
ar
X

iv
:1

70
3.

03
77

9v
3

 [
cs

.C
R

]
 1

6
M

ay
 2

01
7

Dissecting Ponzi schemes on Ethereum:

identification, analysis, and impact

Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, Roberto Saia

Dipartimento di Matematica e Informatica - Università di Cagliari
Via Ospedale 72 - 09124 Cagliari, Italy

{bart,salvatore,t.cimoli,roberto.saia}@unica.it

Abstract. Ponzi schemes are financial frauds where, under the promise
of high profits, users put their money, recovering their investment and
interests only if enough users after them continue to invest money. Orig-
inated in the offline world 150 years ago, Ponzi schemes have since then
migrated to the digital world, approaching first on the Web, and more
recently hanging over cryptocurrencies like Bitcoin. Smart contract plat-
forms like Ethereum have provided a new opportunity for scammers, who
have now the possibility of creating “trustworthy” frauds that still make
users lose money, but at least are guaranteed to execute “correctly”. We
present a comprehensive survey of Ponzi schemes on Ethereum, analysing
their behaviour and their impact from various viewpoints. Perhaps sur-
prisingly, we identify a remarkably high number of Ponzi schemes, despite
the hosting platform has been operating for less than two years.

1 Introduction

The advent of Bitcoin [3, 12] has given birth to a new way to exchange cur-
rency, allowing secure and (almost) anonymous transfers of money without the
intermediation of trusted authorities. This has been possible by suitably combin-
ing several techniques, among which digital signature schemes, moderately hard
“proof-of-work” puzzles, and the idea of blockchain, an immutable public ledger
which records all the money transactions, and is maintained by a peer-to-peer
network through a distributed consensus protocol.

Soon after Bitcoin has become widespread, it has started arousing the interest
of criminals, eager to find new ways to transfer currency without being tracked
by investigators and surveillance authorities [9].

Recently, Ponzi schemes [1] — a classic fraud originated in the offline world at
least 150 years ago — have approached the digital world, first on the Web [10],
and more recently also on Bitcoin [16]. Ponzi schemes1 are often disguised as
“high-yield” investment programs. Users enter the scheme by investing some
money. The actual conditions which allow to gain money depend on the specific
rules of the scheme, but all Ponzi schemes have in common that, to redeem their

1 They are named so after Charles Ponzi, a notorious fraudster from the 1920s.

http://arxiv.org/abs/1703.03779v3

investment, one has to make new users enter the scheme. A more authorita-
tive definition of Ponzi schemes comes from the U.S. Securities and Exchange
Commission (SEC):2

“A Ponzi scheme is an investment fraud that involves the payment of pur-
ported returns to existing investors from funds contributed by new investors.
Ponzi scheme organizers often solicit new investors by promising to invest
funds in opportunities claimed to generate high returns with little or no risk.
With little or no legitimate earnings, Ponzi schemes require a constant flow
of money from new investors to continue. Ponzi schemes inevitably collapse,
most often when it becomes difficult to recruit new investors or when a large
number of investors ask for their funds to be returned. ”

Often, the investment mechanism of Ponzi schemes creates a pyramid-shape
topology of users, having at the top level the initiator of the scheme, and at level
ℓ + 1 the users who compensate the investment of those at level ℓ. The scheme
will eventually collapse because at some point it will no longer be possible to find
new investors, as their number grows exponentially in the number of levels of
this pyramid. Therefore, users at the top levels of the pyramid will gain money,
while those at the bottom layers will lose their investment.

Despite many investors are perfectly conscious of the fraudulent nature of
these schemes, and of the fact that they are illegal in many countries, Ponzi
schemes continue to attract remarkable amounts of money. A recent study [16]
estimates that Ponzi schemes operated through Bitcoin have gathered more than
7 millions USD in the period from September 2013 to September 20143. We
expect that, since the total capitalization of Bitcoin has grown substantially
since then4, also the impact of Ponzi schemes has increased proportionally.

“Smart” Ponzi schemes. The spread of smart contracts, i.e., computer pro-
grams whose correct execution is automatically enforced without relying on a
trusted authority [15], creates new opportunities for fraudsters. Indeed, imple-
menting Ponzi schemes as smart contracts would have several attractive features:

1. The initiator of a Ponzi scheme could stay anonymous, since creating the
contract and withdrawing money from it do not require to reveal his identity;

2. Since smart contracts are “unmodifiable” and “unstoppable”, no central au-
thority (in particular, no court of law) would be able to terminate the execu-
tion of the scheme, or revert its effects in order to refund the victims. This is
particularly true for smart contracts running on permissionless blockchains,
which are controlled by a peer-to-peer network of miners.

3. Investors may gain a false sense of trustworthiness from the fact that the
code of smart contracts is public and immutable, and their execution is

2 Source: www.sec.gov/spotlight/enf-actions-ponzi
3 This estimate considers both traditional Ponzi schemes which also accept payments
in bitcoins, and schemes that only handle bitcoins.

4 The market capitalization of Bitcoin has grown from ∼ 5 billions USD (9/2014) to
25 billion USD (5/2017). Source: coinmarketcap.com/currencies/bitcoin

https://www.sec.gov/spotlight/enf-actions-ponzi.shtml
https://coinmarketcap.com/currencies/bitcoin/

automatically enforced. This may lead investors to believe that the owner
cannot take advantage of their money, that the scheme would run forever,
and that they have a fair probability of gaining the declared interests.

All these features are made possible by a combination of factors, among which
the growth of platforms for smart contracts [13], which advertise anonymity and
contract persistence as main selling points, and the fact that these technologies
are very recent, and still live in a gray area of legal systems [7, 11].

Understanding the behaviour and impact of “smart” Ponzi schemes would be
crucial to devise suitable intervention policies. To this purpose, one has to analyse
various aspects of the fraud, answering to several questions: how many victims
are involved? How much money is invested? What are the temporal evolution
and the lifetime of a fraud? What kind of users fall in these frauds? Can we
recognize fingerprints of Ponzi schemes during their execution, or possibly even
before they are started? Investigating on these issues would help to disrupt this
kind of frauds.

Contributions. This paper is the first comprehensive survey on Ponzi schemes
in Ethereum [5], the most prominent platform for smart contracts so far5. We
construct a collection of Ponzi schemes, we analyse them, and we measure their
impact on Ethereum from various perspectives. More specifically:

– in Section 3 we present a methodology for collecting Ponzi schemes from
the Ethereum blockchain. Basically, we start by examining all the contracts
with a certified source code6. By inspecting it and by performing targeted
searches on Google, we determine if the contract implements a Ponzi scheme.
We expand our collection by searching the blockchain for contracts whose
bytecode is highly similar to a contract already classified as a Ponzi scheme.
In this way we collect a total of 191 Ponzi schemes. For each of them, we
extract from the Ethereum blockchain all the related transactions, which
record all the incoming and outgoing movements of money.

– in Section 4 we analyse the source code of Ponzi schemes for which it is
available. We discover that most contracts share a few common patterns, and
that many of them are obtained by minor variations of already existing ones.
We show that the vast majority of the analysed contracts contain security
vulnerabilities, which could be exploited by adversaries to steal money. We
then analyse the way these contracts are advertised on the web, in many
cases finding a discrepancy between the advertised chances to get a payout,
and the actual ones.

– in Section 5 we compare the overall number of transactions related to Ponzi
schemes against the transactions in the whole Ethereum blockchain. We also

5 The market capitalization of Ethereum is more than 8 billion USD on 5/2017.
Source: coinmarketcap.com/currencies/ethereum

6 Even though only the contract bytecode is stored on the Ethereum blockchain, some
explorers maintain also the source code, and certify that the bytecode of a contract
is actually the result of the compilation of the associated source code.

http://coinmarketcap.com/currencies/ethereum

measure the economic impact of scams, by quantifying the overall value in
USD exchanged through Ponzi schemes.

– in Section 6 we investigate the lifetime of Ponzi schemes. This may be an
important indicator to predict when a scheme is going to collapse.

– in Section 7 we focus on the top 10 schemes (those with the highest number
of transactions), and for each of them we measure the gains and losses of
users. In many cases we observe the typical pattern of Ponzi schemes: a few
users gain a lot, while the majority of users simply lose their money.

– in Section 8 we study the temporal behaviour of Ponzi schemes, measuring
the monthly volume of their transactions. We find that the volume of outgo-
ing payments dominates that of incoming ones: this means that users invest
more than the money they obtain back.

– in Section 9 we study what kind of users invest money in Ponzi schemes,
measuring the inequality of payments to and from the schemes. This indi-
cator may reveal how scammers select their victims: a fair distribution of
payments means that the scheme is fed by a large number of victims who
pay small amounts of money; instead, an unequal distribution often means
that the scheme profits from a small number of “big fishes” who invest a lot
of money.

Our dataset of Ponzi schemes is available online at goo.gl/CvdxBp.

2 Ethereum in a nutshell

Ethereum [5] is a decentralized virtual machine, which can execute programs,
called contracts, written in a Turing-complete bytecode language [18]. Every
contract has a permanent storage where to keep data, and a set of functions
which can be invoked either by users or by other contracts. Users and contracts
can own ether, a cryptocurrency similar to Bitcoin (denoted with ETH), and
send/receive it to/from users or other contracts.

Users can send transactions to the Etherum network in order to: (i) create
new contracts; (ii) invoke a function of a contract; (iii) transfer ether to contracts
or to other users. All the transactions sent by users, called external transactions,
are recorded on a public, append-only data structure — the blockchain. Upon
receiving an external transaction, a contract can fire some internal transactions,
which are not explictly recorded on the blockchain, but still have effects on the
balance of users and of other contracts.

Since transactions can move money, it is crucial to guarantee that their ex-
ecution is performed correctly. To this purpose, Ethereum does not rely on a
trusted central authority: rather, each transaction is processed by a large net-
work of mutually untrusted peers — called miners. Each miner executes all
the transactions, and its results must match with those of the other miners.
There is a consensus protocol to address mismatches (due e.g., to failures or to
attacks), which is based on a “proof-of-work” puzzle. The security of the con-
sensus protocol relies on the fact that, for a miner, following the protocol is

http://goo.gl/CvdxBp

1 contract AWallet {
2 address owner;

3 mapping (address => uint) public outflow ;
4 mapping (address => uint) public inflow ;

5

6 function AWallet (){ owner = msg. sender; }
7

8 function pay(uint amount , address recipient) returns (bool){
9 if (msg. sender != owner || msg. value != 0) throw ;

10 if (amount > this .balance) return false;
11 outflow [recipient] += amount ;
12 if (! recipient. send(amount)) throw ;

13 return true;
14 }

15

16 function(){ inflow [msg. sender] += msg. value ; }

17 }

Fig. 1: A simple wallet contract.

more convenient than trying to attack it. Indeed, miners receive economic in-
centives for correctly performing all the computations required by the protocol.
Incorrect computations are soon discovered (since they are not the majority),
and discharged. Hence, the execution of contracts is guaranteed to be correct, as
long as the adversary does not control the majority of the computational power
of the network.

Ethereum smart contracts. Ethereum contracts are composed by fields and
functions. A user can invoke a function by sending a suitable transaction to
the Ethereum nodes. The transaction must include the execution fee (for the
miners), and may include a transfer of ether from the caller to the contract.

We illustrate contracts through a small example (AWallet, in Figure 1),
which implements a personal wallet associated to an owner. Rather than pro-
gramming it directly as EVM bytecode, we use Solidity, a Javascript-like pro-
gramming language which compiles into EVM bytecode7. Intuitively, the con-
tract can receive ether from other users, and its owner can send (part of) that
ether to other users via the function pay. The hashtable outflow records all the
addresses8 to which it sends money, and associates to each of them the total
transferred amount. The hashtable inflow records all the addresses from which
it has received money.

All the ether received is held by the contract. Its amount is automatically
recorded in balance: this is a special variable, which cannot be altered by the
programmer. When a contract receives ether, it also executes a special function
with no name, called fallback.

The function AWallet at line 6 is a constructor, run only once when the
contract is created. The function pay sends amount wei (1wei = 10−18ETH)
from the contract to recipient. At line 9 the contract throws an exception

7 Solidity is documented at solidity.readthedocs.io/en/develop/index.html
8 Addresses are sequences of 160 bits which uniquely identify contracts and users.

http://solidity.readthedocs.io/en/develop/index.html

if the caller (msg.sender) is not the owner, or if some ether (msg.value) is
attached to the invocation and transferred to the contract. Since exceptions
revert side effects, this ether is returned to the caller (who however loses the
fee). At line 10, the call terminates if the required amount of ether is unavailable;
in this case, there is no need to revert the state with an exception. At line 11,
the contract updates the outflow registry, before transferring the ether to the
recipient. The function send used at line 12 to this purpose presents some quirks,
e.g. it may fail if the recipient is a contract. The fallback function at 16 is
triggered upon receiving ether and no other function is invoked. In this case, the
fallback function just updates the inflow registry. In both cases, when receiving
ether and when sending, the total amount of ether of the contract, stored in
variable this.balance, is automatically updated.

3 Collection of Ponzi schemes

In this section we describe our methodology for identifying Ponzi schemes and
for extracting the related transactions.

3.1 Search of contracts with associated source code or web sites

We collect a set of Ethereum contracts from two sources:

– We use etherchain.org/contracts to retrieve Ethereum contracts which
are associated with a name. In this way we find 86 contracts.

– We use etherscan.io to retrieve contracts with a verified source code. This
means that the contract owner uploaded the source code (typically, written
in Solidity) along with the contract address, and the repository verified that
the result of the compilation matches the bytecode stored at the contract
address. This search returned 1384 contracts.

After this preliminary collection phase, we manually inspect each of the above
obtained contracts to identify Ponzi schemes. More specifically:

1. for each contract with a verified source code, we manually inspect its code
(including comments) and, when available, the project web pages;

2. for each contract lacking a source code we perform targeted queries on Google
and we seek out the official blog9 and Reddit page10 of Ethereum, looking
for keywords like e.g. “Ponzi”, “HYIP”, “pyramid”, “scam”, “fraud”, etc.,
and examining the declared interest rates.

At the end of the this activity we end up with 137 contracts, which we
make available online at goo.gl/CvdxBp (an excerpt is in Table 2). Notice
that we had to exclude from our analysis some potential Ponzi schemes, like

9 Ethereum blog: blog.ethereum.org
10 Ethereum Reddit page: www.reddit.com/r/ethereum

https://etherchain.org/contracts/
https://etherscan.io/
http://goo.gl/CvdxBp
https://blog.ethereum.org
https://www.reddit.com/r/ethereum

e.g. ethtrade.org11, ethereumlitemining.org, and other suspect scams listed
at badbitcoin.org/thebadlist, because we did not manage to retrieve any
information about the Ethereum addresses they use (if any).

3.2 Search of hidden Ponzi schemes

So far, our collection includes Ponzi schemes whose addresses have been adver-
tised in some way, either by publishing them on a web site, or by associating
them to the contract source code. However, other kinds of schemes may exist:
those run by dedicated clients (which hide their addresses), those which have
just been created for testing purposes, and those where the source code is either
unavailable, or it has been published on external sites (and, therefore, is not
certified). We perform a second search phase to include in our collection also
some contracts of these kinds.

More specifically, we search the Ethereum blockchain for contracts whose
bytecode (which is always stored on the blockchain) is similar to that of some
known Ponzi scheme. We use the normalized Levenshtein distance [19] (NLD)
as a measure of similarity between two bytecode files12. In order to establish
when two contracts are similar, we first estimate the NLD between two arbitrary
contracts on the blockchain. To this purpose we download the bytecode of all the
contracts from etherscan.io, and we use a Monte Carlo algorithm to estimate
the NLD between two random contracts. After these calculations, we estimate
as 0.79 the NLD between two arbitrary bytecode files.

Then, we compute the NLD between the contracts in our initial sample, and
all the contracts on etherscan.io. We classify as a Ponzi scheme any contract
with a NLD less than 0.35 from some contract in our sample. The two values 0.35
and 0.79 are sufficiently far apart to ensure that, with very high probability, this
method classifies as Ponzi schemes only the contracts that are highly similar to
some contract in our initial sample. This search resulted in further 55 potential
new Ponzi schemes, not included in our original collection of 137 contracts.

We then search in this set for false positives, i.e. contracts whose NLD from
the initial sample is below 0.35, but they are not Ponzi schemes. To do that, we
measure the NLD between the 55 contracts obtained in the previous step and
(again) all the contracts on the Ethereum blockchain (but those in the original
collection). We find only one match in this search: the contract with the shortest
EVM code13, which is close to thousands of contracts, and so we remove it from
our collection. We conjecture that all the other 54 contracts in our collection of
“hidden” schemes are Ponzi. Although we cannot support formally this claim (as

11 Ethtrade Review — Is Ethtrade a Scam or Legitimate? Read Before You Invest.
Source: managingyourfinance.com

12 Roughly, the (non-normalized) Levenshtein distance between two strings measures
the number of character which one has to change to transform the first string in the
second one (e.g., the distance between “Ponzi” and “Banzai” is 3). The normalized

version of the Levenshtein distance is a metric, and its value is a real number ranging
between 0 (perfect equality) and 1 (perfect inequality).

13 Address 0xada4347a112336c8a87bf91b85af275a22a41740, size of EVM code 1.2K.

https://ethtrade.org/
https://ethereumlitemining.org/
http://badbitcoin.org/thebadlist/index.htm
http://etherscan.io
http://etherscan.io
https://managingyourfinance.com/ethtrade-review-is-ethtrade-a-scam-or-legitimate-read-before-you-invest
https://etherscan.io/address/0xada4347a112336c8a87bf91b85af275a22a41740

no decompiler from EVM to Solidity is currently available), in practice we have
observed that 0.35 is quite a discriminating threshold (recall that the average
NLD between two arbitrary EVMs on the blockchain is 0.79). As an additional
empirical support, we have observed that the Solidity code of Ponzi schemes is
self-contained, i.e. it makes no use of external libraries. Therefore, it is quite
unlikely that one of the contracts in our collection of 54 schemes is close to a
Ponzi scheme just because they share a large portion of identical libraries.

For further validation, we have manually checked whether the “hidden”
schemes are advertised in some forums as Ponzi schemes, if their Solidity source
code is reported somewhere, or even if their functions have revealing names, like
e.g.awaitingPayout, nextPayoutGoal, changeFees. The result is that, every
time some additional information is found, it confirms the nature of the contract
as a Ponzi scheme. Hence, we end up with a collection of 191 Ponzi schemes.

3.3 Extraction of transactions

For each contract identified in the previous steps, we gather all its transactions
(both external and internal) from the Ethereum blockchain14. More specifically,
for each transaction we record the following data: (i) the number of the enclosing
block; (ii) the date when it was published on the blockchain; (iii) the address of
the sender; (iv) the address of the receiver; (v) the amount of ether transferred
by the transaction; (vi) a boolean value which records whether the transaction
execution resulted in an error; (vii) a boolean value which indicates whether the
transaction is external or internal.

To this purpose we have developed a suite of tools, which exploit the Parity
client15 and the etherchain.io API to extract transactions (both external and
internal), and the Geth client16 to associate them to timestamps.

4 Qualitative analysis of Ponzi schemes

In this section we analyse the source code of Ponzi schemes, to understand their
behaviour, and find analogies between different schemes. We then discuss some
security issues found in the analysed contracts. We also study how these schemes
are promoted on the web, finding that in many cases there is a discrepancy
between the advertisement and the actual chances of obtaining a payout.

4.1 Anatomy of Ponzi schemes

In order to understand how Ponzi schemes work in Ethereum, we manually
inspect the source code of all the contracts identified in Section 3.1 that have

14 Our dataset has been extracted on May 7th, 2017.
15 Parity: ethcore.io/parity.html
16 Geth: github.com/ethereum/go-ethereum/wiki/geth

https://etherechain.io
https://ethcore.io/parity.html
https://github.com/ethereum/go-ethereum/wiki/geth

an associated source code on etherscan.io17. We observe that all the contracts
can be classified in one of the following three categories:

array-based pyramid schemes refund users in order of arrival. Generally,
the schemes in this category promise to multiply the investment by a pre-
specified factor. A user can redeem her multiplied investment when enough
money is gathered from the users who later on join the scheme. We show
in Figure 2 an archetypal array-based pyramid schemes which is very close,
e.g., to Doubler1. To join the scheme, a user sends msg.amount ether to
the contract, hence triggering the fallback function at line 14. The contract
requires a minimum fee of 1 ether: if msg.amount is below this minimum,
the user is rejected (line 15), otherwise, her address is inserted in the array
(line 17), and the array length is incremented18. The contract sends 10% of
the received amount to its owner (line 20), and with the remaining ether, it
tries to pay back some previous users. If the balance is enough to pay the
user in the array at position paying, then the contract sends to the user her
investment multiplied by 2 (lines 23). After that, the contract tries to pay
the next user in the array, and so on until the balance is enough. In this
scheme, if a user gets some money, she knows exactly how much it is, and
that amount is proportional to what she has invested. However, she must
wait that all the users before her have redeemed their share.

tree-based pyramid schemes use a tree data structure to record users’s ad-
dresses. Each user has a parent, called inviter, except the root of the tree,
which is the contract owner. Whenever a user joins the scheme, her money
is split among its ancestors. We show in Figure 3 an archetypal scheme of
this kind. To join the scheme, a user must send some money, and must
indicate an inviter. If the amount is too low (line 15), or if the user is
already present (line 16), or if the inviter does not exist (line 17), the user
is rejected; otherwise she is inserted in the tree (line 19). After the user has
been registered, her investment is shared among her ancestors (lines 25-29)
halving the amount at each level. In this scheme, a user cannot foresee how
much she will gain: this depends on how many users she is able to invite,
and on how much they will invest. Unlike array-based schemes, her gain is
not proportional to what she has invested.

handover schemes store only the address of the last user: if someone wants
to join, she must repay the last user of her investment plus a fixed interest.
With this constraint, the amount that each user shall pay increases at each
turn. An archetypal example is shown in Figure 4. To join the scheme a user
must send at least price ether to the contract, hence triggering the fallback
function of line 11. The contract forwards that sum to the former user, minus
a fee which is kept within the contract (line 13). Then, the address of the new

17 The examples we present assume version v0.2.2 of the Solidity compiler, which is
the version used by most of the contracts in our collection. Although newer versions
of Solidity change the way to declare functions and to manage arrays, these changes
do not really affect the spirit of our examples.

18 In Solidity, dynamic arrays can be resized by changing the length member.

https://etherscan.io
http://solidity.readthedocs.io/en/develop/types.html#members

user is recorded (line 14), and the price is increased of one half (line 15).
The contract owner can withdraw his share by calling sweepCommission. In
this scheme, if a user gets some money, she knows exactly how much it is,
and the amount she can invest is fixed by the contract.

waterfall schemes divide each new investment among the already-joined users,
starting from the first one. Each user receives a fixed percentage of what she
has invested, as far as there is enough money. On the subsequent invest-
ment, the division starts again from the first user. We show in Figure 5 an
archetypal scheme of this kind, which is very close, e.g., to TreasureChest

and PiggyBank. To join the scheme, a user sends msg.amount ether to the
contract, hence triggering the fallback function at line 18. The contract re-
quires a minimum fee of 1 ETH : if msg.amount is below this minimum,
the user is rejected (line 19), otherwise, her address is inserted in the array
(line 21-22), and the array length is incremented. The contract sends 10%
of the received ether to its owner (line 25), and with the remaining ether,
it tries to pay back some previous users. If the balance is enough to pay
the first user in the array, then the contract sends to that user 6% of her
original investment (lines 29-30). After that, the contract tries to pay the
next user in the array, and so on, until the balance is enough. On the next
investment, the array will be iterated again, starting from the first user. In
this scheme, the amount given to each user is proportional to what she has
invested. However, it may happen that those late in the queue will never get
any money at all, even when new users continue to join.

A common feature of these schemes, as we can see from their archetypal code
(and remains true in the actual code), is that a user is never guaranteed to get
back her investment.

Most of the contracts that we have analyzed belong to one of the categories
described above. Almost the totality of them follow the array-based pyramid
scheme. The tree-based scheme has been adopted by the two instances of the
Etheramid contract. The handover scheme has been used in the various ver-
sions of KingOfTheEtherThrone; the waterfall scheme has been implemented by
TreasureChest and PiggyBank.

By manually inspecting the source code of Ponzi schemes, we have observed
very few differences among them, when none at all. Some contracts only differ in
the multiplication factor, in the applied fees, or in the presence of auxiliary func-
tions, like e.g. getter/setter for contract fields, or other utility functions for the
owner. To have a precise estimate of the similarity between Ponzi schemes, we
have computed the average normalized Levenshtein distance among their byte-
code. We observe that this value is 0.54, which is far apart from 0.79, the average
distance between the bytecode of two arbitrary contracts. This may suggest that
most of the Ponzi scheme have been created by a single programmer, or that
their code has been copied from the first instances appeared on etherscan.io.

https://etherscan.io

1 contract ArrayPonzi {

2

3 struct User {
4 address addr;

5 uint amount ;
6 }

7 User[] public users;
8 uint public paying = 0;

9 address public owner;
10 uint public totalUsers=0;
11 function ArrayPonzi() {

12 owner = msg. sender;
13 }

14 function() {

15 if (msg. value < 1 ether) throw ;
16

17 users[users.length] = User({ addr: msg. sender ,

18 amount : msg. value });
19 totalUsers += 1;

20 owner. send(msg. value /10);
21

22 while (this. balance > users[paying]. amount * 2) {
23 users[paying]. addr. send(users[paying]. amount * 2);
24 paying += 1;

25 }
26 }

27 }

Fig. 2: An array-based pyramid scheme.

1 contract TreePonzi {

2

3 struct User {

4 address inviter ;
5 address itself ;
6 }

7 mapping (address =>User) tree;
8 address top;

9

10 function TreePonzi() {

11 tree[msg. sender] =
12 User ({ itself : msg. sender ,
13 inviter : msg. sender});

14 top = msg. sender;
15 }

16 function enter(address inviter) public {

17 if ((msg. value < 1 ether) ||
18 (tree[msg. sender]. inviter != 0x0) ||

19 (tree[inviter]. inviter == 0x0)) throw ;
20

21 tree[msg. sender] = User({ itself : msg. sender ,

22 inviter : inviter });
23 address current = inviter ;

24 uint amount = msg. value ;
25 while (next != top) {

26 amount = amount /2;
27 current . send(amount);
28 current = tree[current]. inviter ;

29 }
30 current . send(amount);

31 }}

Fig. 3: A tree-based pyramid scheme.

1 contract HandoverPonzi {

2 address owner;
3 address public user;

4 uint public

5 price = 100 finney;
6

7 function HandoverPonzi() {
8 owner = msg. sender;

9 user = msg. sender;
10 }

11 function() {

12 if (msg. value < price) throw ;
13 user. send (msg. value * 9 / 10);

14 user = msg. address ;
15 price = price * 3 / 2;
16 }

17

18 function sweepCommission(uint amount) {

19 if (msg. sender == owner) owner . send(amount);
20 }}

Fig. 4: An handover scheme.

1 contract WaterfallPonzi {
2

3 struct User {
4 address addr;

5 uint amount ;
6 }
7

8 User[] public users;
9

10 uint pos = 0;
11 uint public totalUsers=0;

12 address public owner;
13 uint public fees = 0;
14

15 function WaterfallPonzi() {
16 owner = msg. sender;

17 }

18 function() {
19 if (msg. value < 1 ether) throw ;

20

21 users[totalUsers] = User({ addr: msg. sender ,

22 amount : msg. value });
23 totalUsers += 1;
24 fees = mgs. value / 10;

25 owner. send (fees);
26

27 pos=0;
28 while (this .balance >= users [pos]. amount *

6/100 && pos <totalUsers){
29 users [pos]. etherAddress. send

30 (users[pos]. amount * 6/100) ;

31 pos += 1;
32 }}}

Fig. 5: A waterfall scheme.

4.2 Security issues

Although one of the main selling points of “smart” Ponzi schemes is that the
presence (and immutability) of source code makes them “reliable”, our analysis
has revealed several vulnerabilities, which undermine their trustworthiness. Some
vulnerabilities are caused by poor programming skills, while some others are
intentional: either should discourage a user to join such a scheme. However, to
transmit a feeling of security, contract owners shelter themself behind the motto
that the code is publicly accessible so eveyone can read it and decide whether or
not to join the scheme. Since bugs are often missed even by their own creators, it
is hard to imagine that the average user can read a contract and fully understand
what it really does and what harms can be hidden behind.

Among the vulnerabilities caused by poor knowledge of the Solidity program-
ming language, there is the bad management of the operation of paying user. As
already noted in [2, 8], if the send primitive (used in Solidity to transfer ether)
fails, it returns an error code: if a contract does not check this error, it cannot
acknowledge that there has been a problem. So, in case of errors during the send,
the money remains within the contract, while the user will never get it. Notably,
the large majority of the contracts we have analyzed do not check that the ether
transfer succeeds. Their code is similar to the one in Figure 2 (line 19), Figure 3
(line 17), and Figure 4 (line 14). This vulnerability is known, at least, since the
February 11st 2016, when the owner of KingOfTheEtherThrone realized that
there was too much ether left on his contract19.

Even when the return code of the send is checked, a careless managing can
badly backfire, exposing the scheme to Denial-of-Service attacks and blackmail-
ing. An example is given by scheme HYIP (see Figure 6), whose structure is
similar to waterfall schemes. Here, investors are kept in an array, and they are
all paid at the end of the day. The scheme checks that each send is successful:
in case of errors, it throws an exception. Note that any error in one of the send

(lines 25 and 31) will revert all the ether transfers. Errors may happen, for in-
stance, for the following reasons: (i) the array of investors grows so long that its
reading causes an out of gas exception; (ii) the balance of the contract finishes
somehow in the middle of the for command (line 28), having not paid all the in-
vestors; (iii) one of the investor is a contract, whose fallback raises an exception.
Indeed, exploiting the last scenario, an attacker could forge a contract with a fall-
back which always throws (see e.g., Mallory in Figure 6). The attacker contract
sends a fraction of ether to HYIP to enter in the array of investors; when HYIP

tries to send her the payout, the invoked fallback throws an exception. Note that
there is no way to cancel Mallory from the investors array, hence HYIP is stuck
and its balance frozen forever. At this point, the attacker could blackmail HYIP,
asking for money to stop the attack (via the function stopAttack, line 21).

Although the unchecked send is the most widespread issue, there are other
bugs which affect one or more contracts. For instance, Government20, has a
notorious bug, which has been found, so far, only in that contract. Government

19 Source: www.reddit.com/r/ethereum/comments/44h1m1/
20 Government is often called “GovernMental” or “PonziGovernMental” on web forums.

https://www.reddit.com/r/ethereum/comments/44h1m1/

1 contract HYIP {

2 uint constant INTERVAL = 1 days;
3

4 struct Investor {

5 address addr;
6 uint amount ;

7 }
8 Investor [] private investors;

9 address private owner;
10 uint private paidTime ;
11

12 function HYIP () {
13 owner = msg. sender;

14 paidTime = now;
15 }
16

17 function() payable {
18 investors.push(Investor (msg. sender , msg.

value));
19 }

20

21 function performPayouts() {
22 if(paidTime + INTERVAL > now) throw ;

23

24 uint fees = (this.balance * 37) /1000;

25 if (! owner . send(fees)) throw ;
26

27 uint idx;

28 for (idx = investors.length ; idx -- > 0;) {
29 uint payout =

30 (investors[idx]. amount * 33) / 1000;
31 if (! investors[idx]. addr. send (payout))

32 throw ;
33 }
34 paidTime += INTERVAL ;

35 }}

1 contract Mallory {

2

3 address victim = 0x23...;
4 address private owner ;

5 bool private attack = true;
6

7 // to be created with
8 //1wei of balance

9 function Mallory () {
10 owner = msg. sender;
11 }

12

13 function() payable {

14 if (attack) throw ;
15 }
16

17 function invest () {
18 victim . send (1 wei);

19 }
20

21 function stopAttack(){
22 if (msg. sender == owner)
23 attack = false;

24 }
25 }

Fig. 6: On the left, a snippet of the code of HYIP, a scheme vulnerable to Denial-
of-Service attacks. On the right, the corresponding attack.

is an array-based Ponzi scheme with a quirk: in addition to the usual way to get
back money if enough users keep investing, someone can win a jackpot if no one
invests after him for 12 hours. The list of users is kept in an array, and when
the 12 hours have expired, the array is cleared. However, the command used to
clear the array had to scan each of its elements. At a certain point, the array
grew so long that clearing every element required too much gas — more than
the maximum allowed per single transaction. Hence, the contract got stuck, with
the legit jackpot winner unable to claim her price.

Another bug concerns the constructor function, which is executed just once
at creation time (usually, to initialize the owner of the contract with the address
msg.sender of the sender of the first transaction). The constructor must have
the same name of the contract, but we found four contracts where it has a
wrong name: GoodFellas, Rubixi, FirePonzi, and StackyGame. Figure 7 shows
an extract from the first two. On the left, Goodfellas has a function called
LittleCactus (line 5) which sets the owner, and then the owner is sent the fees
collected by the schema (line 11). On the right, Rubixi has a function called

1 contract Goodfellas {

2

3 address public owner;
4

5 function LittleCactus() {
6 owner = msg. sender;

7 }
8

9 function enter () {
10 ...
11 owner. send (collectedFees);

12 ...
13 }

1 contract Rubixi {

2 address private creator ;
3

4 // Sets creator

5 function DynamicPyramid() {
6 creator = msg. sender;

7 }
8 // Fee functions for creator

9 function collectAllFees() {
10 if (collectedFees == 0) throw ;
11 creator . send(collectedFees);

12 collectedFees = 0;
13 }

Fig. 7: Constructor bug in Goodfellas and Rubixi.

DynamicPyramid (line 5) which sets the owner (called creator), and then there
is a function collectAllFees which can be invoked to send the fees to the owner
(line 11). The effect of giving the wrong name to a function which is meant to be
a constructor is harmful: the function does not qualify to be a contructor at all,
and it can be invoked by anyone at anytime, hence changing the owner address.
We can see from the transaction list that when users discovered the bug, they
started to invoke these functions to obtain the ownership and redeem the fees.

The contract PiggyBank contains two bugs which are extremely profitable
for its owner21. According to the way PiggyBank is advertised22, this contract
is a waterfall scheme, where the owner keeps 3% fees, and each user receives 3%
of their investment every time a new user joins the scheme. According to the
advertisement, the command to compute the owner fees should be like:

fees = amount / 33

Actually, in the source code, the fees are computed as:

fees += amount / 33

The difference is subtle to spot, but relevant. With the second command, the
fees grow at each deposit, and the consequence is that the owner share sub-
tracted to each investment steadily increases. According to etherscan.io, the
fees calculated for the seventh deposit exceeded the deposit itself.

The second bug of PiggyBank is related to the global variable used to scan the
array, named pos in Figure 5. In PiggyBank, this variable is not reset, unlike in
line 25. Hence, at each deposit, the iteration does not go from the first user to the
last one, but from the last to the last itself. Hence, only one user at each deposit
is paid, and only once. Notably, the conjunction of these two bugs resulted in
giving (almost) all the money invested to the owner. Were only the second bug
present, the contract would have kept accumulating a lot of unredeemable ether.

21 Source: www.reddit/piggybank earn eth forever
22 Source: bitcointalk.org/topic=1410587.0

https://www.reddit.com/r/ethereum/comments/4br0za/piggybank_earn_eth_forever/
https://bitcointalk.org/index.php?topic=1410587.0

1 function init () private{

2 // Ensures only tx with 1 ether
3 if (msg. value < 1 ether) {
4 collectedFees += msg. value ;

5 return;
6 }...

1 function changeMultiplier(uint _mult){

2 if (msg. sender != owner) throw ;
3 if (_mult > 300 || _mult < 120) throw ;
4 pyramidMultiplier = _mult ;

5 }
6

7 function changeFeePercentage(uint _fee){
8 if (msg. sender != owner) throw ;

9 if (_fee > 10) throw ;
10 feePercent = _fee;
11 }

Fig. 8: On the left, rejecting enrollment without returning the fee in Tomeka. On
the right, the function used by the owner of TheGame to set multipliers and fees.

1 function Emergency() {
2 if (owner != msg. sender) throw ;

3 if (balance !=0){
4 owner. send (balance);

5 balance =0;
6 }
7 }

1 function restart () {
2 if (msg. sender== mainPlayer) {

3 mainPlayer. send(address (this).balance);
4 selfdestruct(mainPlayer);

5 }
6 }

Fig. 9: On the left, withdrawing all the balance in EthVentures1. On the right,
a termination function in TheGame.

Among the vulnerabilities caused by intentional programming choices, we
have some that can harm the users. For instance, some contracts have a minimum
fee to enter the scheme. If the fee is not met, the user is not allowed to join the
scheme, and the sent amount should be returned. However, some contracts (e.g.,
DynamicPyramid, GreedPit, NanoPyramid, Tomeka), choose to keep the amount
by themselves, without returning it to the user (see e.g. Figure 8 left). This is
a questionable choice, expecially when the minimum amount is quite relevant
(e.g., in Tomeka the minimum is 1 ETH).

Another feature that could be used against users is the presence of functions
which allow the owner to do special operations which can stray the contract
from its expected behaviour. One example is DynamicPyramid, where the owner
can change the interest rate, and also his fee shares (see Figure 8, right). A
yet more harmful issue is present in those contracts (e.g., Doubler3, TheGame,
ProtectTheCastle, DepositHolder, GreedPit, BestBankWithInterest, all the
family of EthVentures) which allow the owner to withdraw all the money in the
contract (see Figure 9, left), and in some cases, also to terminate the contract
(see Figure 9, right). In both cases, withdrawing the accumulated money from
the contract balance will have the effects of slowing down the process of repay
users. Moreover, if the contract is also terminated, the users will have no chance
to see their money again.

Note that all the array-based schemes can be easily shut down with a simple
trick. To illustrate it, we consider the Doubler scheme, which sends back the
amount multiplied by two. To perform the attack, Oscar needs to invest a large

amount of ether (say, 100ETH). Oscar first sends 100ETH to the contract, and
then additional 100ETH (plus some fees)23. Upon receiving the second slot, the
scheme will pay all the 200ETH back to Oscar, so he does not lose anything.
From that moment on, all the subsequent investments will be gathered to pay
back the second 100ETH of Oscar. If the average invested amount is smaller
than 100ETH , a large number of investors (and a lot of time) will be needed to
pay back Oscar: hence, the scheme will not be able to pay out other investors
for a while. Since the success of these schemes is based on the fact that they are
fast to pay out, it is likely that with this attack, the scheme will be abandoned.

This attack can be performed at any time to disincentivize users to join
a Ponzi scheme24. If performed at an early stage of the lifecicle of the Ponzi
scheme, the attack succeeds with negligible money loss; otherwise, some money
has to be given to repay previous investors.

4.3 Are “smart” Ponzi schemes frauds or social games?

Many creators of Ponzi schemes promote them as mere “social games”, in con-
trast with the fact that Ponzi schemes are illegal in many countries (actually,
Ethereum lies in a grey zone of jurisdiction, where it is unclear which laws ap-
ply). By analysing the websites of many of the Ponzi schemes in our collection,
we took the view that the way they are advertised is fraudulent, since users
are mislead about the actual probability they have of getting their investment
back [6]. In many cases, the possibility of receiving a payout is presented as
extremely likely, while we will see later on that it is not so.

For instance, the array-based Ponzi scheme DianaEthereum-x1.8 is intro-
duced as follows25:

“Hello! My name is Diana. I attract good luck.[...] You should send me ether
and you’ll get your money multiplied by 1.8.”

With these words, it seems that the money will be sent back for sure to everyone.
However, as shown in Table 2, only 83 users out of 125 were paid back, for a
total of 63 100USD .

Some schemes are presented as “high-yield” investment programs. For in-
stance, EthStick is advertised as follows26:

“The mechanics are quite simple: deposit up to 5ETH and get a 20% re-
turn when enough people deposit after you (the settings can be changed to
adapt to the trends, but only within defined limits).[...] I believe it’s a decent
investment opportunity, and I’m reinvesting part of my earnings myself, as
you can see on the ranking. ”

23 To guarantee the atomicity of the sends, Oscar will use a contract to send the money.
24 As far as we know, this attack has been performed only on contract Quadrupler.

See etherscan and bitcointalk for details.
25 Source: bitcointalk.org/index.php?topic=1402534.0
26 Source: reddit.com/etherstick

https://etherscan.io/address/0xa379bbdd0af814502eb9b38d475c7fa7411bb4ec
https://bitcointalk.org/index.php?topic=1426329.0
https://bitcointalk.org/index.php?topic=1402534.0
https://www.reddit.com/r/ethtrader/comments/4ds0a5/ethstick_a_satirical_yet_profitable_ponzi_game/

Here, the owner is fair admitting that settings can be changed, but actually he
means that he can change (raise) the fees he is getting, and also that he can
change (lower) the multiplier factor which calculates how much is to be given
back to each user. Here, users joining the scheme have to trust him to behave
correctly, hence failing the main purpose of a smart contract — not having to
trust any third party.

As another example, TheSimpleGame is presented as follows27:

“Automatically you get what you invested +25% additional ETH. [...] You
get your coins after other people deposit, so the more people are playing the
game, the faster you are getting your coins.”

Here, it seems that the only drawback is the possibility for the game to slow down,
while the possibility of never giving the money back is not even mentioned.

To give a semblance of trustworthiness, the contract TheGreedPit is intro-
duced as follows28:

“Tired of copy paste Ponzi games? Me too. This one has gone through weeks
of brainstorming and tweaking to provide a solid, enjoyable (and hopefully
profitable) experience.”

However, this one too is an array-based Ponzi scheme, which has paid out only
13 users of 61, receiving 10 418USD (see goo.gl/CvdxBp).

As a last example of unfulfilled promises, we show the advertising of Rubixi29,
the contract with the constructor bug highlighted in Section 4.2:

“Hello! My name is Rubixi! I am a new and verified pyramid smart con-
tract running on the Ethereum blockchain. When you send me 1ETH, I will
multiply the amount and send it back to your address when the balance is
sufficient. My multiplier factor is dynamic thus my payouts are accelerated
and guaranteed for months to come.”

Rubixi promised to last long and to give lots of payout; however, upon a creation
date on 14th of March 2016, the last deposit was done on the 9th of April 2016.
Then, the bug was discovered, and no one has sent money any longer. Now, the
contract has a balance of 4ETH, (being worth 360.29USD on the 15th of May
2017) and it has paid out only 23 users of 98 (see Table 2).

Excluding the unfortunate (but extremely likely) case of a bug which causes
the users to lose interest and trust the scheme, we see from goo.gl/CvdxBp that
the trend is similar for all the contracts in our collection: the amount of users
actually paid out is far smaller than what one might expect according to the
advertisement. For instance, DynamicPyramid, the most successful in term of
money raised, has paid only 51 users out of 174. EthereumPyramid, the first
contract by number of users, has paid only 124 out of 326; ZeroPonzi, a scheme
which subtracts no fees from the invested money, has paid 28 users out of 46.

27 Source: bitcointalk.org/index.php?topic=1424959.0
28 Source: bitcointalk.org/index.php?topic=1415365.0
29 Source: bitcointalk.org/index.php?topic=1400536.0

http://goo.gl/CvdxBp
http://goo.gl/CvdxBp
https://bitcointalk.org/index.php?topic=1424959.0
https://bitcointalk.org/index.php?topic=1415365.0
https://bitcointalk.org/index.php?topic=1400536.0

This behaviour is not surprising. To clarify it, consider a simple array-based
scheme which doubles the received money, and accepts entry tolls of exactly
1ETH . In this scheme, there are no fees: the owner just gets the first 1ETH sent
to the contract. Assume that the first user U1 sends 1ETH . His money is given
to the owner, and so it is removed from the contract. The balance is 0. For U1

to see back his 1ETH plus the other one promised, he must wait for two others
users U2 and U3 to join the scheme, by sending 1ETH each.

In Figure 10, each node represents one user, and its children are the users
needed to redeem his share. So, U2 must wait for U1 to redeem his share, and
then he must wait for U3 and U4 to send money (hence he has to wait a total
of 3 users). User U3, who is the last one on his level, must wait that all the
subsequent level is full, which gives a total of 4 users to wait. In general, a user
Uk at level i must wait that all those users on the previous level have redeemed
their share (e.g., U6 and U7), and then he must wait for all the ones on his level
that have arrived before him. If Uk is the first node at level i, he must wait for
all the other users at level i to join, plus the two ones needed to redeem his
share. This needs 2i − 1 + 2 users. Since the amount of nodes up to level i − 1
is 2i − 1 and since Uk is the first at level i, we can say that k = 2i and hence, in
the best case, Uk must wait k+ 1 users. Instead, if Uk is the last user at level i,
he must wait for all the other users at level i+ 1. This needs 2i+1 users. Since,
k = 2i+1

− 1, in this case Uk must wait for k + 1 users. For instance, a user
joining this scheme in position, say, 50th will have to wait exactly 51 other users
to join. In general, the first ones to join have better chances to see their payout.

Although this simple example considers a scheme with no fees and a fixed
amount of money from each user, the general considerations about the chances
of redeeming one’s investment remain true for all the contracts in our collection.

In the contracts which pose no limit on howmuch one can invest, an unusually
high investment could make the contract stop sending payouts for a lot of time,
while accumulating the payout, thus discouraging new users to join. This is
the case, e.g., of Doubler2, an array-based scheme which doubles the invested
amount, and has 10% fee and a minimum entry amount of 1ETH . However,
the contract has paid out only up to the 68th user out of 210. Looking at the
list of its transactions, we see that the most common toll is of 1ETH-5ETH
but here and there, there are some higher ones (up to 50ETH) which make the
system very slow to fill up a level. In general, the higher the promised profit (i.e.,
MultiplyX10), the slower the scheme is.

We now analyze PiggyBank and TreasureChest, the two waterfall schemes
in our collection. As we have seen in Section 4.2, PiggyBank was flawed, and
hence it was played only for a couple of days. However, this is a lot of time,
considering that no user received the promised payout, even not the first ones to
join the scheme. Probably, the users were fooled by the owner, who declared his
skill in programming and testing, and in the fact that, in other Ponzi schemes,
one had to wait a bit to see the first payouts30:

30 Source: bitcointalk.org/index.php?topic=1410587.80

https://bitcointalk.org/index.php?topic=1410587.80

1

2

4

... ...

5

... ...

3

6

k

7

Fig. 10: Payout tree for a scheme which doubles the invested money and accepts
exactly 1ETH from each user. The first ether is given to the owner.

“[...] A lot of other games are flawed [...] This is not the case with PIGGY-
BANK, I have tested the code rigurously, and it works perfectly, the balance
will be paid out after a while.”

Having discovered the bugs, someone created an improved version of it. called
TreasureChest. This contract was advertised as follows31

“TreasureChest: Earn from Ethereum forever – TreasureChest is a new game
[...] where you can earn a stable 6% profit instantly and forever.[...] You get
paid every single time a new investor joins or invests again. After 5 investor,
you will earn 30% profit. After 50 investor, you will earn 300% profit. [...] ”

However, having fixed the bugs did not make the promises more reliable. Indeed,
unlike array-based and tree-based schemes, in a waterfall scheme only the first
users in the array earn money at each new investment. Consider e.g. the case
where each user sends 1ETH, and there are no fees for the owner. Then, according
to the advertisement, each users should receive 0.06ETH each time someone
joins, but this amount can be sent only to 16 users, since after that there is no
money left. Hence, in this situation, only the first 16 users would profit from new
deposits. Also, assuming that one is among the first 16 users, then she must wait
at least 16 other deposits before having, at least, repaid her initial investment.
In TreasureChest the amount for the initial deposit was not fixed, so at each
investment the index i such that the i-th user was paid changed. This might have
made some of the later users believe that the advertised promises were somehow
trustworthy.

31 Sources: bitcointalk.org/index.php?topic=1413721.msg14326777#msg14326777

and www.docdroid.net/treasurechest.pdf.html

https://bitcointalk.org/index.php?topic=1413721.msg14326777#msg14326777
https://www.docdroid.net/uvX6n40/ethereum-multiplier-treasurechest.pdf.html

5 Impact of Ponzi schemes

In Table 1 we draw some general statistics about all the 191 schemes obtained
from our collection phase. Full data about the collected Ponzi schemes, including
their unique addresses, are reported online at goo.gl/CvdxBp. Table 2 shows the
first 10 contracts in our list, ordered by total amount of invested ether.

Table 1: Statistics about Ponzi schemes on Ethereum.

#Trans. ETH USD Users

Kind # Schemes in out in out in out paying paid

Public 137 12773 7995 42 367 41 861 411 919 412 903 2103 1076
Hidden 54 5004 305 1189 1029 6842 5920 201 123
Total 191 17777 8300 43 556 42 890 418 761 418 823 2304 1199

The leftmost column in Table 1 contains the kind of contracts: public are
those collected through the methodology in Section 3.1, while hidden contracts
have been collected using the technique described in Section 3.2. The second
column contains the number of schemes of the given kind. The other columns
report the number of incoming and outcoming transactions, and the overall
transferred value, both in ETH and in USD (rounded to an integer). To convert
the amount of each transaction to USD , we use the average exchange rate on the
day of the transaction, obtained from etherchain.org32. Note that the value
transferred through a transaction has a different meaning, according to whether
the transaction is external or internal:

– external transactions are created by users, to invoke contract functions.
These transactions can transfer some ether from a user to the called contract.
Hence, this amount of ether is part of the “incoming” value of the contract.

– internal transactions are triggered by the execution of some external trans-
actions. The actual meaning of an an internal transaction related to a Ponzi
scheme depends on its fields “from” an “to”. If the “from” address is the one
of the contract under observation, then the value transferred by the trans-
action constitutes the outgoing payout from the scheme (possibly, part of
this payout goes to contract owner). Instead, if the “from” address is that of
another contract, then the transaction sends money to that contract to the
one under observation (which is referred in the “to” field of the transaction).
This may happen because, instead of sending her money directly to a Ponzi
scheme, a user exploits another contract (typically, a wallet contract).

Note that, similarly to [17] for Ponzi schemes on Bitcoin, also in Ethereum we
cannot precisely quantify the profit of scammers, since we do not know how to

32 Source: etherchain.org/api/statistics/price

http://goo.gl/CvdxBp
https://etherchain.org
https://etherchain.org/api/statistics/price

Table 2: Top-10 Ponzi schemes by amount of invested ether.

#Trans. ETH USD Users Transactions

Contract name in out in out in out paying paid first last

DynamicPyramid 418 143 7474 7437 83230 82704 174 51 2016-02-23 2016-11-12
DianaEthereum-x1.8 277 166 5307 5303 63100 63100 125 83 2016-03-08 2017-04-09
Doubler2 380 161 4858 4825 25432 25306 210 68 2016-02-16 2016-08-10
ZeroPonzi 626 499 4490 4489 50867 50857 46 28 2016-04-04 2016-04-06
Doubler 151 53 2977 2950 14251 13971 91 16 2016-02-19 2017-04-12
Government 723 846 2938 2938 36311 42396 40 27 2016-03-08 2017-03-20
Rubixi 624 61 1367 1363 16715 16593 98 23 2016-03-14 2016-10-14
ProtectTheCastle1 765 757 1144 1138 12737 12761 98 65 2016-03-20 2017-01-29
EthereumPyramid 965 338 986 917 4929 5178 326 124 2015-09-07 2016-08-28

separate, in internal transactions, the money sent to legit users from the money
sent to scammers. A rough over-approximation of the profit of scammers is the
value exchanged through external transactions.

The columns “Paying users” and “Paid users” in Table 1 indicate, respec-
tively, the number of users entered in the scheme (i.e., the distinct addresses that
send money to the contract), and the number of users that have subsequently
received a payment from the contract.

Measuring the impact of Ponzi schemes. The data in Table 1 give a first
measure of the impact of Ponzi schemes on Ethereum. First, we compare the
overall number of transactions related to Ponzi schemes against the transactions
in the whole Ethereum blockchain. To this purpose, we count the number of
transactions from July 30, 2015 (the date of the origin block in Ethereum) to
March 6, 2017 (the date when we extracted the transactions), obtaining a total
of 16082269 transactions. Since we counted 17777 transactions related to Ponzi
schemes, we have that Ponzi schemes only constitute ∼ 0.05% of the transactions
in the Ethereum blockchain.

We measure the economic impact of Ponzi schemes, by quantifying the overall
value in USD exchanged through them. We choose USD , rather then ETH , as a
unit of measure because the exchange rate of ETH has been highly volatile, rang-
ing from a minimum of ∼ 0.5USD in October 2015 to a maximum of ∼ 100USD
in May 2017 (see Figure 11). Overall, we observe that the Ponzi schemes in our
list collected 418 761 USD from 2304 distinct users.

Note that the difference between incoming and outgoing ETH is non-negative,
because contracts cannot send more ether than what they receive. Instead, the
difference between incoming and outcoming USD is positive. This is not a con-
tradiction: it can be explained by the fact that the exchange rate between ETH
and USD has varied over time, as depicted in Figure 11. For instance, 1USD de-
posited to a contract in December 2015 (when the exchange was 1USD ∼ 1ETH)
and withdrawn in May 2017, resulted in a gain of ∼100USD.

0
8
.
2
0
1
5

0
9
.
2
0
1
5

1
0
.
2
0
1
5

1
1
.
2
0
1
5

1
2
.
2
0
1
5

0
1
.
2
0
1
6

0
2
.
2
0
1
6

0
3
.
2
0
1
6

0
4
.
2
0
1
6

0
5
.
2
0
1
6

0
6
.
2
0
1
6

0
7
.
2
0
1
6

0
8
.
2
0
1
6

0
9
.
2
0
1
6

1
0
.
2
0
1
6

1
1
.
2
0
1
6

1
2
.
2
0
1
6

0
1
.
2
0
1
7

0
2
.
2
0
1
7

0
3
.
2
0
1
7

0
4
.
2
0
1
7

0
5
.
2
0
1
7

20

40

60

80

100

Date

V
a
lu
e
(U

S
D
)

Fig. 11: Ether/USD exchange rate.

6 Measuring the scheme creation and lifetime

We now study the lifetime, measured as the number of days from the first to the
last transaction, of all the Ponzi schemes in our collection. Figure 12 underlines
the short lifetime that characterizes Ponzi schemes (the average is 104 days). The
solid line also shows that ∼ 75% of public Ponzi schemes have a lifetime of 0
days. Basically, this means that they were deployed on the Ethereum blockchain,
and in many cases advertised by forums or dedicated web sites, but they did not
manage to attract any users. The short lifetime reflects the typical behavior of
pyramidal schemes, characterized by an high number of transactions operated
in a short time frame (usually between the beginning and the middle part of its
lifetime), before the scheme is abandoned.

1 20 40 60 80 100 120

0

100

200

300

D
a
y
s

Lifetime public (avg = 104)

Lifetime hidden (avg = 108)

Fig. 12: Lifetime of Ponzi schemes. On the x-axis, the number of contracts; on
the y-axis, their lifetime measured in days.

Figure 13 shows how many Ponzi schemes have been created over time. We
see a peak in April 2016, with 87 new public Ponzi schemes, and 71 new hidden
schemes. After this first wave of creations, the situation has settled, with an

average of ∼ 3 new public schemes per month. We conjecture that the fall in the
number of creations of Ponzi schemes is somehow related to the attack to the
DAO, a contract implementing a crowd-funding platform, which raised ∼ $150M
before being attacked on June 18th, 201633. An attacker, who exploited a bug
in the DAO contract34 managed to put ∼ $60M under her control, before the
hard-fork of the blockchain nullified the effects of the transactions involved in the
attack. This event had several side effects on Ethereum, making its capitalization
fall in the days following the attack, and in general discrediting its reputation
of trustworthy platform35. We believe that the second wave of Ponzi schemes on
Ethereum will be harder to identify, as scammers will devise less explicit ways
of attracting and cheating their victims. We discuss in Section 10 some new
potential Ethereum-based frauds.

0
9
.2
0
1
5

0
2
.2
0
1
6

0
3
.2
0
1
6

0
4
.2
0
1
6

0
5
.2
0
1
6

0
6
.2
0
1
6

0
7
.2
0
1
6

0
8
.2
0
1
6

0
9
.2
0
1
6

1
1
.2
0
1
6

1
2
.2
0
1
6

0
1
.2
0
1
7

0
2
.2
0
1
7

0

20

40

60

80

Date

N
u
m
b
e
r
o
f
c
o
n
tr
a
c
ts

Public

Hidden

Fig. 13: Creation of Ponzi schemes.

7 Measuring gains and losses

We now study the distribution of gains and losses among users. We expect to
observe the common pyramidal pattern of Ponzi schemes, where only a few users
earn money, while the vast majority of users lose their investment. This kind of
observation requires to study the pattern of gains and losses individually for each
contract. To save space, we restrict our analysis to a small sample of contracts.

33 www.coindesk.com/understanding-dao-hack-journalists/
34 hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit
35 https://bitcoinmagazine.com/articles/ethereum-s-dao-forking-crisis-the-bitcoin-perspective-1467404

http://www.coindesk.com/understanding-dao-hack-journalists/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit
https://bitcoinmagazine.com/articles/ethereum-s-dao-forking-crisis-the-bitcoin-perspective-1467404395/

135 150 165

0

2,000

4,000

DynamicPyramid

30 35 40

0

10,000

20,000

Government

300 310 320 328

0

500

1,000

EthereumPyramid

70 80 90 98

0

1,000

2,000

ProtectTheCastle1

180 190 200 210

0

1,000

2,000

Doubler2

20 40 60 80 100

0

20

40

Etheramid1

Fig. 14: Gains and Losses by users. On the x-axis, the number of users; on the
y-axis, the USD gained (blue solid line) and lost (red dashed line) by each user.

Figure 14 shows the gains and losses of users. On the x-axis we have a point
for each user involved in the scheme; the y-axis represents the gains (solid blue
line) and losses (dashed red line), measured in USD and sorted in ascending
order. In some diagrams we prune the left part of the curves, to highlight the
characteristic behaviour of Ponzi schemes shown in their tail. In all diagrams, the
left part shows a majority of users whose gains and losses are close to zero. For
instance, the curves in the diagram for EthereumPyramid show that ∼ 300 users
have neither gained nor lost almost anything; the solid line shows, in particular,
shows that one user has gained more than 1000USD (we suspect it to be the
contract owner); the dashed line shows that 8 users have lost up to ∼ 600USD.

We can observe that all the diagrams in Figure 14 share a similar pattern:
as the payoff increases, the number of users who gain that payoff decreases; in
any case, the users who lose money are more than those who gain.

8 Measuring the volume of payments

In this section we study how Ponzi schemes perform over time. Figure 15 shows
the daily volume of payments (measured in USD) of all the 191 Ponzi schemes
in our collection. The x-axis represents time, and the y-axis gives the volume of
money transferred (measured in USD). The red dashed line represents money
sent by users to the schemes, while the blue solid line represents money sent
by the schemes to users. The diagram clearly reports an equilibrium between
outcoming and incoming flows, meaning that most of the money invested in
the schemes are redistributed to users. However, the distribution of money fol-
lows the pattern of inequality that characterizes Ponzi schemes, as highlighted
in Section 7, and further discussed later on in Section 9.

From Figure 15 we observe that most value was exchanged in the period
from February to May 2016, with three peaks between March and April 2016.
It is plausible that the fall of activity after April 2016 is a consequence of the
analogous drop in the creation of new Ponzi schemes, witnessed in Figure 13.

2
0
1
6
.
0
2
.
1
9

2
0
1
6
.
0
3
.
1
1

2
0
1
6
.
0
3
.
3
1

2
0
1
6
.
0
4
.
0
4

2
0
1
6
.
0
6
.
1
7

0

10,000

20,000

30,000

40,000

50,000

60,000 Incoming USD

Outcoming USD

Fig. 15: Daily volume of transactions (complete set of 191 Ponzi schemes).

We now measure the volume of transactions pointwise, on a sample of the
most representative schemes. Each diagram in Figure 16 shows the money flow
(in and out) of a single contract: the red dashed lines represent money sent
to the scheme (measured in USD), while the blue solid lines represent payouts
sent by the scheme to users. The x-axis represents time: we consider the total
incoming/outgoing money per day.

In the diagram for DynamicPyramid, we see that the most of the incoming
flow happened on the 11st of March. Indeed, according to the list of transactions
on etherscan.io, the total investments in that day alone amount to almost
60 000USD . We see that the blue and red flows in that day almost overlap,
meaning that with such a great balance the contract was able to pay out many
of users. However, after that single peculiar day, users almost stopped sending
ether, and so did the contract. Now the contract has a balance of 37ETH , and
it is waiting to pay out the 52nd user of 174.

The diagram of Government is peculiar, due to a bug which affected it (al-
ready discussed in Section 4.2). Periodically, this contract needs to clear the
array which records the list of users that joined the scheme: however, from a
certain point performing this operation would have required more gas than the
maximum allowed for a single transaction. Consequently, several attempts to
clear the array and to redeem the jackpot have failed with an “out-of-gas” ex-
ception. Exactly in the date of the first hard-fork (on the 17th of June), which
also raised the gas limit36, we observe an internal transaction of 22 699USD ,
used to withdraw the jackpot and correctly clear the array.

The diagram for EthereumPyramid shows that the investments were made
basically in two slots of time: one around the last days of February and another
on a single day, the 1st of April. From etherscan.io we see that all those later
investments were strangely made by the owner: they were almost 50 in a single
day. We see that the inflow and outflow almost overlap. EthereumPyramid asks
to all users exactly 1ETH and triples the invested money. With such a fixed
toll, every three users one is paid out, and the outflows is smooth. However, we
see that there is a peak in the outflow around the 26th of June. That day, a
single payment has been made of 90ETH . After inspecting the code and the set
of transactions, we are inclined to say that it is the owner withdrawing her fees.

From the diagram of Etheramid we see that there is perfect overlap of inflow
and outflow: recall that it is a tree-based Ponzi, and that everything which
goes in is immediately sent to the users’s ancestors. There is no need to delay
payments waiting for the payout to reach its quote, like in array-based schemes
(for instance, see the diagram of Doubler2).

9 Measuring payment inequality

Our last analysis measures the inequality in the distribution of investments along
the schemes in our sample. To this purpose we use Lorenz curves (Figures 17
and 18) and Gini coefficients (Figure 19), two standard graphical representations
of the distribution of income or wealth.

The Lorenz curves represents users on the x-axis (in percentage), and on
the y-axis the percentage of payments into (Figure 17) and from (Figure 18) the
Ponzi scheme. A diagonal line at 45 degrees from the two extremes of the diagram
(leftmost-bottomost to rightmost-topmost) represents the perfect equality: i.e.,

36 blog.ethereum.org/2016/07/20/hard-fork-completed/

http://etherscan.io/address/0xa9e4e3b1da2462752aea980698c335e70e9ab26c
https://blog.ethereum.org/2016/07/20/hard-fork-completed/

2016-03-11 2016-04-10 2016-05-10

0

20,000

40,000

DynamicPyramid

2016-03-10 2016-06-17

0

10,000

20,000

Government

2016-02-27 2016-04-01 2016-06-24

0

500

1,000
EthereumPyramid

2016-04-21 2016-04-30

0

200

400

600

Etheramid1

2016-03-01 2016-04-01 2016-05-01 2016-06-01

0

2,000

4,000

6,000

8,000 Doubler2

Fig. 16: Volume of payments into and out Ponzi schemes, by time. On the x-axis,
the dates of transactions; on the y-axis, the USD sent to (blue solid line) and
from (red dashed line) the contract.

for all x ∈ [0, 100], the x% of the whole population of users has invested/received
the x% of the total income of the scheme. Instead, the perfect disequality is
represented by the (discontinuous) function that has value 0 for all x < 100, and
value 100 for x = 100: this means that a single user has invested/received the
total sum in the scheme.

We can observe in Figure 17 that Etheramid1 is quite close to perfect equal-
ity, while the most unbalanced schemes in our sample are Government and
ProtectTheCastle, where 10% of victims have invested more than 90% of the
money. The Lorenz curves of these two schemes are quite close to the overall
curve of Bitcoin-only Ponzi schemes in [16]. Overall, the closer is a curve to the
one which represents perfect inequality, the more a Ponzi scheme benefits from
“big fishes” who invest large amounts of money in the scheme; dually, if the
curve is close to the one which represents perfect equality, the scheme benefits
from a large population of victims who invest a small amount of money.

From Figure 18 we observe that the distribution of payouts is in general more
iniquitous than that of investments, as the Lorenz curves inare more squeezed
to the right, compared to those in Figure 17. Interestingly enough, although
Etheramid1 is almost perfectly balanced for investments, when we see the dis-
tribution of payouts we see that it is quite unbalanced.

The Gini coefficients in Figure 19 relate the inequality of investments/pay-
outs to the “success” of the scheme, defined as total amount of money invest-
ed/received by users. The x-axis represents the degree of inequality (0 indicates
perfect equality, while 100 is perfect inequality), and the y-axis measures the
total investment/payout. Each scheme is represented by an arrow, whose tail
represents investments, while the head represents payouts. For the most lucra-
tive scheme, DynamicPyramid, we observe that the index of inequality is high,
surpassing 80% for both investments and payouts. For ProtectTheCastle, we
see that the head and the tail of the arrow almost overlap, meaning that the
inequality distributions of investments and payouts are very close in this scheme.
For the less lucrative schemes, no correlation seems to exist bewteen the success
of the scheme and the index of inequality.

10 Conclusions

Blockchains and smart contracts might really be the next “disruptive” tech-
nology, as many companies, newspapers, and researchers start to believe. How-
ever, they can also offer new opportunities to tax-evaders, criminals, and fraud-
sters [4, 14], who can take advantage of their anonymity and decentralization.
In this survey we have analysed the impact of Ponzi schemes on Ethereum, the
most flexible and widespread platform for smart contracts so far, with a market
capitalization that has reached 8 billion USD37.

Overall, we have observed that, in these first 1.5 years of life of Ethereum,
there have been a multitude of experiments to implement Ponzi schemes as

37 coinmarketcap.com/currencies/ethereum

https://coinmarketcap.com/currencies/ethereum/

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fraction of users (%)

F
ra

c
ti
o
n
o
f
p
a
y
m
e
n
ts

in
to

sc
h
e
m
e
s
(%

)
DynamicPyramid Government

EthereumPyramid ProtectTheCastle

Doubler2 Etheramid1

Fig. 17: Lorenz curves of a sample of Ponzi schemes (payments in).

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fraction of users (%)

F
ra

c
ti
o
n
o
f
p
a
y
m
e
n
ts

fr
o
m

sc
h
e
m
e
s
(%

)

DynamicPyramid Government

EthereumPyramid ProtectTheCastle

Doubler2 Etheramid1

Fig. 18: Lorenz curves of a sample of Ponzi schemes (payments out).

10 20 30 40 50 60 70 80 90 100

0

20,000

40,000

60,000

80,000

DynamicPyramid

Government

EthereumPyramid

ProtectTheCastle

Doubler2

Etheramid1

Gini coefficient (%)

P
a
y
m
e
n
ts

fr
o
m
/
to

sc
h
e
m
e
in

U
S
D

Fig. 19: Gini coefficients of a sample of Ponzi schemes.

smart contracts: indeed, ∼ 10% of the 1384 contracts with verified source code
on etherscan.io are Ponzi schemes. However, the impact of these experiments
is still limited, as only ∼ 0.05% of the transactions on the Ethereum blockchain
are related to Ponzi schemes.

Still, it is foreseeable that, as Ethereum consolidates its position as a platform
for smart contracts and as a cryptocurrency, criminals will exploit it to host
their scams. Besides the growth of traditional Ponzi schemes accepting ether38,
we expect a second wave of Ponzi schemes, but very likely they will be less
recognizable as such than the ones collected in this survey. For instance, they
could mix multi-level marketing, token sales, and games, to realize complex smart
contracts, which would be very hard to correctly classify as Ponzi schemes or
legit investments39.

Our analysis suggests that there is still time to devise suitable policy inter-
ventions, and provides a first understanding of the issues that must be tackled
in this direction.

38 badbitcoin.org/thebadlist
39 https://steemit.com/crypto-news/@forklognews/forklog-users-accuse-blockchain-based-lottery-kibo-

https://etherscan.io/
http://badbitcoin.org/thebadlist/index.htm
https://steemit.com/crypto-news/@forklognews/forklog-users-accuse-blockchain-based-lottery-kibo-of-scam

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia
project P.I.A. 2013 “NOMAD”.

References

1. Artzrouni, M.: The mathematics of Ponzi schemes. Mathematical Social Sciences
58(2), 190–201 (2009), http://dx.doi.org/10.1016/j.mathsocsci.2009.05.003

2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Principles of Security and Trust (POST). LNCS, vol. 10204, pp.
164–186. Springer (2017), http://dx.doi.org/10.1007/978-3-662-54455-6_8

3. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE S
& P. pp. 104–121 (2015)

4. Brito, J., Castillo, A.: Bitcoin: A primer for policymakers. Mercatus Center at
George Mason University (2013)

5. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

6. Gastwirth, J.L., Bhattacharya, P.K.: Two probability models of pyramid or chain
letter schemes demonstrating that their promotional claims are unreliable. Opera-
tions Research 32(3), 527–536 (1984)

7. Juels, A., Kosba, A.E., Shi, E.: The Ring of Gyges: Investigating the future of
criminal smart contracts. In: ACM CCS. pp. 283–295 (2016)

8. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS (2016), http://eprint.iacr.org/2016/633

9. Moore, T.: The promise and perils of digital currencies. IJCIP 6(3-4), 147–149
(2013)

10. Moore, T., Han, J., Clayton, R.: The postmodern Ponzi scheme: Empirical analysis
of high-yield investment programs. In: Financial Cryptography and Data Security.
pp. 41–56 (2012)

11. Murphy, E.V., Murphy, M.M., Seitzinger, M.V.: Bitcoin: Questions, answers, and
analysis of legal issues. Tech. rep., Congressional Research Service (2015)

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf (2008)

13. Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for dis-
tributed ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016),
http://eprint.iacr.org/2016/1156

14. Slattery, T.: Taking a bit out of crime: Bitcoin and cross-border tax evasion. Brook.
J. Int’l L. 39, 829 (2014)

15. Szabo, N.: Formalizing and securing relationships
on public networks. First Monday 2(9) (1997),
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

16. Vasek, M., Moore, T.: There’s no free lunch, even using Bitcoin: Tracking the
popularity and profits of virtual currency scams. In: Financial Cryptography and
Data Security. pp. 44–61 (2015)

17. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the Bitcoin ecosystem. In: Financial Cryptography and Data Security. pp. 57–71
(2014)

18. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
gavwood.com/paper.pdf (2014)

http://dx.doi.org/10.1016/j.mathsocsci.2009.05.003
http://dx.doi.org/10.1007/978-3-662-54455-6_8
https://github.com/ethereum/wiki/wiki/White-Paper
http://eprint.iacr.org/2016/633
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/1156
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
gavwood.com/paper.pdf

19. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. on
Pattern Analysis and Machine Intelligence 29(6), 1091–1095 (2007)

	Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact

