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Quantum 
Money

Doi:10.1145/2240236.2240258

Imagine money you can carry and spend 
without a trace.

By SCott AARonSon, EDWARD FARhi, DAViD GoSSEt,  
AVinAtAn hASSiDiM, JonAthAn kELnER,  
AnD AnDREW LutoMiRSki

that look a lot like solid precious met-
als. Some subway passes and copy 
cards are also examples of physical 
money—they contain small computer 
chips or magnetic strips that are actu-
ally worth a certain number of subway 
rides or copies. But these tend to be 
even easier to counterfeit.22 In theory, 
any physical money can be counter-
feited by just using the same produc-
tion process as the one used to make 
the original.

The other kind of money is the 
kind that you entrust to someone else. 
Think bank accounts and credit lines. 
You can carry these around with you in 
the form of checks, credit cards, and 
debit cards—portable devices that let 
you instruct your bank to move money 
on your behalf. Unlike physical money, 
there is no point in copying your own 
credit card (it would not double the 
amount of money in your bank). With 
a credit card, you can carry as much 
value as you want without weighing 
down your pockets and you can send 
money across the globe nearly instan-
taneously. But credit cards have disad-
vantages: every time you pay someone, 
you need to tell your bank whom to 
send money to. This leaves a paper trail 
and does not work if your connection 
to your bank is down.

Neither of these kinds of money is 
ideal. For example, imagine that you 
are going to Las Vegas on a business 
trip and you want to play some high-
stakes games at night. You might feel 
conspicuous carrying a fat wad of cash 
around the strip. If you use a credit 

e V eryBOdy lIKeS MOney.  It is very easy to spend.  
With cash and credit cards, you can buy what you want 
when you want it. So why are quantum computing 
theorists trying to rethink money?

There are a few things we all take for granted about 
money. We trust credit card companies to keep our 
transactions private and to send the right amount of 
money to the right place quickly. When we use paper 
money, we are used to the fact that we have to carry it 
physically with us, and we accept the risk of occasional 
counterfeiting.

Today, we use two basic kinds of money. First, there 
is the kind we carry around—coins, bank notes, poker 
chips, and precious metals. These are objects that are 
made by a mint or dug out of the ground. It is easy to 
verify that money is valid. You can look for the security 
features on paper money, you can feel coins in your 
hand, and, if you really know what you are doing, 
you can assay precious metals. All of these kinds of 
physical money can be counterfeited, though—if you 
have the right equipment, you can print paper money, 
stamp out your own coins, or make alloys or platings 

 key insights
    Any digital good can be perfectly copied. 

this is a major headache for software 
companies (and for the entertainment 
industry), and is the reason that digital 
cash does not exist.

    the quantum mechanical “no-cloning’ 
theorem means that in principle it is 
possible to design quantum systems  
that cannot be copied. Several recent 
works propose to use such systems  
for digital money.

    Further research may lead to a new  
form of digital rights management.
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card, your significant other (not to 
mention anyone else who gets access 
to your bank statements) will know 
exactly how much money you gambled. 
What you really want is some kind of 
money that you can spend without 
leaving a trace and that you can carry as 
much of as you want without weighing 
down your pockets.

This kind of money would be digital: 
you could transmit it and fit as much of 
it as you want on some small handheld 
computer. It would be self-contained, 
so you could pay someone without any 
third party being involved. And it would 
be cryptographically secure: attack-
ers could never produce a counterfeit 
bill that passes as real money even with 
extraordinary resources at their disposal.

The reason we do not have this kind 
of money today is not for lack of try-
ing. Any digital piece of information 
that can be sent over a communication 
channel can be copied. This makes 

digital money seem impossible: if you 
had one hundred dollars on your com-
puter, you could back up your com-
puter, spend the money, restore your 
computer from the backup, and spend 
your money again.

Enter quantum mechanics. Physicists 
have known for years that if you possess 
a single quantum object and know noth-
ing about it, then it is fundamentally 
impossible to copy that object perfectly. 
This is called the no-cloning theorem, 
and it gives us hope that quantum infor-
mation could be used as the basis of a 
better kind of money.

So can we make the idealized money 
out of quantum mechanical objects 
rather than classical ones? In the rest 
of this article, we will survey recent 
work that has tackled this question. 
We will introduce the idea of quantum 
information, and we will talk about a 
few proposals for quantum money and 
some of the open problems in the field.

Quantum Mechanics
If you look closely enough, everything 
is made out of subatomic particles, and 
these particles obey the laws of quan-
tum mechanics. Quantum mechanical 
systems store information in a way that 
is dramatically different from classical 
(that is, non-quantum) systems.

One of the simplest examples of a 
quantum system is a single electron. 
Electrons spin, and their spin can be 
characterized by a three-dimensional 
vector.a This vector, like any three-
dimensional vector, has three compo-
nents, Sx, Sy, and Sz. It is possible to do 
an experiment to measure the vertical 
component Sz of an electron’s spin, 
but if you do the experiment, you will 
discover something strange: Sz can 
only take on two values, +1 and −1. 

a The vector represents the angular momentum 
of the electron, but its physical interpretation 
is not important for this discussion.
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Once you have measured Sz, you can 
measure it again and you will get the 
same answer as you got the first time 
around. Sx and Sy work the same way. 
So far, you might have thought that 
each component of the electron’s spin 
stores one bit of information.

But if you try to measure more than 
one of the components, again some-
thing strange happens. Take an elec-
tron, measure Sz, and suppose that 
the outcome is +1. Now measure Sx 
(obtaining either +1 or −1) and then 

state |qñ as above and we make this 
measurement. Then there are two 
possible outcomes. We might get the 
answer yes, in which case the state 
of the system would change instanta-
neously from |qñ to |rñ. The probability 
that this happens is given by the com-
plex inner product squared of the two 
states in question

Pr [yes] = |a*a + b*b|2.

If on the other hand we obtain the mea-
surement outcome no, then the state 
of the system would instantaneously 
change from |qñ to the state |r ⊥ñ = b*|0ñ 
− a*|1ñ that is perpendicular to |rñ. This 
happens with probability

Pr [no] = |a*b – b*a|2 = 1 − Pr [yes].

We can use this mathematical frame-
work to explain the measurement statis-
tics of electron spin. We define the states

|Sz = +1ñ = |0ñ
 |Sz = –1ñ = |1ñ;

these two states form a basis for a one-
qubit vector space. Then
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Measuring the spin component Sx is the 
same as measuring whether the state 
being tested is |Sx = +1ñ; the outcome 
yes means Sx = +1 and the outcome no 
means Sx = −1. If the spin started in the 
|Sz = +1ñ state then, upon measuring 
Sx, we will obtain +1 or −1 with equal 
probability and the state after the mea-
surement would be either |Sx = +1ñ or 
|Sx = −1ñ. If we then measure Sz again, we 
obtain +1 or −1 with equal probability.

Physicists are trying to build 
devices that can manipulate electrons 
or other qubits in a manner analo-
gous to the way ordinary computers 
manipulate bits in their memories. 
Such a device, if it worked reliably 
and could store many qubits, would 
be a functioning quantum computer. 

measure Sz again. You would expect to 
get Sz = +1 as before, but if you do this 
experiment you will get +1 half the time 
and −1 half the time. Measuring the 
electron’s spin therefore changes the 
spin state of the electron. Physicists 
have come to realize that this is not 
a limitation of their experiments but 
rather that the universe fundamen-
tally operates this way.

No matter what encoding you use 
or how perfect an apparatus you can 
build, you can only ever reliably encode 
one bit worth of recoverable classical 
information in the spin of an electron.20 
Nonetheless, an electron behaves very 
differently than a classical bit. If we use 
electron spins instead of classical bits 
to store information, we can perform 
tasks that are completely impossible 
with ordinary computers.

Qubits
An electron’s spin is an example of a 
mathematical object called a qubit. 
A classical bit can take either of the two 
values 0 or 1. But a qubit is described 
mathematically by a normalized state 
in a two-dimensional complex vec-
tor space. We will use notation from 
physics to denote vectors that repre-
sent quantum states, writing a vector 
named v as |vñ. We can write any one-
qubit state as

|qñ = a|0ñ + b|1ñ

where the states |0ñ and |1ñ form a 
basis for the 2D vector space and 
where a and b are complex numbers 
that satisfy |a|2 + |b|2 = 1. If neither a 
nor b is zero, then we call the state |qñ a 
superposition of |0ñ and |1ñ because the 
qubit |qñ is, in a sense, in both states 
at once.

Just as one qubit can be in the state 
|0ñ or |1ñ or some superposition (linear 
combination) of both, n qubits can be 
in any superposition of the states

|0 . . . 00ñ, |0 . . . 01ñ, |0 . . . 10ñ, 
|0 . . . 11ñ, . . ., |1 . . . 11ñ

So, an n qubit state is a vector in a 
2n-dimensional space.

The simplest kind of measurement 
one can perform on a single qubit is 
one that answers this question: is the 
qubit in a given state |rñ = a|0ñ + b|1ñ? 
Let us say our qubit is prepared in the 

Figure 1. the no-cloning theorem.

Imagine that someone prepares a single 

qubit in the state |ψñ = a|0ñ + b|1ñ and gives it 

to you without telling you what a and b are. 

your goal is to copy that qubit. We will call 

whatever algorithm you use (the supposed 

“quantum copy machine”) C. you feed C the 

(unknown) qubit |ψñ and an output qubit 

that starts in the state |0ñ and your machine 

needs to output the original qubit and trans-

form |0ñ into a copy of |ψñ.

you do not know in advance what a and 

b are, so your copy machine has to work 

for any values. In particular, your machine 

needs to work if a = 1 and b = 0, which means

C (|0ñ|0ñ) = |0ñ|0ñ.

similarly, your copy machine needs to work 

if a = 0 and b = 1, which means

C (|1ñ|0ñ) = |1ñ|1ñ.

but quantum mechanics is linear, so any 

copy machine you could possibly build has 

to be linear as well. this means that the 

operator C is linear, so we can do some lin-

ear algebra:

C (|ψñ|0ñ) = C ((a|0ñ + b |1ñ) |0ñ) 
 = aC (|0ñ|0ñ) + bC (|1ñ|0ñ)

 = a|0ñ|0ñ + b |1ñ|1ñ. (1)

your copy machine was supposed to copy 

any state, so the output should have been

(a|0ñ + b |1ñ) (a |0ñ + b|1ñ)
 = a2 |0ñ|0ñ) + ab |0ñ|1ñ 

+ ab |1ñ|0ñ + b 2 |1ñ|1ñ

If both a and b are nonzero, then the  output 

(1) of your machine is not correct. this 

means that your copy machine C  cannot 

possibly work.
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Many computer scientists and physi-
cists believe that if we could build a 
quantum computer, we could use it to 
calculate things that would be intrac-
table with classical computers.2

Qubits have another strange prop-
erty: unlike classical bits, they cannot 
be copied. This is the content of the 
quantum no-cloning theorem, which  
says there is no such thing as a per-
fect quantum copy machine that can 
copy any quantum state you feed it. 
(See Figure 1 for the proof in the sin-
gle qubit case.) There are also limits 
on how closely you can approximate a 
quantum copy machine.7 The no-cloning 
theorem allows for cryptographic pro-
tocols that go beyond the abilities of 
classical computers. The best known 
example is quantum key distribu-
tion,4 which allows two parties to com-
municate privately, using a quantum 
channel and an authenticated (public) 
classical channel.

Quantum Money
The no-cloning theorem means we 
should not think of qubits the same 
way we think about bits. One might 
imagine using a handful of qubits as 
a form of money. A mint could pro-
duce some qubits using some process 
known only to it, and anyone else, 
given just those qubits, could not copy 
them by any means without further 
information. The no-cloning theorem 
does not immediately imply secure 
quantum money is possible; it only 
says that machines that can copy all 
quantum states are impossible, and 
a counterfeiter would be content with 
a machine that only copied quantum 
states that represented valid quan-
tum money. A counterfeiter could also 
try to obtain additional information 
about the quantum money state by 
using the algorithm that a merchant 
would use to verify quantum money. 
By examining concrete schemes for 
quantum money, we will see how 
these kinds of attacks can be avoided.

We distinguish two broad catego-
ries of quantum money.

In the simpler version, a mint 
would produce a quantum bill con-
sisting of some number of qubits. 
Anyone could store the quantum bill 
and move it around, maybe even trad-
ing it for something else. Whenever 
someone wants to verify the quantum 

bill is valid (for example, a merchant 
who is offered a quantum bill as pay-
ment), he or she sends the qubits to 
the mint and the mint checks that 
they are still in the correct state using 
some secret process. In this type of 
scheme, no one other than the mint 
knows how to verify the money. We 
call this private-key quantum money 
because the key—that is, the informa-
tion needed to verify the money—is 
private to the mint.

The other type of quantum money is 
public-key quantum money. As before, a 
mint can produce a quantum state and 
anyone can move it or spend it. Anyone 
should be able to verify the money 
themselves without communicating 
with the mint. Public-key money, if it 
could be realized, would be the ideal 
money we discussed earlier.

In the first quantum cryptography 
paper ever written,26 Stephen Wiesner 
described a way to implement private-
key quantum money in a provably 
secure manner. (He wrote the paper 
in 1969, but it was not published until 
1983.) In Wiesner’s scheme, each 
quantum bill is a unique random 
quantum state,b which the mint labels 
with a serial number. The mint keeps 
track of the state that corresponds to 
the serial number of each quantum 
bill and it can use its knowledge of the 
state to verify the money.

In 1982, Bennett et al. made the first 
attempt at public-key quantum money.5 
Their scheme only allowed a piece of 
money to be spent once (they called 
their quantum states subway tokens, 
not bills). In hindsight, their scheme 
is insecure for two different reasons: 
first, it is based on an insecure protocol 
for 1-2 oblivious transfer, and second, 
it can be broken by anyone who can 
run Shor’s algorithm23,24 to factor large 
numbers. (In the early days of quan-
tum cryptography, there was no reason 
to suspect either of these weaknesses. 
Shor’s algorithm23 and the general 
attack14 on oblivious transfer were not 
known until more than a decade later.)

Surprisingly, the next paper about 
quantum money did not appear 
until 2003 when Tokunaga et al.25 
attempted to modify Wiesner’s 
scheme to prevent the mint from 

b In fact, this is the random state later used in the 
BB84 protocol4 for quantum key distribution.

the no-cloning 
theorem gives us 
hope that quantum 
information could 
be used as  
the basis of a better 
kind of money.
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tracking each individual bill as it is 
used. They achieved this by requiring 
that the owner of a bill modify the bill 
before allowing the bank to verify it. 
The modification is done in a special 
way so that valid bills remain valid 
but are otherwise randomized so that 
the bank cannot tell them apart. This 
scheme has the significant disadvan-
tage that upon discovering a single 
counterfeit bill, the bank is required 
to immediately invalidate every bill it 
has ever issued. In our opinion this 
scheme therefore has limited practi-
cal applicability.

The idea of public-key quantum 
money gained traction in the years that 
followed. Aaronson proved a “com-
plexity-theoretic no-cloning theorem,”1  
which showed that even with access 
to a verifier, a counterfeiter with lim-
ited computational resources cannot 
copy an arbitrary state. Mosca and 
Stebila proposed18 the idea of a quan-
tum coin as distinct from a quantum 
bill—each quantum coin of a given 
denomination would be identical. 
Using the  complexity-theoretic no-
cloning theorem they argued it might 
be possible to implement a quantum 
coin protocol but they did not give a 
concrete implementation. Aaronson1 
proposed the first concrete scheme 
for public-key quantum money; how-
ever, this scheme was shown to be 
insecure in Lutomirski et al.16 In the 
latter paper, the authors suggested 
the idea of collision-free quantum 
money. Unlike quantum coins, each 
collision-free quantum bill has a 
serial number and nobody, not even 
the mint, can produce two bills with 
the same serial number. This feature 
can be useful to prevent the mint 
from printing more money than it 
says it is printing. The mint posts 
a list of all serial numbers of every 
quantum bill ever produced, and we 
can be sure the mint produced at most 
one bill for each serial number on the 
list. In a subsequent paper, Farhi et 
al. proposed a concrete scheme they 
believed was both collision free and 
secure against counterfeiting.11

Here, we tell you how some of these 
proposals work.

Wiesner’s Quantum Money
Wiesner’s original quantum money 
scheme26 works as follows. To produce 

a quantum bill using n qubits, the 
mint first chooses n one-qubit states 
randomly drawn from the set {|Sz = 1ñ, 
|Sz = −1ñ, |Sx = 1ñ, |Sx = −1ñ}. The mint 
then assigns that state a classical 
serial number. A piece of quantum 
money consists of the n qubit state and 
its serial number. The mint keeps a 
list of all serial numbers issued as well 
as a description of which state corre-
sponds to which serial number. When 
you pay for something with a quantum 
bill, the merchant sends the quantum 
state and its serial number back to the 
mint for verification. The mint looks 
up the serial number and retrieves 
the description of the corresponding 
quantum state. Then the mint verifies 
the given state is the state that goes 
with the attached serial number. This 
kind of money cannot be forged by 
someone outside the mint. Since a 
would-be forger has no knowledge of 
the basis that each qubit was prepared 
in, the quantum no-cloning theorem 
says he or she cannot reliably copy the 
n qubit quantum state (Figure 2).

The main weakness in Wiesner’s 
scheme is that the merchant must 
communicate with the bank to verify 
each transaction. So this scheme, 
although theoretically inspiring and 
provably secure, would not be much 
more powerful than credit cards. 
Wiesner’s scheme is a private-key 
quantum money scheme because the 
mint must keep a private secret—the 
complete description of the state—to 
use for verification.

Challenges in Designing 
Public-key Quantum Money
The resurgence of interest in quantum 
money is centered around the idea 
of public-key quantum money. As we 
have discussed, a public-key quantum 
money scheme would have the follow-
ing properties.16

1. The mint can mint it. That is, 
there is an efficient algorithm to pro-
duce the quantum money state.

2. Anyone can verify it without com-
municating with the mint. That is, 
there is an efficient measurement any-
one can perform that accepts money 
produced by the mint with high prob-
ability and minimal damage.

3. No one (except possibly the 
mint) can copy it. That is, no one oth-
er than the mint can efficiently pro-

the resurgence  
of interest in 
quantum money  
is centered  
around the idea  
of public-key  
quantum money.
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duce states that are accepted by the 
verifier with better than exponentially 
small probability.

Why is public-key quantum money 
so hard to design? The difficulty of de-
veloping public-key quantum money 
arises from the fact that the verifica-
tion algorithm—which is known to 
everyone in a public-key scheme—can 
be used by a would-be forger in an at-
tempt to counterfeit the money.

Wiesner’s scheme is provably 
secure on information-theoretic 
grounds if it is used properly. In 
Wiesner’s scheme, only the bank has 
the additional information required 
to verify a given quantum bill is legiti-
mate and therefore only the bank can 
copy the money.

It turns out that, if the mint is care-
less, then even the mere act of verifying 
bills can allow someone to create coun-
terfeit bills.15 Recall that in Wiesner’s 
scheme, in every transaction the bill is 
sent by the merchant back to the mint 
for verification. If the money is con-
firmed to be valid, the mint sends back 
the valid bill to the merchant. What 
happens if the money is determined 
by the mint to be counterfeit? If the 
mint sends back the invalid bill, then 
a counterfeiter can successfully forge 
the money.

Let us see how this works. A coun-
terfeiter can start with one good quan-
tum bill, which in Wiesner’s scheme is 
n one-qubit states

|ψñ = |ψ1ñ|ψ2ñ . . . |ψ nñ

along with a serial number the bank 
uses to verify the state. The counter-
feiter can produce a random one-qubit 
state |f1ñ, and, setting aside the first 
qubit |ψ1ñ of the original bill, he or she 
then sends the mint the state

|ψ ′ñ = |f1ñ|ψ2ñ . . . |ψ nñ.

If the bill |ψ ′ñ turns out to be valid 
(this happens with probability ½), the 
mint returns the bill, and in this case 
the mint’s measurement will have 
changed the state to |ψñ. So now the 
counterfeiter possesses both |ψñ and 
the original qubit |ψ1ñ that was set 
aside, and so he or she has succeeded 
in copying the first qubit |ψ1ñ. On the 
other hand, if the mint determines the 
bill |ψ ′ñ is not valid, then the state of 

(that is, unentangled) qubits. A more 
general algorithm called quantum 
state restoration10 works on entangled 
states as well: starting with a single 
valid quantum bill, a counterfeiter can 
make a sequence of measurements on 
the state and use the algorithm that 
verifies the bill to undo the damage 
caused by measuring the state. So any 
public-key quantum money scheme 
must be designed so that the attacker 
cannot gain enough information to 
copy the quantum money state by 
making a reasonable number of mea-
surements on one copy of it. Can we 
hope to design a public-key quantum 
money scheme which has this prop-
erty, or is the access to a verification 
algorithm already enough information 
to allow cloning of an arbitrary state? 
Aaronson answered this question in 
2009 with a “complexity-theoretic no-
cloning theorem.”

the Complexity-theoretic  
no-Cloning theorem
As we mentioned earlier, the stan-
dard no-cloning theorem is not good 
enough to prove secure public-key 
quantum money is possible, since it 
does not take into account the counter-
feiter can check whether a given state is 
valid quantum money or not. In fact, 
if a counterfeiter has unlimited time, 
then it is straightforward to counter-
feit public-key quantum money: sim-
ply generate a random state and check 
if that state is valid money. If not, try 
again. In a secure money scheme, the 
probability that any attempt succeeds 
is exponentially small.

the bill after the mint’s measurement 
will be

|ψ ̂1ñ|ψ2ñ . . . |ψ nñ

where |ψ ̂1ñ is the one-qubit state 
orthogonal to |ψ1ñ. Note that the states 
of qubits 2 through n have not been 
changed by this process. So the coun-
terfeiter can then throw away |ψ ̂1ñ, 
replace it with a random state, and try 
again. After an average of two tries, 
the counterfeiter will have copied the 
first qubit of the quantum bill. Then 
the counterfeiter can repeat this whole 
procedure to copy the second qubit, the 
third qubit, and so on until all n qubits 
have been copied.c

So if the bank sends back quantum 
states it deems to be invalid quantum 
money, the whole scheme is unus-
able. This tells us how not to imple-
ment Wiesner’s scheme in practice. 
But it also highlights the fact that hav-
ing access to a verifier that returns the 
state and a verdict on the validity of the 
quantum money is in itself a power-
ful tool a forger can try to exploit, even 
if the forger cannot look inside the 
machine that verifies money. This type 
of attack is particularly applicable to 
public-key quantum money schemes, 
in which the verification algorithm is 
publicly known.

This attack was particularly simple 
against Wiesner’s money because 
each bill consists of independent 

c The attack in Lutomirski15 is different: it is 
deterministic and twice as fast, but it is less 
intuitive.

Figure 2. Wiesner’s quantum money. Source: Science, Aug. 7, 1992.
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The complexity-theoretic no-
cloning theorem1 says there is no 
generic attack much better than ran-
dom guessing. What do we mean by a 
generic attack? Suppose there is a veri-
fication machine that checks whether 
or not a given state |fñ is equal to a 
good quantum money state |ψñ. The 
machine takes as input any quantum 
state |fñ; it outputs 0 if |fñ = |ψñ and 1 if 
|fñ is orthogonal to |ψñ. In either case, 
it also outputs the quantum state is left 
over after the measurement. Aaronson 
showed that, as long as that machine is 
a black box, it can fall into the hands of 
a counterfeiter without compromising 
the quantum money scheme. In other 
words, a counterfeiter with access to 
some quantum money as well as the 
verification machine would either need 

to take the machine apart to figure out 
how it worked or else use the machine 
an exponentially large number of times 
in order to make any more quantum 
money than he or she started with.

This theorem does not guarantee  
any particular scheme is secure. For 
every quantum money scheme that has 
been proposed, the states |ψñ that are 
“good” quantum money states are not 
completely unknown since they come 
from a restricted set of states gener-
ated by the mint’s algorithm. If this 
set of states is small enough then hav-
ing a “black box” verifier may allow a 
forger to copy a money state; we have 
already seen an example of this with 
Wiesner’s scheme. And it might also 
be possible to design attacks on pub-
lic-key quantum money that do not use 

the verifier as a black box. So in order 
to evaluate any public-key quantum 
money scheme, we will have to look at 
the details of the verifier and the set of 
valid quantum money states that are 
minted by the bank.

Quantum Coins
One of the first applications of the 
complexity-theoretic no-cloning theo-
rem was given by Mosca and Stebila.18 
They showed it might be possible 
to have public-key quantum money 
scheme in which every piece of quan-
tum money is identical: they called 
these quantum coins.18,19

Quantum coins, like ordinary 
coins, are all the same with no marks 
distinguishing each coin. One advan-
tage of quantum coins is they are 
 anonymous—no one can tell one coin 
from another, so it is difficult to keep 
track of where and when a particular 
coin was spent.

Mosca and Stebila had two results 
about quantum coins. They extended 
the complexity-theoretic no-clon-
ing theorem to quantum coins. If a 
would-be counterfeiter has access to a 
machine that verifies quantum coins 
but cannot look inside that machine, 
then there is no way to make more 
coins than he or she started with in any 
reasonable amount of time. This result 
gives some hope a public-key quantum 
coin protocol could be discovered.

Their second result is based on 
blind quantum computation (intro-
duced by Childs9 and studied by 
Broadbent et al.6). Blind quantum 
computation is a protocol whereby a 
quantum computer with very limited 
resources (sometimes called a quan-
tum calculator) runs a polynomial 
size quantum circuit with the help 
of a server, where the server does not 
learn anything about the circuit per-
formed (except an upper bound on its 
size). In the protocol introduced by 
Mosca and Stebila, the merchant runs 
an obfuscated verification algorithm 
from which he or she learns nothing 
except the final answer: that it is or is 
not a valid coin. However, this requires 
(quantum) communication with 
the bank, and so this quantum coin 
scheme is a private-key protocol.

To date there is no published con-
crete proposal for public-key quan-
tum coins.

Figure 3. Quantum money from knots. Figure 4. A knot.

Figure 5. Reidemeister moves.
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Public-key Quantum Money 
without Secrets
In all of the schemes we have discussed 
so far, the mint first generates some 
classical secret and then uses that secret 
to produce the quantum money. In any 
scheme like this, if anyone can figure 
out the secret, then they can use this 
secret to produce valid quantum money 
states with the same algorithm that the 
mint uses. A would-be forger can try to 
use the (publicly known) verification 
algorithm along with techniques such 
as quantum state restoration10 to try to 
reverse-engineer the secret.

Lutomirski et al.16 suggested a 
different approach to designing 
quantum money. Imagine a physical 
process (or a quantum measurement) 
that can simultaneously generate a 
random serial number y (drawn from 
an enormous set of possible serial num-
bers) and a corresponding quantum 
state |$y  ñ. For any given serial number 
y, a second algorithm would be able to 
verify some quantum state was indeed 
|$y  ñ. A key feature of this scheme is 
collision-freedom: no one can generate 
more than one copy of |$y  ñ for any value  
of y. (Anyone can generate quantum 
states corresponding to different serial 
numbers.)

To use these states as money, the 
mint simply generates a pile of quan-
tum states and corresponding clas-
sical serial numbers. The mint then 
publishes the list of all the serial num-
bers and the verification algorithm 
that can be used by anyone to check 
the validity of a given quantum money 
state. A quantum state matching a pub-
lished serial number is valid money; 
any other state is not. If the mint pub-
lished an actual list, then anyone could 
also verify the mint produced no more 
quantum money than it said it did; as 
a practical matter, though, the mint 
would probably use digital signatures 
instead of a list.

Lutomirski et al. also suggested 
a way such an algorithm might be 
designed. Consider a large set S and a 
function f that assigns each element 
of S a label. Suppose there is an expo-
nential number of possible labels and 
an exponential number of elements of 
S that share each label. Each label cor-
responds to a serial number, and the 
state corresponding to the serial num-
ber y is a uniform superposition of all of 

the elements of S that have the label y.  
Mathematically,

s t∈ =

〉 = 〉∑
. . ( )

|$ | .y
x S f x y

x

To produce a quantum money state, the 
mint first prepares a uniform superpo-
sition over all elements of S and mea-
sures the label that corresponds to the 
state. This results in a random label 
and, like all measurements, changes 
the state so the new state will always get 
the same measurement outcome. This 
means the superposition collapses to 
exactly those elements of S that have 
the measured label.

The verification procedure pre-
sented by Lutomirski et al. requires 
anyone who knows some x where f 
(x) = y find another random x′ with the 
same label y, and therefore f must be 
chosen so this is possible. A merchant 
who wants to verify a quantum bill first 
measures the label and confirms it 
matches the serial number of the bill, 
and then performs a more compli-
cated quantum measurement to check 
the state is invariant under the opera-
tion that randomizes the elements that 
share the same label.

Lutomirski et al. conjecture that if 
f and S are appropriately chosen, then 
the resulting quantum money will be 
secure. In that paper, however, they did 
not describe an appropriate f and S.

Quantum Money from knots
The only published scheme11 for pub-
lic-key quantum money that has not 
been shown to be insecure is an imple-
mentation of collision-free quantum 
money. In this scheme, the set S is a set 
of drawings of knots. We will have to 
take a quick detour into knot theory in 
order to describe this quantum money 
(Figure 3).

Most of us have some experience 
in our day-to-day lives with the basic 
properties of knots. Mathematicians 
who study knot theory have formalized 
these basic properties. For our pur-
poses, a good place to start will be with 
some definitions. A knot is a mapping 
of the circle S1 (like a loop of string) into 
three-dimensional space. For example, 
Figure 4 shows a knot.

Usually when we draw a knot, we 
use a two-dimensional diagram like 
the one in Figure 4. If we take a knot 
and then fiddle with it a bit (without 

one advantage 
of quantum coins 
is that they are 
 anonymous—no 
one can tell one coin 
from another, so it 
is difficult to keep 
track of where and 
when a particular 
coin was spent.
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cutting the string it is made out of) and 
then draw it, we might end up with a 
different diagram. But we would still 
like to call it the same knot. So the 
question arises: which pictures repre-
sent the same knot? The three modi-
fications to a knot diagram shown in 
Figure 5 are called the Reidemeister 
moves. It can easily be seen that by 
applying these moves you only move 
between topologically equivalent 
knots. It is also true (but more difficult 
to see) that any two diagrams repre-
senting the same knot can be mapped 
into one another using these moves.

There is no known good algorithm 
to determine whether two knot dia-
grams represent the same knot; it has 
only recently been discovered that knot 
equivalence is decidable.13 But some-
times there is a way to tell that two 
diagrams do not represent the same 
knot; by using a knot invariant. A knot 
invariant is a property of a knot that is 
the same for all diagrams representing 
the same knot. If you can find a knot 
invariant that takes different values for 
the two diagrams in question, then you 
can be sure they represent different 
knots. (The converse of this is not gen-
erally true—there can be two different 
knots that share the same value for a 
particular knot invariant.) One of the 
first knot invariants to be discovered is 
called the Alexander polynomial—any 
knot has an associated Alexander poly-
nomial, and its coefficients are inte-
gers that can be efficiently calculated 
from any diagram of that knot.

To make quantum money from 
knots, the set S in the general collision-
free scheme is taken to be the set of 
knot diagrams, and label f associated 
with each diagram is its Alexander 
polynomial. Applying a sequence of 
random Reidemeister moves random-
izes among knots with the same dia-
gram, allowing the measurement that 
verifies the quantum money states. So 
the mint prepares the superposition 
over all diagrams and measures the 
Alexander polynomial’s coefficients to 
make a quantum bill, and a merchant 
measures the coefficients and verifies  
the superposition is invariant under 
the Reidemeister moves.

(The actual scheme is somewhat more 
complicated because knot diagrams 
are inconvenient to work with—see 
Farhi et al.11 for the technical details.)
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While no one has proven that knot 
money is secure, attempts to break it 
seem to run into knot theory problems 
that have no known practical solutions.

What Does the Future hold for 
Quantum Money?
Public-key quantum money is one 
of few quantum protocols that does 
something that is truly impossible 
classically, even under cryptographic 
assumptions. QKD can be used to 
encrypt information between two par-
ties that did not coordinate keys in 
advance, but under reasonable secu-
rity assumptions, lattice based cryp-
tography can perform the same feat.4,21 
Assuming SHA1 is a pseudo random 
function, one can use it to implement 
strong coin flipping,8,17 and encrypted 
communication channels enable fast 
Byzantine agreement.3,12 However, no 
cryptographic assumption enables a 
digital analog of cash, as any string 
of bits that would represent a bill can 
always be copied.

The idea of some kind of quantum 
object that only one special entity 
can produce may have applications 
beyond being used as money. For 
example, software companies would 
like to be able to produce software pro-
grams that anyone can use but that no 
one can copy. Whether this is possible 
for any useful type of software remains 
to be seen.

Will a future government replace 
its currency with quantum money? 
Maybe. You could use it online to pur-
chase things without transaction fees 
and without oversight from any third 
party. You could download your quan-
tum money onto your qPhone (not yet 
trademarked) and use it to buy things 
from quantum vending machines. 
With the advent of quantum money, 
we hope everybody will like spending 
money a little bit more. 
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