∗1.5RTT (s) +
kc

Mxm
B∗c (s)

· L∗1.5RTT (s) ((1− Pd) + PdL
∗
RTT (s)) (40)

We have conservatively assumed that each node’s TCP con-
nection is equally contributing to the synchronization process

upon returning from an absence so that Ptcp =
Toh

Tact
.

These changes were then inserted in the model for data
propagation that consists of block and transaction distribution
algorithm (which allows calculation of non-homogeneous Pois-
son block/transaction arrival rates for each node) and priority
queuing model for blocks and transactions at each node [14].
In this way, we were able to calculate probability distributions

of node response time for blocks and transactions, as well as
their network distribution time.

Since results for high- and low bandwidth modes for connec-
tivity are similar as they mostly depend on the absence period,
we show only results for high bandwidth mode. Distribution
of the number of connections per node, i.e., node connectivity,
is shown in Fig. 6(a). We note that the number of usable
connections declines by about 17% when mean absence time
changes from 0 to 12 hours.

Fig. 6(b) shows mean number of hops needed to propagate
a block through the network. It was computed using the
algorithm from [14] but including the impact of connections
that are rendered unavailable by the synchronization activities
distribution algorithm. As expected, mean number of hops
increases with network size; at smaller network sizes, it also
decreases with the absence period as the number of operational
nodes is effectively reduced by periodic absences. However
for about 4000 nodes and above, the number of hops becomes
virtually independent on the absence period on account of large
number of nodes and rich TCP connectivity.

C. Network delivery time

Network delivery time for blocks is shown in Fig. 7 for both
high- and low bandwidth modes; in the latter case, we have
presented results for compact blocks transmitted over 3 and
6 TCP connections, respectively. Since transaction arrival rate
was set to 4.3 transactions per second for the whole network,
probability of transaction deficiency, Fig. 4(d), was between
Pd = 0.05 and Pd = 0.12. Transaction deficit requires an
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Fig. 7. Network delivery time for blocks.
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(c) Low bandwidth mode with compact blocks
over 6 TCP connections.

Fig. 8. Forking probability.

additional handshake between recipient and sender nodes in
order to retrieve missing transactions in full form.

For all three cases, when the network size increases, mean
block delivery time increases while its coefficient of variation
decreases. Both trends are caused by the increase in number
of hops for data distribution that, in turn, leads to an increase
in the sum of node response times which are identically
distributed random variables. On the other hand, mean block
delivery time decreases with mean absence period due to the
decrease of the number of active nodes and, consequently,
reduced effective network size; however, the coefficient of
variation increases. Results obtained without node absence are
about 13% lower than those obtained without node absence
but with regular blocks only [14].

When we compare three modes of compact block deploy-
ment, we see the combined impact of round trip times and

number of TCP connections dedicated to compact block trans-
mission. Namely, high and low bandwidth modes with 3 TCP
connections differ only in that the former uses 0.5RTT towards
nodes in proximity, compared to 1.5 of general RTT needed
by the low bandwidth mode. As the result, mean delivery time
in high bandwidth mode is smaller by only 2% compared
to low bandwidth mode. The reason is that the majority of
TCP connections still convey full blocks which require several
seconds for transmission. However coefficient of variation is
about 4% higher in high bandwidth mode due to impact of
RTT. Increasing the number of TCP connections for compact
blocks from 3 to 6 decreases block delivery time by around
15%, but this comes at the expense of an increase of coefficient
of variation by around 22%.

A blockchain fork is the event when one or more newly
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Fig. 9. Network delivery time for transactions, 3 TCP connections in high
bandwidth mode.

mined blocks appear in the network while a previously mined
block is still in the process of distribution. This scenario results
in linking of different blocks at the tip of different node
blockchains, thus leading to temporary inconsistent state of
the ledger. Probability of a fork is very much dependent on
block delivery time. As can be seen in Figs. 8(a) and 8(b),
forking probability takes on values between 1.30% to 1.37%
which are lower by about 22% than the corresponding value
obtained when all blocks are distributed as regular blocks.
The improvement is due to the reduction of the coefficient
of variation of block distribution time; it increases with mean
absence period via the increase of coefficient of variation of
block delivery time. These two figures are very similar since
there are opposite small changes in mean value and coefficient
of variation of block delivery time.

The real winner is presented in Fig. 8(c) for compact block
delivery over 6 TCP connections in low bandwidth mode.
This mode brings an additional 10% of reduction of forking
probability due to the combined effect of reduction of mean
block distribution time and increase of coefficient of variation
of block distribution time. We note that forking probability
has a mild minimum at network size of about 4000 nodes,
which is the consequence of the fact that the mean number of
hops in data distribution grows with network size and increases
the time window when forking can occur. On the other hand,
the arrival rate of mined blocks per node increases with the
decrease of network size which increases the likelihood of a
new block arrival in small time window.

Network delivery time for transactions is shown in Fig. 9.
We present only the case for high bandwidth mode since
low bandwidth mode gives very similar results. Without node
absence, mean transaction delivery time is about 35% lower

than in the case with regular blocks only [14]. Similar ob-
servation holds for the coefficient of variation of transaction
delivery time, but in this case values are smaller due to
the summation of node transaction response times which are
identically distributed random variables. Still, the coefficient
of variation of delivery time for transactions is higher than
the one for blocks since transactions are served from a lower
priority queue [14].

D. Security considerations

First, let us note that the decrease of forking probability
diminishes the impact of attacks on ledger consistency and in
that sense compact block technique is beneficial.

On the other hand, high bandwidth mode enables node
clustering within communities which can augment problems
caused by lack of block validation before forwarding. Namely,
if the mining node creates a block with double spending
transactions, this block can propagate quickly through the
originating community and further through the whole network.
While the malformed transaction(s) will eventually be found
and removed, fast propagation of such blocks means that the
time to detect and correct the problem will be longer than in
the scenario with regular blocks only.

As the problem is mostly caused by the block being for-
warded before being properly validated, the low bandwidth
mode with the same number of TCP connections is much
more resilient to such attack since it includes block validation
before forwarding. Our results show that the difference in
performance between high- and low bandwidth modes with the
same number of TCP connections is only a few percent, which
seems like a small price to pay for the increased resiliency to
double spending attacks.

Another kind of attack is a variant of eclipsing attack
initially introduced for regular blocks in [7], [16], [17]. In this
case, the sender may enter into transaction deficit handshake
with a recipient coming back from an absence, but then
refuse to send full transactions when requested to do so. To
combat this kind of attack, the node which has received a
compact block with transaction deficit needs to set a time-
out after which it will stop waiting for the reply and discard
the compact block. As the low bandwidth mode does not give
preference to nearby nodes when establishing TCP connections
for compact blocks, it is more resilient to such an attack with
compact blocks, as the eclipsing attack is harder to launch
using geographically distant nodes administered by different
authorities.

VII. CONCLUSIONS

In this work we have modeled and evaluated operation
of Bitcoin blockchain network in a setup where a mix of
regular and compact blocks is used, and where nodes can
leave the network for a random period. We have modeled
high bandwidth operational mode with 3 TCP connections
carrying compact blocks as well as low bandwidth operational
mode with 3 and 6 TCP connections carrying compact blocks
respectively. We have developed a detailed queuing model of
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the transaction pool (mempool) at each node, including block
and (optionally) mempool synchronization.

Our main findings can be summarized as follows. First,
our results indicate that mempool synchronization is necessary
to reduce the transaction deficit in such networks. Second,
assuming compact blocks are transmitted over three TCP
connections (in both high and low bandwidth modes), block
and transaction delivery times drop by around 13% and 35%,
respectively, while forking probability is reduced by around
22%. Finally, we have found that low bandwidth mode with
increased number of TCP connections (six) carrying compact
blocks outperforms high bandwidth mode by additional 15% in
terms of reduction of block distribution time and forking prob-
ability. It also provides increased system security and resilience
since blocks are validated at each node before forwarding,
which prevents double spending attacks from dishonest miners.
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