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School of Computing, NUS

Singapore

Aashish Kolluri
School of Computing, NUS

Singapore

Ilya Sergey
University College London

United Kingdom

Prateek Saxena
School of Computing, NUS

Singapore

Aquinas Hobor
Yale-NUS College and School of Computing, NUS

Singapore

Abstract
Smart contracts—stateful executable objects hosted on
blockchains like Ethereum—carry billions of dollars
worth of coins and cannot be updated once deployed. We
present a new systematic characterization of a class of
trace vulnerabilities, which result from analyzing mul-
tiple invocations of a contract over its lifetime. We fo-
cus attention on three example properties of such trace
vulnerabilities: finding contracts that either lock funds
indefinitely, leak them carelessly to arbitrary users, or
can be killed by anyone. We implemented MAIAN, the
first tool for precisely specifying and reasoning about
trace properties, which employs inter-procedural sym-
bolic analysis and concrete validator for exhibiting real
exploits. Our analysis of nearly one million contracts
flags 34,200 (2,365 distinct) contracts vulnerable, in 10
seconds per contract. On a subset of 3,759 contracts
which we sampled for concrete validation and manual
analysis, we reproduce real exploits at a true positive rate
of 89%, yielding exploits for 3,686 contracts. Our tool
finds exploits for the infamous Parity bug that indirectly
locked 200 million dollars worth in Ether, which previ-
ous analyses failed to capture.

1 Introduction

Cryptocurrencies feature a distributed protocol for a set
of computers to agree on the state of a public ledger
called the blockchain. Prototypically, these distributed
ledgers map accounts or addresses (the public half of a
cryptographic key pair) with quantities of virtual “coins”.
Miners, or the computing nodes, facilitate recording the
state of a payment network, encoding transactions that
transfer coins from one address to another. A signifi-
cant number of blockchain protocols now exist, and as of
writing the market value of the associated coins is over
$300 billion US, creating a lucrative attack target.

Smart contracts extend the idea of a blockchain to a
compute platform for decentralized execution of general-

purpose applications. Contracts are programs that run on
blockchains: their code and state is stored on the ledger,
and they can send and receive coins. Smart contracts
have been popularized by the Ethereum blockchain. Re-
cently, sophisticated applications of smart contracts have
arisen, especially in the area of token management due
to the development of the ERC20 token standard. This
standard allows the uniform management of custom to-
kens, enabling, e.g., decentralized exchanges and com-
plex wallets. Today, over a million smart contracts oper-
ate on the Ethereum network, and this count is growing.

Smart contracts offer a particularly unique combina-
tion of security challenges. Once deployed they can-
not be upgraded or patched,1 unlike traditional con-
sumer device software. Secondly, they are written in a
new ecosystem of languages and runtime environments,
the de facto standard for which is the Ethereum Virtual
Machine and its programming language called Solidity.
Contracts are relatively difficult to test, especially since
their runtimes allow them to interact with other smart
contracts and external off-chain services; they can be in-
voked repeatedly by transactions from a large number of
users. Third, since coins on a blockchain often have sig-
nificant value, attackers are highly incentivized to find
and exploit bugs in contracts that process or hold them
directly for profit. The attack on the DAO contract cost
the Ethereum community $60 million US; and several
more recent ones have had impact of a similar scale [1].

In this work, we present a systematic characterization
of a class of vulnerabilities that we call as trace vulner-
abilities. Unlike many previous works that have applied
static and dynamic analyses to find bugs in contracts au-
tomatically [2–5], our work focuses on detecting vul-
nerabilities across a long sequence of invocations of a
contract. We label vulnerable contracts with three cate-
gories — greedy, prodigal, and suicidal — which either
lock funds indefinitely, leak them to arbitrary users, or

1Other than by “hard forks”, which are essentially decisions of the
community to change the protocol and are extremely rare.
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be susceptible to by killed by any user. Our precisely de-
fined properties capture many well-known examples of
known anecdotal bugs [1, 6, 7], but broadly cover a class
of examples that were not known in prior work or public
reports. More importantly, our characterization allows
us to concretely check for bugs by running the contract,
which aids determining confirmed true positives.

We build an analysis tool called MAIAN for find-
ing these vulnerabilities directly from the bytecode of
Ethereum smart contracts, without requiring source code
access. In total, across the three categories of vulnera-
bilities, MAIAN has been used to analyze 970,898 con-
tracts live of the public Ethereum blockchain. Our tech-
niques are powerful enough to find the infamous Parity
bug that indirectly caused 200 million dollars worth of
Ether, which is not found by previous analyses. A total
of 34,200 (2,365 distinct) contracts are flagged as poten-
tially buggy, directly carry the equivalent of millions of
dollars worth of Ether. As in the case of the Parity bug,
they may put a larger amount to risk, since contracts in-
teract with one another. For 3,759 contracts we tried to
concretely validate, MAIAN has found over 3,686 con-
firmed vulnerabilities with 89% true positive rate. All
vulnerabilities are uncovered on average within 10 sec-
onds of analysis per contract.
Contributions. We make the following contributions:
• We identify three classes of trace vulnerabilities,

which can be captured as properties of a execution
traces — potentially infinite sequence of invocations
of a contract. Previous techniques and tools [3] are not
designed to find these bugs because they only model
behavior for a single call to a contract.

• We provide formal high-order properties to check
which admit a mechanized symbolic analysis proce-
dure for detection. We fully implement MAIAN, a tool
for symbolic analysis of smart contract bytecode (with-
out access to source code).

• We test close to one million contracts, finding thou-
sands of confirmed true positives within a few seconds
of analysis time per contract. Testing trace properties
with MAIAN is practical.

2 Problem

We define a new class of trace vulnerabilities, showing
three specific examples of properties that can be checked
in this broader class. We present our approach and tool
to reason about the class of trace vulnerabilities.

2.1 Background on Smart Contracts

Smart contracts in Ethereum run on Ethereum Virtual
Machine (EVM), a stack-based execution runtime [8].

Different source languages compile to the EVM seman-
tics, the predominant of them being Solidity [9]. A smart
contract embodies the concept of an autonomous agent,
identified by its program logic, its identifying address,
and its associated balance in Ether. Contracts, like other
addresses, can receive Ether from external agents stor-
ing it in their balance field; they can can also send Ether
to other addresses via transactions. A smart contract is
created by the owner who sends an initializing transac-
tion, which contains the contract bytecode and has no
specified recipient. Due to the persistent nature of the
blockchain, once initialized, the contract code cannot
be updated. Contracts live perpetually unless they are
explicitly terminated by executing the SUICIDE byte-
code instruction, after which they are no longer invo-
cable or called dead. When alive, contracts can be in-
voked many times. Each invocation is triggered by send-
ing a transaction to the contract address, together with
input data and a fee (known as gas) [8]. The mining net-
work executes separate instances of the contract code and
agrees on the outputs of the invocation via the standard
blockchain consensus protocol, i.e., Nakamoto consen-
sus [10, 11]. The result of the computation is replicated
via the blockchain and grants a transaction fee to the min-
ers as per block reward rates established periodically.

The EVM allows contract functions to have local state,
while the contracts may have global variables stored on
the blockchain. Contracts can invoke other contracts via
message calls; outputs of these calls, considered to be
a part of the same transaction, are returned to the caller
during the runtime. Importantly, calls are also used to
send Ether to other contracts and non-contract addresses.
The balance of a contract can be read by anyone, but is
only updated via calls from other contracts and externally
initiated transactions.

Contracts can be executed repeatedly over their life-
time. A transaction can run one invocation of the con-
tract and an execution trace is a (possibly infinite) se-
quence of runs of a contract recorded on the blockchain.
Our work shows the importance of reasoning about ex-
ecution traces of contracts with a class of vulnerabilities
that has not been addressed in prior works, and provides
an automatic tool to detect these issues.

2.2 Contracts with Trace Vulnerabilities

While trace vulnerabilities are a broader class, we our
focus attention on three example properties to check of
contract traces. Specifically, we flag contracts which (a)
can be killed by arbitrary addresses, (b) have no way to
release Ether after a certain execution state, and (c) re-
lease Ether to arbitrary addresses carelessly.

Note that any characterization of bugs must be taken
with a grain of salt, since one can always argue that the
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1 function payout(address [] recipients ,

2 uint256 [] amounts) {

3 require(recipients.length == amounts.length);

4 for (uint i = 0; i < recipients.length; i++) {

5 /* ... */

6 recipients[i].send(amounts[i]);

7 }}

Figure 1: Bounty contract; payout leaks Ether.

exposed behavior embodies intent — as was debated in
the case of the DAO bug [6]. Our characterization of
vulnerabilities is based, in part, on anecdotal incidents
reported publicly [6,7,12]. To the best of our knowledge,
however, our characterization is the first to precisely de-
fine checkable properties of such incidents and measure
their prevalence. Note that there are several valid rea-
sons for contracts for being killable, holding funds in-
definitely under certain conditions, or giving them out
to addresses not known at the time of deployment. For
instance, a common security best practice is that when
under attack, a contract should be killed and should re-
turn funds to a trusted address, such as that of the owner.
Similarly, benign contracts such as bounties or games,
often hold funds for long periods of time (until a bounty
is awarded) and release them to addresses that are not
known statically. Our characterization admits these be-
nign behaviors and flags egregious violations described
next, for which we are unable to find justifiable intent.
Prodigal Contracts. Contracts often return funds to
owners (when under attack), to addresses that have sent
Ether to it in past (e.g., in lotteries), or to addresses
that exhibit a specific solution (e.g., in bounties). How-
ever, when a contract gives away Ether to an arbitrary
address— which is not an owner, has never deposited
Ether in the contract, and has provided no data that is
difficult to fabricate by an arbitrary observer—we deem
this as a vulnerability. We are interested in finding such
contracts, which we call as prodigal.

Consider the Bounty contract with code fragment
given in Figure 1. This contract collects Ether from dif-
ferent sources and rewards bounty to a selected set of
recipients. In the contract, the function payout sends to
a list of recipients specified amounts of Ether. It is clear
from the function definition that the recipients and the
amounts are provided as inputs, and anybody can call
the function (i.e., the function does not have restrictions
on the sender). The message sender of the transaction
is not checked for; the only check is on the size of lists.
Therefore, any user can invoke this function with a list of
recipients of her choice, and completely drain its Ether.

The above contract requires a single function invoca-
tion to leak its Ether. However, there are examples of
contracts which need two or more invocations (calls with
specific arguments) to cause a leak. Examples of such

1 function initMultiowned(address [] _owners ,

2 uint _required){

3 if (m_numOwners > 0) throw;

4 m_numOwners = _owners.length + 1;

5 m_owners [1] = uint(msg.sender);

6 m_ownerIndex[uint(msg.sender)] = 1;

7 m_required = _required;

8 /* ... */

9 }

10

11 function kill(address _to) {

12 uint ownerIndex = m_ownerIndex[uint(msg.sender)];

13 if (ownerIndex == 0) return;

14 var pending = m_pending[sha3(msg.data)];

15 if (pending.yetNeeded == 0) {

16 pending.yetNeeded = m_required;

17 pending.ownersDone = 0;

18 }

19 uint ownerIndexBit = 2** ownerIndex;

20 if (pending.ownersDone & ownerIndexBit == 0) {

21 if (pending.yetNeeded <= 1)

22 suicide(_to);

23 else {

24 pending.yetNeeded --;

25 pending.ownersDone |= ownerIndexBit;

26 }

27 }

28 }

Figure 2: Simplified fragment of ParityWalletLibrary
contract, which can be killed.

contracts are presented in Section 5.
Suicidal Contracts. A contract often enables a security
fallback option of being killed by its owner (or trusted ad-
dresses) in emergency situations like when being drained
of its Ether due to attacks, or when malfunctioning.
However, if a contract can be killed by any arbitrary ac-
count, which would make it to execute the SUICIDE in-
struction, we consider it vulnerable and call it suicidal.

The recent Parity fiasco [1] is a concrete example
of such type of a contract. A supposedly innocent
Ethereum user [13] killed a library contract on which
the main Parity contract relies, thus rendering the lat-
ter non-functional and locking all its Ether. To under-
stand the suicidal side of the library contract, focus on
the shortened code fragment of this contract given in
Figure 2. To kill the contract, the user invokes two dif-
ferent functions: one to set the ownership,2 and one to
actually kill the contract. That is, the user first calls
initMultiowned, providing empty array for _owners,
and zero for _required. This effectively means that the
contract has no owners and that nobody has to agree to
execute a specific contract function. Then the user in-
vokes the function kill. This function needs _required

number of owners to agree to kill the contract, before the
actual suicide command at line 22 is executed. How-
ever, since in the previous call to initMultiowned, the

2The bug would have been prevented has the function
initMultiowned been properly initialized by the authors.
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1 contract AddressReg{

2 address public owner;

3 mapping (address=>bool) isVerifiedMap;

4 function setOwner(address _owner){

5 if (msg.sender == owner)

6 owner = _owner;

7 }

8 function AddressReg (){ owner = msg.sender; }

9 function verify(address addr){

10 if (msg.sender == owner)

11 isVerifiedMap[addr] = true;

12 }

13 function deverify(address addr){

14 if (msg.sender == owner)

15 isVerifiedMap[addr] = false;

16 }

17 function hasPhysicalAddress(address addr)

18 constant returns(bool){

19 return isVerifiedMap[addr];

20 }

21 }

Figure 3: AddressReg contract locks Ether.

value of _required was set to zero, suicide is executed,
and thus the contract is killed.
Greedy Contracts. We refer to contracts that remain
alive and lock Ether indefinitely, allowing it be released
under no conditions, as greedy. In the example of the
Parity contract, many other multisigWallet-like con-
tracts which held Ether, used functions from the Parity

library contract to release funds to their users. After
the Parity library contracts was killed, the wallet con-
tracts could no longer access the library, thus became
greedy. This vulnerability resulted in locking of $200M
US worth of Ether indefinitely!

Greedy contracts can arise out of more direct errors as
well. The most common such errors occur in contracts
that accept Ether but either completely lack instructions
that send Ether out (e.g. send, call, transfer), or
such instructions are not reachable. An example of con-
tract that lacks commands that release Ether, that has al-
ready locked Ether is given in Figure 3.
Posthumous Contracts. When a contract is killed,
its code and global variables are cleared from the
blockchain, thus preventing any further execution of its
code. However, all killed contracts continue to receive
transactions. Although such transactions can no longer
invoke the code of the contract, if Ether is sent along
them, it is added to the contract balance, and similarly to
the above case, it is locked indefinitely. Killed contract or
contracts that do not contain any code, but have non-zero
Ether we call posthumous. It is the onus of the sender to
check if the contract is alive before sending Ether, and
evidence shows that this is not always the case. Because
posthumous contracts require no further static analysis
beyond that for identifying suicidal contracts, we do not
treat this as a separate class of bugs. We merely list all
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posthumous contracts on the live Ethereum blockchain
we have found in Section 5.

2.3 Our Approach

Each run of the contract, called an invocation, may exer-
cise an execution path in the contract code under a given
input context. Note that prior works have considered
bugs that are properties of one invocation, ignoring the
chain of effects across a trace of invocations [2,5,14–17].

We develop a tool that uses systematic techniques to
find contracts that violate specific properties of traces.
The violations are either:

(a) of safety properties, asserting that there exists a
trace from a specified blockchain state that causes the
contract to violate certain conditions; and

(b) of liveness properties, asserting whether some ac-
tions cannot be taken in any execution starting from a
specified blockchain state.

We formulate the three kinds of vulnerable contracts
as these safety and liveness trace properties in Section 3.
Our technique of finding vulnerabilities, implemented as
a tool called MAIAN and described in Section 4, con-
sists of two major components: symbolic analysis and
concrete validation. The symbolic analysis component
takes contract bytecode and analysis specifications as in-
puts. The specifications include vulnerability category
to search for and depth of the search space, which fur-
ther we refer to as invocation depth, along with a few
other analysis parameters we outline in Section 4. To de-
velop our symbolic analysis component, we implement
a custom Ethereum Virtual Machine, which facilitates
symbolic execution of contract bytecode [3]. With every
contract candidate, our component runs possible execu-
tion traces symbolically, until it finds a trace which satis-
fies a set of predetermined properties. The input context
to every execution trace is a set of symbolic variables.
Once a contract is flagged, the component returns con-
crete values for these variables. Our final step is to run
the contract concretely and validate the result for true
positives; this step is implemented by our concrete val-
idation component. The concrete validation component
takes the inputs generated by symbolic analysis compo-
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nent and checks the exploit of the contract on a private
fork of Ethereum blockchain. Essentially, it is a testbed
environment used to confirm the correctness of the bugs.
As a result, at the end of validation the candidate contract
is determined as true or false positive, but the contract
state on main blockchain is not affected since no changes
are committed to the official Ethereum blockchain.

3 Execution Model and Trace Properties

A life cycle of a smart contract can be represented by a
sequence of the contract’s states, which describe the val-
ues of the contract’s fields, as well as its balance, inter-
leaved with instructions and irreversible actions it per-
forms modifying the global context of the blockchain,
such transferring Ether or committing suicide. One can
consider a contract to be buggy with respect to a certain
class of unwelcome high-level scenarios (e.g., “leaking”
funds) if some of its finite execution traces fail to sat-
isfy a certain condition. Trace properties characterised
this way are traditionally qualified as trace-safety ones,
meaning that “during a final execution nothing bad hap-
pens”. Proving the absence of some other high-level bugs
will, however, require establishing a statement of a dif-
ferent kind, namely, “something good must eventually
happen”. Such properties are known as liveness ones
and require reasoning about progress in executions. An
example of such property would be an assertion that a
contract can always execute a finite number of steps in
order to perform an action of interest, such as tranferring
money, in order to be considered non-greedy.

In this section, we formally define the execution model
of Ethereum smart contracts, allowing one to pinpoint
the vulnerabilities characterised in Section 2.2. The key
idea of our bug-catching approach is to formulate the
erroneous behaviours as predicates of observed contract
traces, rather than individual configurations and instruc-
tion invocations, occurring in the process of an execu-
tion. By doing so, we are able to (a) capture the prodi-
gal/suicidal contracts via conditions that relate the un-
welcome agents gaining, at some point, access to a con-
tract’s funds or suicide functionality by finding a way
around a planned semantics, and (b) respond about re-
peating behavioural patterns in the contract life cycles,
allowing us to detect greedy contracts.

3.1 EVM Semantics and Execution Traces
We begin with defining cotnract execution traces by
adopting a low-level execution semantics of an EVM-
like language in the form of ETHERLITE-like calcu-
lus [2]. ETHERLITE implements a small-step stack ma-
chine, operating on top of a global configuration of the
blockchain, which used to retrieve contract codes and

ascribe Ether balance to accounts, as well as manipula-
tions with the local contract configuration. As custom-
ary in Ethereum, such agent is represented by its address
id, and might be a contract itself. For the purpose of
this work, we simplify the semantics of ETHERLITE by
eliding the executions resulting in exceptions, as reason-
ing about such is orthogonal to the properties of interest.
Therefore, the configurations δ of the ETHERLITE ab-
stract machine are defined as follows:

Configuration δ , 〈A,σ〉
Execution stack A , 〈M, id,pc,s,m〉 ·A | ε

Message m , {sender 7→ id; value : N; data 7→ . . .}
Blockchain state σ , id 7→

{
bal : N; code? 7→M; f ? 7→ v

}
That is, a contract execution configuration consists

of an activation record stack A and a blockchain con-
text σ . An activation record stack A is a list of tuples
〈M, id,pc,s,m〉, where id and M are the address and the
code of the contract currently being executed, pc is a pro-
gram counter pointing to the next instruction to be exe-
cuted, s is a local operand stack, and m is the last mes-
sage used to invoke the contract execution. Among other
fields, m stores the identity of the sender, the amount
value of the ether being transferred (represented as a nat-
ural number), as well as auxiliary fields (data) used to
provide additional arguments for a contract call, which
we will be omitting for the sake of brevity. Finally, a
simplified context σ of a blockchain is encoded as a fi-
nite partial mapping from an account id to its balance
and contract code M and its mutable state, mapping the
field names f to the corresponding values,3 which both
are optional (hence, marked with ?) and are only present
for contract-storing blockchain records. We will further
refer to the union of a contract’s fields entries f 7→ v and
its balance entry bal 7→ z as a contract state ρ .

Figure 5 presents selected rules for a smart contract
execution in ETHERLITE.4 The rules for storing and
loading values to/from a contract’s field f are standard.
Upon calling another account, a rule CALL is executed,
which required the amount of Ether z to be transferred
to be not larger than the contract id’s current balance,
and changes the activation record stack and the global
blockchain context accordingly. Finally, the rule SUI-
CIDENONEMPTYSTACK provides the semantics for the
SUICIDE instruction (for the case of a non-empty activa-
tion record stack), in which case all funds of the termi-
nated contract id are transferred to the caller’s id′.

An important addition we made to the semantics of
ETHERLITE are execution labels, which allow to distin-

3For simplicity of presentation, we treat all contract state as persis-
tent, eliding operations with auxiliary memory, such as MLOAD/MSTORE.

4The remaining rules can be found in the work by Luu et al. [2].

5



SSTORE
M[pc] = SSTORE σ

′ = σ [id][ f 7→ v]

〈〈M, id,pc, f · v · s,m〉 ·A,σ〉 sstore( f , v)−−−−−−−→ 〈〈M, id,pc+1,s,m〉 ·A,σ ′〉

SLOAD
M[pc] = SLOAD v = σ [id][ f ]

〈〈M, id,pc, f · s,m〉 ·A,σ〉 sload( f , v)−−−−−−−→ 〈〈M, id,pc+1,v · s,m〉 ·A,σ〉

CALL
M[pc] = CALL σ [id][bal]≥ z

s = id′ · z ·args · s′ a = 〈M, id,pc+1,s′,m〉
m′ = {sender 7→ id;value 7→ z;data 7→ args} M′ = σ [id′][code]

σ
′ = σ [id][bal 7→ σ [id][bal]− z] σ

′′ = σ
′[id′][bal 7→ σ

′[id′][bal]+ z]

〈〈M, id,pc,s,m〉 ·A,σ〉 call(id′, m′)−−−−−−−→ 〈〈M′, id′,0,ε,m′〉 ·a ·A,σ ′′〉

SUICIDENONEMPTYSTACK
M[pc] = SUICIDE s = id′ · s′ a = 〈M′,pc′,s′′,m′〉

σ
′ = σ [id′][bal 7→ (σ [id′][bal]+σ [id][bal])] σ

′′ = σ
′[id][bal 7→ 0]

〈〈M, id,pc,s,m〉 ·a ·A,σ〉 suicide(id′)−−−−−−−→ 〈〈M′, id′,pc′,1 · s′′,m′〉 ·A,σ ′′〉

Figure 5: Selected execution rules of ETHERLITE.

guish between specific transitions being taken, as well as
their parameters, and are defined as follows:

` , sstore( f , v) | sload( f , v) | call(id, m) | suicide(id) | . . .

For instance, a transition label of the form call(id, m)
captures the fact that a currently running contract has
transferred control to another contract id, by sending it
a message m, while the label suicide(id) would mean a
suicide of the current contract, with transfer of all of its
funds to the account (a contract’s or not) id.

With the labelled operational semantics at hand, we
can now provide a definition of partial contract execution
traces as sequences of interleaved contract states ρi and
transition labels ` j as follows:

Definition 3.1 (Projected contract trace). A partial pro-
jected trace t = τ̂id(σ ,m) of a contract id in an initial
blockchain state σ and an incoming message m is defined
as a sequence [〈ρ0, `0〉, . . . ,〈ρn, `n〉], such that for every
i ∈ {0 . . .n}, ρi = σi[id]|bal, f , where σi is the blockchain
state at the ith occurrence of a configuration of the form,
〈〈•, id,•,•,•〉,σi〉 in an execution sequence starting from
the configuration 〈〈σ [id][code], id,0,ε,m〉 · ε,σ〉, and `i
is a label of an immediate next transition.

In other words, τ̂id(σ ,m) captures the states of a con-
tract id, interleaved with the transitions taken “on its be-
half” and represented by the corresponding labels, start-
ing from the initial blockchain σ and triggered by the
message m. The notation σ [id]|bal, f stands for a projec-
tion to the corresponding components of the contract en-
try in σ . States and transitions of contracts other than id
and involved into the same execution are, thus, ignored.

Given a (partial) projected trace τ̂id(σ ,m), we say that
it is complete, if it corresponds to an execution, whose

last configuration is 〈ε,σ ′〉 for some σ ′. The following
definition captures the behaviors of multiple subsequent
transactions with respect to a contract of interest.

Definition 3.2 (Multi-transactional contract trace). A
contract trace t = τid(σ ,mi), for a sequence of messages
mi = m0, . . . ,mn, is a concatenation of single-transaction
traces τ̂id(σi,mi), where σ0 = σ , σi+1 is a blockchain
state at the end of an execution starting from a con-
figuration 〈〈σ [id][code], id,0,ε,mi〉 · ε,σi〉, and all traces
τ̂id(σi,mi) are complete for i ∈ {0, . . . ,n−1}.

As stated, the definition does not require a trace to end
with a complete execution at the last transaction. For
convenience, we will refer to the last element of a trace t
by last(t) and to its length as length(t).

3.2 Characterising Safety Violations
The notion of contract traces allows us to formally cap-
ture the definitions of buggy behaviors, described previ-
ously in Section 2.2. First, we turn our attention to the
prodigal/suicidal contracts, which can be uniformly cap-
tured by the following higher-order trace predicate.

Definition 3.3 (Leaky contracts). A contract with an ad-
dress id is considered to be leaky with respect to pred-
icates P, R and Q, and a blockchain state σ (denoted
leakyP,R,Q(id,σ)) iff there exists a sequence of messages
mi, such that for a trace t = τid(σ ,mi):
1. the precondition P(σ [id][code], t0,m0) holds,
2. the side condition R(ti,m0) holds for all i < length(t),
3. the postcondition Q(tn,m0) holds for tn = last(t).

Definition 3.3 of leaky contracts is relative with re-
spect to a current state of a blockchain: a contract that is
currently leaky may stop being such in the future. Also,
notice that the “triggering” initial message m0 serves as
an argument for all three parameter predicates. We will
now show how two behaviors observed earlier can be en-
coded via specific choices of P, R, and Q.5

Prodigal contracts. A contract is considered prodigal if
it sends Ether, immediately or after a series of transitions
(possibly spanning multiple transactions), to an arbitrary
sender. This intuition can be encoded via the following
choice of P, R, and Q for Definition 3.3:

P(M,〈ρ, `〉,m) , m[sender] /∈ im(ρ)∧m[value] = 0

R(〈ρ, `〉,m) , True

Q(〈ρ, `〉,m) , `= call(m[sender],m′)∧m′[value]> 0
∨ `= delegatecall(m[sender])
∨ `= suicide(m[sender])

According to the instantiation of the parameter predi-
cates above, a prodigal contract is exposed by a trace that

5In most of the cases, it is sufficient to take R , True, but in Sec-
tion 6 we hint certain properties that require a non-trivial side condition.

6



is triggered by a message m, whose sender does not ap-
pear in the contract’s state (m[sender] /∈ im(ρ)), i.e., it is
not the owner, and the Ether payload of m is zero. To
expose the erroneous behavior of the contract, the post-
condition checks that the transition of a contract is such
that it transfer funds or control (i.e., corresponds to CALL,
DELEGATECALL or SUICIDE instructions [8]) with the re-
cipient being the sender of the initial message. In the case
of sending funds via CALL we also check that the amount
being transferred is non zero. In other words, the initial
caller m[sender], unknown to the contract, got himself
some funds without any monetary contribution! In prin-
ciple, we could ensure minimality of a trace, subject to
the property, by imposing a non-trivial side condition R,
although this does not affect the class of contracts ex-
posed by this definition.
Suicidal contracts. A definition of a suicidal contract
is very similar to the one of a prodigal contract. It is
delivered by the following choice of predicates:

P(M,〈ρ, `〉,m) , SUICIDE ∈M∧m[sender] /∈ im(ρ)

R(〈ρ, `〉,m) , True

Q(〈ρ, `〉,m) , `= suicide(m[sender])

That is, a contract is suicidal if its code M contains
the SUICIDE instruction and the corresponding transition
can be triggered by a message sender, that does not ap-
pear in the contract’s state at the moment of receiving the
message, i.e., at the initial moment m[sender] /∈ im(ρ).

3.3 Characterising Liveness Violations
A contract is considered locking at a certain blockchain
state σ , if at any execution originating from σ prohibits
certain transitions to be taken. Since disproving liveness
properties of this kind with a finite counterexample is
impossible in general, we formulate our definition as an
under-approximation of the property of interest, consid-
ering only final traces up to a certain length:

Definition 3.4 (Locking contracts). A contract with an
address id is considered to be locking with respect to
predicates P and R, the transaction number k, and a
blockchain state σ (denoted lockingP,R,k(id,σ)) iff for
all sequences of messages mi of length less or equal than
k, the corresponding trace t = τid(σ ,mi) satisfies:
1. the precondition P(σ [id][code], t0,m0),
2. the side condition R(ti,m0) for all i≤ length(t).

Notice that, unlike Definition 3.3, this Definition does
not require a postcondition, as it is designed to under-
approximate potentially infinite traces, up to a certain
length k,6 so the “final state” is irrelevant.

6We discuss viable choices of k in Section 5.

Greedy contracts. In order to specify a property assert-
ing that in an interaction with up to k transactions, a con-
tract does not allow to release its funds, we instantiate
the predicates from Definition 3.4 as follows:

P(M,〈ρ, `〉,m) , ρ[bal]> 0

R(〈ρ, `〉,m) , ¬

 `= call(m[sender],m′)∧m′[value]> 0
∨ `= delegatecall(m[sender])
∨ `= suicide(m[sender])


Intuitively, the definition of a greedy contract is dual to

the notion of a prodigal one, as witnessed by the above
formulation: at any trace starting from an initial state,
where the contract holds a non-zero balance, no transi-
tion transferring the corresponding funds (i.e., matched
by the side condition R) can be taken, no matter what is
the sender’s identity. That is, this definition covers the
case of contract’s owner as well: no one can withdraw
any funds from the contract.

4 The Algorithm and the Tool

MAIAN is a symbolic analyzer for smart contract ex-
ecution traces, for the properties defined in Section 3.
It operates by taking as input a contract in its byte-
code form and a concrete starting block value from the
Ethereum blockchain as the input context, flagging con-
tracts that are outlined in Section 2.2. When reasoning
about contract traces, MAIAN follows the ETHERLITE
rules, described in Section 3.1, executing them symbol-
ically. During the execution, which starts from a con-
tract state satisfying the precondition of property of in-
terest (cf. Definitions 3.3 and 3.4), it checks if there ex-
ists an execution trace which violates the property and a
set of candidate values for input transactions that trigger
the property violation. For the sake of tractability of the
analysis, it does not keep track of the entire blockchain
context σ (including the state of other contracts), treating
only the contract’s transaction inputs and certain block
parameters as symbolic. To reduce the number of false
positives and confirm concrete exploits for vulnerabili-
ties, MAIAN calls its concrete validation routine, which
we outline in Section 4.2.

4.1 Symbolic Analysis

Our work concerns finding properties of traces that in-
volve multiple invocations of a contract. We leverage
static symbolic analysis to perform this step in a way that
allows reasoning across contract calls and across multi-
ple blocks. We start our analysis given a contract byte-
code and a starting concrete context capturing values of
the blockchain. MAIAN reasons about values read from
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input transaction fields and block parameters7 in a sym-
bolic way—specifically, it denotes the set of all concrete
values that the input variable can take as a symbolic vari-
able. It then symbolically interprets the relationship of
other variables computed in the contract as a symbolic
expression over symbolic variables. For instance, the
code y := x + 4 results in a symbolic value for y if x

is a symbolic expression; otherwise it is executed as con-
crete value. Conceptually, one can imagine the analy-
sis as maintaining two memories mapping variables to
values: one is a symbolic memory mapping variables to
their symbolic expressions, the other mapping variables
to their concrete values.
Execution Path Search. The symbolic interpretation
searches the space of all execution paths in a trace with
a depth-first search. The search is a best effort to in-
crease coverage and find property violating traces. Our
goal is neither to be sound, i.e., search all possible paths
at the expense of false positives, nor to be provably com-
plete, i.e., have only true positives at the expense of cov-
erage [18]. From a practical perspective, we make design
choices that strike a balance between these two goals.

The symbolic execution starts from the entry point of
the contract, and considers all functions which can be
invoked externally as an entry point. More precisely,
the symbolic execution starts at the first instruction in
the bytecode, proceeding sequentially until the execution
path ends in terminating instruction. Such instruction
can be valid (e.g., STOP, RETURN), in which case we as-
sume to have reached the end of some contract function,
and thus restart the symbolic execution again from the
first bytecode instruction to simulate the next function
call. On the other hand, the terminating instruction can
be invalid (e.g., non-existing instruction code or invalid
jump destination), in which case we terminate the search
down this path and backtrack in the depth-first search
procedure to try another path. When execution reaches
a branch, MAIAN concretely evaluates the branch con-
dition if all the variables used in the conditional expres-
sion are concrete. This uniquely determines the direction
for continuing the symbolic execution. If the condition
involves a symbolic expression, MAIAN queries an ex-
ternal SMT solver to check for the satisfiability of the
symbolic conditional expression as well as its negation.
Here, if the symbolic conditional expression as well as its
negation are satisfiable, both branches are visited in the
depth-first search; otherwise, only the satisfiable branch
is explored in the depth first search. On occasions, the
satisfiability of the expression cannot be decided in a
pre-defined timeout used by our tool; in such case, we
terminate the search down this path and backtrack in
the depth-first search procedure to try another path. We

7Those being CALLVALUE, CALLER, NUMBER, TIMESTAMP,
BLOCKHASH, BALANCE, ADDRESS, and ORIGIN.

maintain a symbolic path constraint which captures the
conditions necessary to execute the path being analyzed
in a standard way. MAIAN implements support for 121
out of the 133 bytecode instructions in Ethereum’s stack-
based low-level language.

At a call instruction, control follows transfer to the tar-
get. If the target of the transfer is a symbolic expression,
MAIAN backtracks in its depth-first search. Calls outside
a contract, however, are not simulated and returns are
marked symbolic. Therefore, MAIAN depth-first search
is inter-procedural, but not inter-contract.
Handling data accesses. The memory mappings, both
symbolic and concrete, record all the contract memory as
well blockchain storage. During the symbolic interpreta-
tion, when a global or blockchain storage is accessed for
the first time on a path, its concrete value is read from
the main Ethereum blockchain into local mappings. This
ensures that subsequent reads or writes are kept local to
the path being presently explored.

The EVM machine supports a flat byte-addressable
memory, and each address has a bit-width of 256 bits.
The accesses are in 32-byte sized words which MAIAN
encodes as bit-vector constraints to the SMT solver. Due
to unavailability of source code, MAIAN does not have
any prior information about higher-level datatypes in the
memory. All types default to 256-bit integers in the en-
coding used by MAIAN. Furthermore, MAIAN attempts
to recover more advanced types such as dynamic arrays
by using the following heuristic: if a symbolic variable,
say x, is used in constant arithmetic to create an expres-
sion (say x+4) that loads from memory (as an argument
to the CALLDATALOAD instruction), then it detects such an
access as a dynamic memory array access. Here, MAIAN
uses the SMT solver to generate k concrete values for the
symbolic expression, making the optimistic assumption
that the size of the array to be an integer in the range
[0,k]. The parameter k is configurable, and defaults to 2.
Apart from this case, whenever accesses in the memory
involve a symbolic address, MAIAN makes no attempt
at alias analysis and simply terminates the path being
search and backtracks in its depth-first search.
Handling non-deterministic inputs. Contracts have
several sources of non-deterministic inputs such as the
block timestamp, etc. While these are treated as sym-
bolic, these are not exactly under the control of the exter-
nal users. MAIAN does not use their concrete values as it
needs to reason about invocations of the contract across
multiple invocations, i.e., at different blocks.
Flagging Violations. Finally, when the depth-first
search in the space of the contract execution reaches
a state where the desired property is violated, it flags
the contract as a buggy candidate. The symbolic path
constraint, along with the necessary property conditions,
are asserted for satisfiability to the SMT solver. We
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use Z3 [19] as our solver, which provides concrete val-
ues that make the input formula satisfiable. We use these
values as the concrete data for our symbolic inputs, in-
cluding the symbolic transaction data.
Bounding the path search space. MAIAN takes the fol-
lowing steps to bound the search in the (potentially in-
finite) path space. First, the call depth is limited to the
constant called max_call_depth, which defaults to 3 but
can be configured for empirical tests. Second, we limit
the total number of jumps or control transfers on one path
explored to a configurable constant max_cfg_nodes, de-
fault set to 60. This is necessary to avoid being stuck in
loops, for instance. Third, we set a timeout of 10 sec-
onds per call to our SMT solver. Lastly, the total time
spent on a contract is limited to configurable constant
max_analysis_time, default set to 300 seconds.
Pruning. To speed up the state search, we implement
pruning with memorization. Whenever the search en-
counters that the particular configuration (i.e., contract
storage, memory, and stack) has been seen before, it does
not further explore that part of the path space.

4.2 Concrete Validation

In the concrete validation step, MAIAN creates a pri-
vate fork of the original Ethereum blockchain with the
last block as the input context. It then runs the contract
with the concrete values of the transactions generated by
the symbolic analysis to check if the property holds in
the concrete execution. If the concrete execution fails
to exhibit a violation of the trace property, we mark the
contract as a false positive; otherwise, the contract is
marked as a true positive. To implement the validating
framework, we added a new functionality to the official
go-ethereum package [20] which allows us to fork the
Ethereum main chain at a block height of our choice.
Once we fork the main chain, we mine on that fork with-
out connecting to any peers on the Ethereum network,
and thus we are able to mine our own transactions with-
out committing them to the main chain.
Prodigal Contracts. The validation framework checks if
a contract indeed leaks Ether by sending to it the transac-
tions with inputs provided by the symbolic analysis en-
gine. The transactions are sent by one of our accounts
created previously. Once the transactions are executed,
the validation framework checks whether the contract
has sent Ether to our account. If a verifying contract
does not have Ether, our framework first sends Ether to
the contract and only then runs the exploit.
Suicidal Contracts. In a similar fashion, the frame-
work checks if a contract can be killed after executing the
transactions provided by the symbolic analysis engine on
the forked chain. Note, once a contract is killed, its byte-
code is reset to ’0x’. Our framework uses precisely this

test to confirm the correctness of the exploit.
Greedy Contracts. A strategy similar to the above
two cannot be used to validate the exploits on contracts
that lock Ether. However, during the bug finding pro-
cess, our symbolic execution engine checks firsthand
whether a contract accepts Ether. The validation frame-
work can, thus, check if a contract is true positive by
confirming that it accepts Ether and does not have CALL,
DELEGATECALL, or SUICIDE opcodes in its bytecode. In
Section 5 we give examples of such contracts.

5 Evaluation

We analyzed 970,898 smart contracts, obtained by
downloading the Ethereum blockchain from the first
block utill block number 4,799,998, which is the last
block as of December 26, 2017. Ethereum blockchain
has only contract bytecodes. To obtain the original
(Solidity) source codes, we refer to the Etherscan ser-
vice [21] and obtain source for 9,825 contracts. Only
around 1% of the contracts have source code, highlight-
ing the utility of MAIAN as a bytecode analyzer.

Recall that our concrete validation component can an-
alyze a contract from a particular block height where
the contract is alive (i.e., initialized, but not killed). To
simplify our validation process for a large number of
contracts flagged by the symbolic analysis component,
we perform our concrete validation at block height of
4,499,451, further denoted as BH. At this block height,
we find that most of the flagged contracts are alive, in-
cluding the Parity library contract [1] that our tool suc-
cessfully finds. This contract was killed at a block height
of 4,501,969. All contracts existing on blockchain at a
block height of 4,499,451 are tested, but only contracts
that are alive at BH are concretely validated.8

Experimental Setup and Performance. MAIAN sup-
ports parallel analysis of contracts, and scales linearly
in the number of available cores. We run it on a Linux
box, with 64-bit Ubuntu 16.04.3 LTS, 64GB RAM and
40 CPUs Intel(R) Xeon(R) E5-2680 v2@2.80GHz. In
most of our experiments we run the tool on 32 cores.
On average, MAIAN requires around 10.0 seconds to an-
alyze a contract for the three aforementioned bugs: 5.5
seconds to check if a contract is prodigal, 3.2 seconds for
suicidal, and 1.3 seconds for greedy.
Contract Characteristics. The number of contracts has
increased tenfold from Dec, 2016 to Dec, 2017 and 176-
fold since Dec, 2015. However, the distribution of Ether
balance across contracts follows a skewed distribution.
Less than 1% of the contracts have more than 99% of the
Ether in the ecosystem. This suggests that a vulnerabil-
ity in any one of these high-profile contracts can affect a

8We also concretely validate the flagged candidates which were
killed before BH as well.
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Category
#Candidates

flagged
(distinct)

Candidates
without
source

#Validated
% of
true

positives
Prodigal 1504 (438) 1487 1253 97
Suicidal 1495 (403) 1487 1423 99
Greedy 31,201 (1524) 31,045 1083 69
Total 34,200 (2,365) 34,019 3,759 89

Table 1: Final results using invocation depth 3 at block
height BH. Column 1 reports number of flagged contracts,
and the distinct among these. Column 2 shows the num-
ber of flagged which have no source code. Column 3 is
the subset we sampled for concrete validation. Column 4
reports true positive rates; the total here is the average TP
rate weighted by the number of validated contracts.

large fraction of the entire Ether balance. Note that con-
tracts interact with each other, therefore, a vulnerability
in one contract may affect many others holding Ether, as
demonstrated by the recent infamous Parity library which
was used by wallet contracts with $200 million US worth
of Ether [1].

5.1 Results
Table 1 summarizes the contracts flagged by MAIAN.
Given the large number of flagged contracts, we select
a random subset for concrete validation, and report on
the true positive rates obtained. We report the number of
distinct contracts, calculated by comparing the hash of
the bytecode; however, all percentages are calculated on
the original number of contracts (with duplicates).
Prodigal contracts. Our tool has flagged 1,504 candi-
dates contracts (438 distinct) which may leak Ether to an
arbitrary Ethereum address, with a true positive rate of
around 97%. At block height BH, 46 of these contracts
hold some Ether. The concrete validation described in
Section 4.2 succeeds for exploits for 37 out of 46 — these
are true positives, whereas 7 are false positives. The re-
maining 2 contracts leak Ether to an address different
from the caller’s address. Note that all of the 37 true
positive contracts are alive as of this writing. For ethical
reasons, no exploits were done on the main blockchain.

Of the remaining 1,458 contracts which presently do
not have Ether on the public Ethereum blockchain, 24
have been killed and 42 have not been published (as of
block height BH). To validate the remaining alive con-
tracts (in total 1392) on a private fork, first we send them
Ether from our mining account, and find that 1,183 con-
tracts can receive Ether.9 We then concretely validate
whether these contract leak Ether to an arbitrary address.
A total of 1,156 out of 1,183 (97.72%) contracts are con-
firmed to be true positives; 27 (2.28%) are false positives.

For each of the 24 contracts killed by the block height

9These are live and we could update them with funds in testing.

BH, the concrete validation proceeds as follows. We cre-
ate a private test fork of the blockchain, starting from a
snapshot at a block height where the contract is alive. We
send Ether to the contract from one of our addresses ad-
dress, and check if the contract leaks Ether to an arbitrary
address. We repeat this procedure for each contract, and
find that all 24 candidate contracts are true positives.
Suicidal contracts. MAIAN flags 1,495 contracts (403
distinct), including the ParityWalletLibrary contract,
as found susceptible to being killed by an arbitrary ad-
dress, with a nearly 99% true positive rate. Out of 1,495
contracts, 1,398 are alive at BH. Our concrete validation
engine on a private fork of Ethereum confirm that 1,385
contracts (or 99.07%) are true positives, i.e., they can be
killed by any arbitrary Ethereum account, while 13 con-
tracts (or 0.93%) are false positives. The list of true pos-
itives includes the recent ParityWalletLibrary contract
which was killed at block height 4,501,969 by an ar-
bitrary account. Of the 1,495 contracts flagged, 25 have
been killed by BH; we repeat the procedure described pre-
viously and cofirmed all of them as true positives.
Greedy contracts. Our tool flags 31,201 greedy can-
didates (1,524 distinct), which amounts to around 3.2%
of the contracts present on the blockchain. The first ob-
servation is that MAIAN deems all but these as accept-
ing Ether but having states that release them (not lock-
ing indefinitely). To validate a candidate contract as a
true positive one has to show that the contract does not
release/send Ether to any address for any valid trace.
However, concrete validation may not cover all possible
traces, and thus it cannot be used to confirm if a contract
is greedy. Therefore, we take a different strategy and di-
vide them into two categories:
(i) Contracts that accept Ether, but in their bytecode do
not have any of the instructions that release Ether (such
instructions include CALL, SUICIDE, or DELEGATECALL).
(ii) Contracts that accept Ether, and in their bytecode
have at least one of CALL, SUICIDE or DELEGATECALL.

MAIAN flagged 1,058 distinct contracts from the first
category. We validate that these contracts can receive
Ether (we send Ether to them in a transaction with input
data according to the one provided by the symbolic ex-
ecution routine). Our experiments show that 1,057 out
of 1,058 (e.g., 99.9%) can receive Ether and thus are
true positives. On the other hand, the tool flagged 466
distinct contracts from the second category, which are
harder to confirm by testing alone. We resort to manual
analysis for a subset of these which have source code.
Among these, only 25 have Solidity source code. With
manual inspection we find that none of them are true pos-
itive — some traces can reach the CALL code, but MAIAN
failed to reach it in its path exploration. The reasons for
these are mentioned in the Section 5.3. By extrapola-
tion (weighted average across 1,083 validated), we ob-
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1 bytes20 prev;
2 function tap(bytes20 nickname) {
3 prev = nickname;
4 if (prev != nickname) {
5 msg.sender.send(this.balance);
6 }
7 }

Figure 6: A prodigal contract.

1 contract Mortal {
2 address public owner;
3 function mortal () {
4 owner = msg.sender;
5 }
6 function kill() {
7 if (msg.sender == owner){
8 suicide(owner);
9 }

10 }
11 }
12 contract Thing is Mortal { /*...*/ }

Figure 7: The prodigal contract Thing, derived from
Mortal, leaks Ether to any address by getting killed.

tain true positive rate among greedy contracts of 69%.
Posthumous Contracts. Recall that posthumous are
contracts that are dead on the blockchain (have been
killed) but still have non-zero Ether balance. We can find
such contracts by querying the blockchain, i.e., by col-
lecting all contracts without executable code, but with
non-zero balance. We found 853 contracts at a block
height of 4,799,998 that do not have any compiled code
on the blockchain but have positive Ether balance. Inter-
estingly, among these, 294 contracts have received Ether
after they became dead.

5.2 Case Studies: True Positives
Apart from examples presented in section 2.2, we now
present true and false postive cases studies. Note that
we only present the contracts with source code for read-
ability. However, the fraction of flagged contracts with
source codes is very low (1%).
Prodigal contracts. In Figure 6, we give an example of
a prodigal contract. The function tap seems to lock Ether
because the condition at line 4, semantically, can never
be true. However, the compiler optimization of Solidity
allows this condition to pass when an input greater than
20 bytes is used to call the function tap. Note, on a byte-
code level, the EVM can only load chunks of 32 bytes of
input data. At line 3 in tap the first 20 bytes of nickname
are assigned to the global variable prev, while neglecting
the remaining 12 bytes. The error occurs because EVM
at line 4, correctly nullifies the 12 bytes in prev, but not
in nickname. Thus if nickname has non-zero values in
these 12 bytes then the inequality is true. This contract
so far has lost 5.0001 Ether to different addresses on real
Ethereum blockchain.

A contract may also leak Ether by getting killed since

1 function withdraw () public returns (uint) {
2 Record storage rec = records[msg.sender ];
3 uint balance = rec.balance;
4 if (balance > 0) {
5 rec.balance = 0;
6 msg.sender.transfer(balance);
7 Withdrawn(now , msg.sender , balance);
8 }
9 if (now - lastInvestmentTime > 4 weeks) {

10 selfdestruct(funder);
11 }
12 return balance; }

Figure 8: The Dividend contract can be killed by in-
voking withdraw if the last investment has been made
at least 4 weeks ago.

the semantic of SUICIDE instruction enforce it to send
all of its balance to an address provided to the instruc-
tion. In Figure 7, the contract Thing [22] is inherited
from a base contract Mortal. The contract implements a
review system in which public reviews an ongoing topic.
Among others, the contract has a kill function inherited
from its base contract which is used to send its balance
to its owner if its killed. The function mortal, suppos-
edly a constructor, is misspelled, and thus anyone can
call mortal to become the owner of the contract. Since
the derived contract Thing inherits functions from con-
tract Mortal, this vulnerability in the base contract al-
lows an arbitrary Ethereum account to become the owner

of the derived contract, to kill it, and to receive its Ether.
Suicidal contracts. A contract can be killed by ex-
ploiting an unprotected SUICIDE instruction. A trivial
example is a public kill function which hosts the sui-
cide instruction. Sometimes, SUICIDE is protected by
a weak condition, such as in the contract Dividend given
in Figure 8. This contract allows users to buy shares
or withdraw their investment. The logic of withdraw-
ing investment is implemented by the withdraw function.
However, this function has a self_destruct instruction
which can be executed once the last investment has been
made more than 4 weeks ago. Hence, if an investor calls
this function after 4 weeks of the last investment, all the
funds go to the owner of the contract and all the records
of investors are cleared from the blockchain. Though the
ether is safe with the owner , there would be no record of
any investment for the owner to return ether to investors.

In the previous example, one invocation of withdraw

function was sufficient to kill the contract. There are,
however, contracts which require two or more func-
tion invocations to be killed. For instance, the contract
Mortal given in Figure 7 checks whether it is the owner
that calls the kill function. Hence, it requires an attacker
to become the owner of the contract to kill it. So, this
contract requires two invocations to be killed: one call to
the function mortal used to become an owner of the con-
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1 contract SimpleStorage {
2 uint storedData; address storedAddress;
3 event flag(uint val , address addr);
4

5 function set(uint x, address y) {
6 storedData = x; storedAddress = y;
7 }
8 function get() constant
9 returns(uint retVal , address retAddr) {

10 return (storedData ,storedAddress);
11 }
12 }

Figure 9: A contract that locks Ether.

tract and one call to the function kill to kill the contract.
A more secure contract would leverage the mortal func-
tion to a constructor so that the function is called only
once when the contract is deployed. Note, the recent Par-
ity bug similarly also requires two invocations [1].
Greedy contracts. The contract SimpleStorage, given
in Figure 9, is an example of a contract that locks Ether
indefinitely. When an arbitrary address sends Ether along
with a transaction invoking the set function, the contract
balance increases by the amount of Ether sent. How-
ever, the contract does not have any instruction to release
Ether, and thus locks it on the blockchain.

The payable keyword has been introduced in Solid-
ity recently to prevent functions from accepting Ether by
default, i.e., a function not associated with payable key-
word throws if Ether is sent in a transaction. However,
although this contract does not have any function asso-
ciated with the payable keyword, it accepts Ether since
it had been compiled with an older version of Solidity
compiler (with no support for payable).

5.3 Case Studies: False Positives
We manually analyze cases where MAIAN’s concrete
validation fails to trigger the necessary violation with the
produced concrete values, if source code is available.
Prodigal and Suicidal contracts. In both of the classes,
false positives arise due to two reasons:
(i) Our tool performs inter-procedural analysis within a
contract, but does not transfer control in cross-contract
calls. For calls from one contract to a function of another
contract, MAIAN assigns symbolic variables to the return
values. This is imprecise, because real executions may
only return one value (say true) when the call succeeds.
(ii) MAIAN may assign values to symbolic variables re-
lated to block state (e.g., timestamp and blocknumber)
in cases where these values are used to decide the con-
trol flow. Thus, we may get false positives because those
values may be different at the concrete validation stage.
For instance, in Figure 11, the _guess value depends on
the values of block parameters, which cannot be forced
to take on the concrete values found by our analyzer.

1 function confirmTransaction(uint tId)
2 ownerExists(msg.sender) {
3 confirmations[tId][msg.sender] = true;
4 executeTransaction(tId);
5 }
6 function executeTransaction(uint tId) {
7 // In case of majority
8 if (isConfirmed(tId)) {
9 Transaction tx = transactions[tId];

10 tx.executed = true;
11 if (tx.destination.call.value(tx.value)

(tx.data))
12 /*....*/
13 }}

Figure 10: False positive, flagged as a greedy contract.

1 function RandomNumber () returns(uint) {
2 /*....*/
3 last = seed^(uint(sha3(block.blockhash(
4 block.number),nonces[msg.sender ]))*0

x000b0007000500030001);
5 }
6 function Guess(uint _guess) returns (bool) {
7 if (RandomNumber () == _guess) {
8 if (!msg.sender.send(this.balance)) throw;
9 /*....*/

10 }/*....*/}

Figure 11: False positive, flagged as a prodigal contract.

Greedy contracts. The large share of false positives is
attributed to two causes:
(i) Detecting a trace which leads to release of Ether may
need three or more function invocations. For instance,
in Figure 10, the function confirmTransaction has to be
executed by the majority of owners for the contract to
execute the transaction. Our default invocation depth is
the reason for missing a possible reachable state.
(ii) Our tool is not able to recover the subtype for the
generic bytes type in the EVM semantics.
(iii) Some contracts release funds only if a random num-
ber (usually generated using transaction and block pa-
rameters) matches a predetermined value unlike in the
case of the contract in Figure 11. In that contract the
variable _guess is also a symbolic variable, hence, the
solver can find a solution for condition on line 7. If there
is a concrete value in place of _guess, the solver times
out since the constraint involves a hash function (hard to
invert by the SMT solver).

5.4 Summary and Observations
The symbolic execution engine of MAIAN flags 34,200
contracts. With concrete validation engine or manual in-
spection, we have confirmed that around 97% of prodi-
gal, 97% of suicidal and 69% of greedy contracts are true
positive. The importance of analyzing the bytecode of
the contracts, rather than Solidity source code, is demon-
strated by the fact that only 1% of all contracts have
source code. Further, among all flagged contracts, only
181 have verified source codes according to the widely
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Inv. depth Prodigal Suicidal Greedy
1 131 127 682
2 156 141 682
3 157 141 682
4 157 141 682

Table 2: The table shows number of contracts flagged
for various invocation depths. This analysis is done on a
random subset of 25,000–100,000 contracts.

used platform Etherscan, or in percentages only 1.06%,
0.47% and 0.49%, in the three categories of prodigal,
suicidal, and greedy, respectively. We refer the reader to
Table 1 for the exact summary of these results.

Furthermore, the maximal amount of Ether that could
have been withdrawn from prodigal and suicidal con-
tracts, before the block height BH, is nearly 4,905 Ether,
or 5.9 million US dollars10 according to the exchange
rate at the time of this writing. In addition, 6,239 Ether
(7.5 million US dollars) is locked inside posthumous
contracts currently on the blockchain, of which 313 Ether
(379,940 US dollars) have been sent to dead contracts af-
ter they have been killed.

Finally, the analysis given in Table 2 shows the num-
ber of flagged contracts for different invocation depths
from 1 to 4. We tested 25,000 contracts being for greedy,
and 100,000 for remaining categories, inferring that in-
creasing depth improves results marginally, and an invo-
cation depth of 3 is an optimal tradeoff point.

6 Related Work

Dichotomy of smart contract bugs. The early work by
Delmolino et al. [24] distinguishes the following classes
of problems: (a) contracts that do not refund their users,
(b) missing encryptions of sensitive user data and (c) lack
of incentives for the users to take certain actions. The
property (a) is the closest to our notion of greedy. While
that outlines the problem and demonstrates it on series
of simple examples taught in a class, they do not provide
a systematic approach for detection of smart contracts
prone to this issue. Later works on contract safety and
security identify potential bugs, related to the concurrent
transactional executions [25], mishandled exceptions [2],
overly extensive gas consumption [14] and implementa-
tions of fraudulent financial schemes [26].11

In contrast to all those work, which focus on bad im-
plementation practices or misused language semantics,
we believe, our characterisation of several classes of con-
tract bugs, such as greedy, prodigal, etc, is novel, as they
are stated in terms of properties execution traces rather
than particular instructions taken/states reached.

10Calculated at 1,210 USD/Eth [23].
11See the works [27, 28] for a survey of known contract issues.

Reasoning about smart contracts. OYENTE [2, 3] was
the first symbolic execution-based tool that provided
analysis targeting several specific issues: (a) mishan-
dled exceptions, (b) transaction-ordering dependence,
(c) timestamp dependence and (d) reentrancy [29], thus
remedying the corner cases of Solidity/EVM semantics
(a) as well as some programming anti-patterns (b)–(d).

Other tools for symbolic analysis of EVM and/or
EVM have been developed more recently: MANTI-
CORE [17], MYTHRILL [15, 16], SECURIFY [5], and
KEVM [30, 31], all focusing on detecting low-level
safety violations and vulnerabilities, such as integer over-
flows, reentrancy, and unhandled exceptions, etc, nei-
ther of them requiring reasoning about contract execu-
tion traces. A very recent work by Grossman et al. [32]
similar to our in spirit and providing a dynamic anal-
ysis of execution traces, focuses exclusively on detect-
ing non-callback-free contracts (i.e., prone to reentrancy
attacks)—a vulnerability that is by now well studied.

Concurrently with our work, Kalra et al. developed
ZEUS [4], a framework for automated verification of
smart contracts using abstract interpretation and sym-
bolic model checking, accepting user-provided policies
to verify for. Unlike MAIAN, ZEUS conducts policy
checking at a level of LLVM-like intermediate represen-
tation of a contract, obtained from Solidity code, and
leverages a suite of standard tools, such as off-the-shelf
constraint and SMT solvers [19, 33, 34]. ZEUS does not
provide a general framework for checking trace proper-
ties, or under-approximating liveness properties.

Various versions of EVM semantics [8] were imple-
mented in Coq [35], Isabelle/HOL [36, 37], F? [38],
Idris [39], and Why3 [40, 41], followed by subsequent
mechanised contract verification efforts. However, none
of those efforts considered trace properties in the spirit
of what we defined in Section 3.

Several contract languages were proposed recently
that distinguish between global actions (e.g., sending
Ether or terminating a contract) and instructions for ordi-
nary computations [42,43], for the sake of simplified rea-
soning about contract executions. For instance, the work
on the contract language SCILLA [43] shows how to en-
code in Coq [44] and formally prove a property, which is
very similar to a contract being non-leaky, as per Defini-
tion 3.3 instantiated with a non-trivial side condition R.

7 Conclusion
We characterize vulnerabilities in smart contracts that
are checkable as properties of an entire execution trace
(possibly infinite sequence of their invocations). We
show three examples of such trace vulnerabilities, lead-
ing to greedy, prodigal and suicidal contracts. Analyzing
970,898 contracts, our new tool MAIAN flags thousands
of contracts vulnerable at a high true positive rate.
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