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ABSTRACT We address the absence of reliable tests on contract analyzers of smart contracts and present
a systematic method to diversify test cases by combining smart-contract-specific bugs and static analysis
barriers in this paper. Using contract analyzers is the most practical solution for building a secure blockchain
service, but they are relatively immature and lacking stable performance metrics. Traditionally, performance
reports only compare static contract analyzers with pre-defined test cases, such as the Juliet test suite.
However, building such test suites is burdensome for smart contracts, which are frequently change. In this
paper, we propose an automated method to assess contract analyzers of smart contracts by diversifying
test cases. In the experimental results, we identified nine erroneous alarms in the state-of-the-art contract
analyzers with automatically generated test cases on five vulnerabilities.

INDEX TERMS Smart contracts, static analysis, security audits, honey pots.

I. INTRODUCTION
Smart contracts are at the core of blockchain services. A smart
contract is a program code that runs on top of the blockchain.
Currently, the Ethereum model [1] is the most dominant for
smart contracts. The execution model of smart contracts is
different from that for the general computing.

A smart contract is deployed to a blockchain system
in the compiled bytecode form. The deployed bytecode is
immutable; thus, it cannot change even if an error is found in
the bytecode. A dedicated virtual machine runs the bytecode
smart contracts. Smart contracts operate the functional part
of blockchain services and systems, storing crypto-currencies
and sensitive data. The security of smart contracts is being
tested. However, the well-known incidents with smart con-
tracts (TheDAO [2] and Parity wallet [3] attacks) have
demonstrated that just relying on the manual inspection is
insufficient to protect cryptoassets from attacks. Immutability
makes securing smart contracts more challenging because the
second chance to amend errors is not allowed. This situation
leads to adopting proactive protection using systemized and
automated processes, which resemble the design process for
the digital integrated circuits. Thus, the automated security
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analysis tools, referred to as ‘‘contract analyzers,’’ are widely
used.

The Ethereum security survey [4] noted that using contract
analyzers is the most effective protection method, except for
secure coding by developers. Although applying the contract
analyzers becomes an essential step to develop a blockchain
service, contract analyzers are in the early stage to produce
accurate output steadily. Recent literature assessing the con-
tract analyzers [5], [6] found notable false-positive and false-
negative errors in most contract analyzers. In the blockchain,
causing false-positive and false-negative errors is econom-
ically beneficial for attackers. Attackers who write Trojan
smart contracts that hide vulnerabilities make an effort to
cause false-negative errors.

In contrast, malicious developers intentionally abuse com-
plex bugs to cause false-positive errors. They reveal a
well-known vulnerability to lure other attackers, but hide
another bug that will stealthily disable the exploitation.
If other fooled attackers invest money to obtain profits by
exploiting the vulnerability, it will fail, and the malicious
developers can intercept the invested money. These attacks
are specific to the blockchain and are referred to as ‘‘honey
pots’’ [7].

Figure 1 is an example in which the contract analyzers
produce inconsistent results on complex bugs. The code has a
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FIGURE 1. Incorrect use of public information as a random source with the UninitializedStoragePointer bug.

notable vulnerability of improperly using a random source in
the blockchain, referred to as ‘‘bad randomness’’ On Line 3,
it generates a random number from the timestamp of the
latest block, based on the global variable now, which is
publicly predictable. The contract analyzers alert develop-
ers about this vulnerability when now is used in control
conditions, as on Line 13. However, this alert is not true.
The vulnerability is canceled by the second bug from the
Solidity compiler. As illustrated in Figure 1, when the struct
pointer gh is uninitialized, gh points to the two bottom
slots assigned to the other storage variables, lastPlayed
andrandomNumber. Hence, the variablerandomNumber
is implicitly overwritten during the value assignment to
gh.number on Line 11. If a contract analyzer is aware
of this compiler bug, it should not report the bad ran-
domness vulnerability, or it may result in the false-positive
errors.

However, our experimental results in §VI demonstrate
that all tested contract analyzers produce incorrect results
in this case. In the general computing environment, the
security static analyzers were assessed and enhanced using
well-tailored test suites, such as the Juliet test suite [8] for
Java and C/C++. Based on the benchmarks, we can identify
the weak points and limitations of static analyzers as listed
in [9].

However, building a proper test suite is challenging for
smart contracts. The test set from the reference repository
(e.g, the Smart Contract Weakness Classification Registry
[10]) and the bundles of the tools still have naive sample
codes. Thus, the collection of the test sets cannot repre-
sent the complex structures and bugs in real-world code,
because blockchain services are already diversified from
the simple ERC-20 variants to the complicated finance

services. Moreover, new types of bugs or vulnerabilities
in smart contracts are still being identified [11]. Whenever
a new bug is introduced, contract analyzers must quickly
check the detection performance on it with various code
structures.

In this paper, we propose a new approach to automat-
ically build a test suite for contract analyzers. The pro-
posed system, TestBreeder, generates test cases by com-
bining various code elements of vulnerabilities, structures,
and bugs. Therefore, the generated test suite of TestBreeder
can test the vulnerability detection capacity against vary-
ing code complexity. We consider the common weak points
of static analysis and the quirks of smart contracts for
the code elements. We can summarize our contributions as
follows:

1) We address the challenges of the current contract ana-
lyzers in dealing with the compound vulnerabilities of
Solidity, which should be carefully considered in the
current trends of smart contracts.

2) We propose a new approach to generate test suites for
contract analyzers. While the previous studies have
compared contract analyzers with fixed vulnerability
code samples, we focus on generating varying com-
plexity test cases with the real-world exploit tech-
niques.Moreover, whenever a new type of vulnerability
is found, the proposed approach can extend the test
suite for different complexity.

3) To evaluate the usefulness of the automatically gen-
erated test cases, we run the test cases with widely
used contract analyzers. Our test suite identifies the
weak points in all contract analyzers and discovers that
false-positive and false-negative errors increase inmore
complicated test cases.
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II. BACKGROUND
A. BLOCKCHAIN AND SMART CONTRACTS
All blockchain systems are not the same, but have two key
components in common for consensus and smart contracts
(or a transaction model). A consensus subsystem enables
distributed participants to agree on a shared state against
Byzantine faults (i.e.,malicious participants). Smart contracts
update the shared state by executing the deployed code. The
design and implementation of smart contracts differ by sys-
tem.

We use the Ethereum model in this paper. Ethereum uses a
virtual machine, called the ‘‘EVM,’’ as a runtime environment
for smart contracts. Like a general computer program, devel-
opers write down the smart contract code in human-readable
programming languages (e.g, Solidity and Vyper) and com-
pile the code to the EVM-executable bytecode. The compiled
EVM bytecode can be deployed to any EVM blockchain
systems. The deployed smart contracts are normally public to
anyone in the blockchain. A smart contract is executed upon
receiving a message called a transaction. A transaction is a
cryptographically signed message containing a destination
address, callvalue (the amount of the transferred digital
asset), calldata (the general input data), execution fee
(i.e., gas) related information, and so on.
If the recipient of a transaction is a smart contract, it acts

like a function call, encoding the function signature and pass-
ing arguments in the calldata. The target smart contract
executes the function matched to the signature. If no match is
found, it calls a special function, referred to as the ‘‘fallback.’’
The default behavior of the fallback case is to add the received
callvalue to its balance.

The EVM provides three data locations: stack, memory,
and storage. Every computation is performed on the stack.
A slot of the stack is 256-bit wide, and the stack can have a
maximum of 1024 slots. The memory is a temporary area that
holds data only within a transaction execution. It operates as
a byte-addressable array. The permanent data are kept in the
storage location, which is shared by the blockchain nodes.
The storage is a key-value store in the EVM, but Solidity
maps a global state variable to a slot in the storage.

B. SOLIDITY AND BUGS
1) SOLIDITY
Solidity is the most popular programming language for smart
contracts and adds new abstractions for developers to support
high-level features, such as control structures and compli-
cated data structures on top of the EVM. The syntax of
Solidity is similar to that of JavaScript, but it has its own
features for smart contracts.

a: VARIABLES AND FUNCTIONS
The global and local variables are mapped to the storage
and memory of the EVM data location by default. The
global storage variables are referred to as state variables.
Except for the functions attributed as view or pure, Solidity

functions are related to the operations on the state vari-
ables. Solidity also has predefined special variables to access
the blockchain-specific properties or actions. For example,
block.timestamp (or now) stands for the current block
time, and msg.sender indicates the sender address of the
function call. The address type of Solidity has predefined
member functions. The transfer and send functions
can send Ether to a recipient address. The call function
can be used for the low-level function call. The call may
have attributes, such as value and gas. For instance,
msg.sender.call.value(100) sends 100Wei (a unit
of Ether) to the sender address.

b: DATA STRUCTURES
On top of the EVM memory and key-store storage, Solidity
presents complex data types, such as the strcut and dynamic
array. For this purpose, Solidity has reference types besides
elementary types (e.g, uint256). The reference types sup-
port structs, arrays, and mappings and can point to any of
the three data locations of memory, storage, and calldata.
Thus, the variables of the reference types should be used
carefully to not point to incorrect locations. For example,
in Figure 1, the struct variable gh incorrectly points to the
preallocated location of other storage variables.

c: ERROR HANDLING
If an exception happens in Solidity, all changes in the function
call are reverted. For throwing exceptions on conditions,
Solidity uses require and assert. The require func-
tion is used for checking whether inputs and state variables
are valid, whereas theassert is used for checking invariants
or internal errors.

2) BUGS IN SOLIDITY
Solidity compiler bugs should be considered for securing
smart contracts. The Solidity compiler is rapidly evolving in a
short time, but some versions have had critical bugs. The bugs
in a compiler can cause the semantic inconsistency between
the source code and bytecode. The unintended corner cases
from the inconsistency become a new source of vulnerability.
In the blockchain, even a new smart contract must interact
with the predeployed smart contracts that may be generated
with an old error-prone compiler. Thus, we must deal with
the compiler bugs, even after the Solidity compiler fixed the
known bugs, and cannot separate the concerns from smart
contracts security. In this section, we briefly review the four
representative compiler bugs as follows.

a: ABIEncoderV2
Solidity introduced the experimental encoder, referred to
as ‘‘ABIEncoderV2,’’ for encoding complex data types to
interact outside. However, the early version of ABIEncoder
was incorrect for the variable of short noninteger types
or reference types (until v. 0.5.6). Figure 2 demonstrates
the case of the ABIEncoderV2 bug. Functions h and i
take a two-dimensional array as input, and encode it via
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FIGURE 2. ABIEncoderV2 bug.

FIGURE 3. ExponentCleanUp bug.

ABIEncoderV2 and then return the decoded version of the
value, but h uses the dynamic array unlike to i. If both the
arguments are correctly encoded and decoded, the result of
the comparison on Line 20 should be true. However, it is
false. The value of h is unintentionally overwritten during
the encoding and decoding process; thus, it becomes incorrect
(i.e., [[1,2],[2,3]] not [[1,2],[3,4]]).

b: ExponentCleanUp
When applying the exponential operator, **, to a variable
type smaller than 256 bits, the higher bit (significant bits) part
of the exponent is not cleared in Solidity 0.4.24. Because of
the residue of the higher bit part, the exponential operations
result in incorrect values. For example, in Figure 3, the value
of y on Line 3 should be zero, because it overflows the range
of uint8. The return value on Line 4 is 1 (i.e., 00 = 1,
if y = 0). However, the residue from the operations on Line
3 causes y to become a nonzero value. Thus, the function f
incorrectly returns 0.

c: HigherOrderByteCleanStorage
The default size of a slot of the EVM storage is 256 bits.
To efficiently store variables, Solidity packs multiple vari-
ables of types smaller than 256 bits into a single storage slot.
Thus, it internally uses bitwise operations for variable pack-
ing. However, the bitwise operations in variable packing have
bugs in Solidity 0.4.3: the higher order bits are not cleaned

FIGURE 4. HigherOrderByteCleanStorage bug.

up. This may accidentally overwrite other variables that are
packed in the same storage slot. In Figure 4, two variables, a
and b, are declared on Lines 4 and 5, and they are initialized
as 0 at the same time. Because the two variables are of type
uint48, which is smaller than uint256, they are packed
into the same storage slot. On Line 8, a is underflowed by the
decrement operation. Although the two variables should be
independent, the underflow overwrites the adjacent variable
b because the result is stored without properly masking the
48-bit data only.

d: UninitializedStoragePointer
As described in §II-B1, a struct is a reference type; thus, the
fields pointers of the struct can point to storage or memory
variables. When a struct is defined without any initialization,
the default value is 0. In other words, the fields pointers of the
struct point to storage slots in order from the location 0. Thus,
if a developer unintentionally misses initializing a struct vari-
able, the further field access through the struct variable may
be incorrect or overwrite the other state variables. In Figure 1,
gh on Line 10 is defined for the GuessHistory struct,
but proper initialization is missed. The first field number
of GuessHistory points to the first storage slot, corre-
sponding to randomNumber, and the second field player
points to the second storage slot, lastPlayed. Conse-
quently, further write operations through gh on Lines 11 and
13 mistakenly overwrite the state variables randomNumber
and lastPlayed.

C. VULNERABILITIES IN SMART CONTRACTS
A comprehensive security study on Ethereum [4] indicate that
the largest portion of the Ethereum vulnerabilities is related
to the application layer, which should be eliminated in smart
contracts. The vulnerabilities in smart contracts cover from
general vulnerabilities (e.g, integer overflow) to blockchain-
specific vulnerabilities (e.g, reentrancy). Regardless of the
difficulties in exploitation, blockchain-specific vulnerabili-
ties have caused more severe attacks, such as the TheDAO
[2] attack, because they were previously unknown. In this
section, we briefly introduce the representative vulnerabilities
in smart contracts.

1) REENTRANCY
The reentrancy vulnerability is caused by unintended recur-
sive calls. The attacker exploiting this vulnerability aim to
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execute money sending actions repeatedly before reaching
a balance check. Thus, this exploitation is incurred when
smart contracts developers miss two smart-contract-specific
traits: (1) sending money is equivalent to calling the fallback
function of the recipient, and (2) if the fallback function of the
recipient is defined, then it can obtain the control. The typical
attack case is that the recipient withdrawing funds calls the
withdraw function again via its fallback function before the
balance is updated.

FIGURE 5. Reentrancy vulnerability.

Figure 5 demonstrates an example case of the reentrancy
vulnerability. In Figure 5, the call on Line 6 executes the
sender’s fallback function and sends money, as much as the
user’s balance. If the fallback function in the sender’s code
calls the function withdrawBalance again, a recurring
call loop of sending money is created before reaching the
balance state update on Line 8. Thus, the victim smart con-
tract unboundedly sends money to the recipient. Reentrancy
is a notorious vulnerability that has caused massive economic
damage in the TheDAO exploitation [2]. After the TheDAO
incident, the secure development guides recommend com-
pleting state updates before committing any actions that may
call other code.

2) INTEGER OVERFLOW AND UNDERFLOW
Integer overflow and underflow are inevitable vulnerabili-
ties for data types having a limited value range. If a value
increases to greater than the maximum number that the data
type can represent (e.g, 2256 − 1 for a 256-bit unsigned
integer), then we obtain an extremely low value instead. This
error case is referred to as overflow. The opposite case, when
a value decreases to below the enabled range, is referred to
as underflow. The integer overflow and underflow vulnera-
bilities are critical for smart contracts in particular because
the smart contract usually stores the balances of assets in
integers. If an attacker causes an underflow of the balance,
then the attacker can take over most of the assets in the
smart contract. Thus, integer overflow and underflow are
dominant in the number of reported vulnerabilities for smart
contracts [11].

3) BAD RANDOMNESS
The fundamental parameters and states of the blockchain are
deterministically calculated because distributed participants
should be able to agree. Thus, a random number generator

in the blockchain must simultaneously be both deterministic
(or verifiable) and unpredictable. Smart contracts, however,
maymistakenly use predictable values, such as the timestamp
or hash of the latest block, as the source of random number
generation. The values are not suitable as random sources
because anyone can obtain the same information and predict
the number exactly. On Line 7 of Figure 6, a random number
is inappropriately generated from the timestamp of the latest
block, block.timestamp, which is published to everyone
after a block is created. Security development guides recom-
mend against deriving a random value from the blockchain
parameters.

FIGURE 6. Bad randomness vulnerability.

4) UNPROTECTED SELFDESTRUCT
The selfdestruct instruction is used to remove a smart
contract and retrieve money from it. Even though it is a
very powerful instruction, some smart contracts use it with-
out careful access control. Figure 7 is a simplified ver-
sion of the Parity wallet case [3]. The function kill calls
selfdestruct on Line 35 only if the caller is the same
as the owner. The owner-setting function, initWallet,
should be called only when the contract is initialized.
However, the constructor is missing in Figure 7; thus,
initialized remains false, and initWallet is then
callable by anyone. This means anyone can be the owner
and destroy the contract by calling the kill function.

D. CONTRACT ANALYZERS
The survey study [4] stated that using the contract analyzers
is the second-most effective method to protect smart contracts
from vulnerabilities, whereas the the most effective method is
writing error-free code with following best practices, which
requires considerable expertise regarding smart contracts.
Therefore, checking with the contract analyzers has become
a practical, essential step in the development process of smart
contracts.

1) CONTRACT ANALYZER CLASSIFICATION
a: VERIFICATION VS. VULNERABILITY SCAN
In finding security problems, we can check whether any
possible violations of a smart contract exist based on the spec-
ification. A formal verification method, such as VerX [12],
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FIGURE 7. Self-destruct vulnerability.

proves the correctness of a given smart contract using formal
models. The violations found by formal verification can cover
the vulnerabilities and the logic bugs. Thus, the formal verifi-
cation is powerful, but requires precise specifications. Writ-
ing specifications is a demanding job because the properties
should be formally represented (e.g, using temporal logic).
In contrast, the vulnerability scanners use the predefined
patterns for known vulnerabilities, which are bundled with
the tools. While traversing the program code or execution
traces, the vulnerability scanners compare the code with the
vulnerability patterns. Thus, the vulnerability scanners can
find only known vulnerabilities, but any developers can use
them without requiring expertise. The widely used contract
analyzers fall under vulnerability scanners because they are
more practical.

b: SOURCE CODE VS. BYTECODE
Contract analyzers operate on the different input levels:
source code or bytecode. The Solidity source code has more
abstractions that reflects developers’ intentions. Thus, the
analysis with the source code can easily identify the code
and data structure. However, it may be inaccurate because the
source code does not always exactly reflect the behavior of
smart contracts. For instance, the Solidity compiler bugs (§II-
B2) make the behavior between source code and bytecode
inconsistent. Thus, most tools analyze smart contracts at the
bytecode level, and optionally use the source code to extract
the metadata, such as the application binary interface (ABI).

While the bytecode of smart contracts is rather smaller than
the binary code of the traditional computing environments,
analyzing bytecode is still burdensome. For example, contract
analyzers should identify all operands in every instruction,
including jumps, by following indirect data access via the
execution EVM stack.

2) WIDELY USED CONTRACT ANALYZERS
A number of contract analyzers are being proposed. The
features of the well-known contract analyzers are comprehen-
sively analyzed in [13]. In this paper, we focus on the six tools
under active development as follows.

a: MANTICORE
Manticore is a dynamic symbolic execution engine for tra-
ditional binary analysis frameworks [14] but adds a new
Ethereum execution module that supports Ethereum’s execu-
tion environments, such as the memory and persistent storage
data model. Manticore executes the bytecode of smart con-
tracts with the emulated EVM world state. For inputs, the
callvalue and calldata in a transaction data struc-
ture are treated as symbols. During the symbolic execution,
Manticore analyzes and detects vulnerability patterns given
in separated modules by evaluating them with the execution
states.

b: MYTHRIL AND MythX
MythX [15] is an online service consisting of three tools:
Mythril for EVM bytecode symbolic execution, Harvey
for smart contract fuzzing, and Maru for static analysis
of smart contracts. MythX analyzes smart contracts on
both levels: source code and compiled bytecode. MythX
then integrates the results from the three tools to improve
the results from different approaches. Among the com-
ponents, Mythril [16] traverses every possible paths of a
smart contract via symbolic execution. It also applies a
taint analysis to detect predefined vulnerability patterns more
accurately.

c: SECURIFY
Securify [17] decompiles the EVMbytecode into the interme-
diate language, Soufflé. It is then converted into the semantic
facts in Datalog. Securify analyzes the semantic facts using
predefined violation patterns. If any matched pattern is found
between the semantic facts and the patterns, Securify reports
it in the decompiled code.

d: SmartCheck
SmartCheck [18] statically analyzes Solidity source codes.
It lifts an XML parse tree as the intermediate representation
from a Solidity source code. SmartCheck considers smart
contact concerns in four categories: security, functional, oper-
ational, and developmental. It encodes the pattern for the
issues in XPath and queries whether the XML parse tree
contains any matches to the patterns.
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e: SLITHER
Slither [19] is a static analysis framework for Solidity source
code (higher than v. 0.4). It supports application program-
ming interfaces for customized analysis of the source code.
It also lifts its own intermediate representation, SlithIR, from
the Solidity source codes. Moreover, SlithIR also focuses on
presenting the detailed information, such as the inheritance
relationship and control flows, for manual and automatic
inspection.

III. RELATED WORK
A. COMPARISONS OF CONTRACT ANALYZERS
Contract analyzers for smart contracts are actively developed,
but their performance is still in question. The features and
accuracy of contract analyzers for smart contracts have been
compared. Fontein evaluated the detection capacity of con-
tract analyzers and compared it to the claims in other studies
[20]. Angelo et al. provided a more comprehensive survey
on contract analyzers [13]. The authors classified contract
analyzers concerning the purpose, target level (bytecode or
source code), analysis type, and methods. As the authors
stated in [13], smart contract analyzers are driven by industry.
Few academic-only tools are being managed.

More recently, Durieux et al. compared the detection per-
formance of the contract analyzers [5]. The authors used a
manually collected dataset and all active contracts in Google
BigQuery to assess nine contract analyzers. Like the other
studies, they found notable false-positive errors from the
state-of-the-art contract analyzers. These studies focus on
feature classification and performance testing with the bun-
dled sample code or predeployed smart contract code without
any modifications.

In this paper, we take further steps. We aim to generate
varied test cases for contract analyzers. Our approach is
useful for contract analyzers to find new weak points, which
the fixed sample test cases may yet uncover. Thus, we evolve
the test suite for contract analyzers by gradually adding
more complex parts to the test case code. We can identify
the resiliency of the contract analyzers against the complex
bugs.

B. TEST CASE AND SUITES FOR SMART CONTRACTS
The automated test case generation for smart contracts has
generally focused on assessing the smart contract itself, not
the contract analyzers. Wu et al. [21] used mutation test-
ing, which automatically generates the mutant test cases by
applying mutation operators to a seed smart contract code.
They defined new mutation operators reflecting the Solidity
syntax and environment. The generated mutants may produce
inconsistent results and reveal the potential defects in the
original program code, which is helpful for the smart con-
tracts developers. Zhang et al. [22] proposed a genetic algo-
rithm to generate test input cases for a given smart contract
code. The goal of the proposed approach is to cover as many
definition-use pairs of variables as possible in the generated

test cases, putting on more weight on the pairs dependent on
the Solidity require statement. Thus, the inputs for a more
important path, which may contain the require function,
canmore likely be generated. Gao et al. [23] proposed an inte-
grated test input case generation from the perspective of the
decentralized applications, which consists of a web interface
part and the smart contract part. They identified meaningful
web input events, which can influence the control condition,
and they generated test cases based on the identified input,
aiming to maximize the control path coverage. Whereas the
approaches focused on testing the smart contracts, the pur-
pose of our approach is to build a test suite to assess contract
analyzers.

FIGURE 8. A sample test case for unreachable Reentrancy vulnerability.
Contract analyzers falsely detect the vulnerability in the code.

IV. TEST SUITE FOR CONTRACT ANALYZERS
A. PITFALLS OF CONTRACT ANALYZERS
We tested contract analyzers with different settings of test
cases. We identified the recurring problems that contract
analyzers experience in finding the vulnerabilities of smart
contracts. Figure 8 is an example of the reentrancy vul-
nerability. In Figure 8, the contract may call the recipient
contract (Line 18) before updating the balance (Line 20).
Contract analyzers detect this vulnerability pattern and verify
the exploitability. In Figure 8, a contract analyzer should be
able to follow the control flow from the entry of the function,
withdrawBalance, and determine the feasibility of the
path to the vulnerability pattern correctly on Line 16. Accord-
ingly, the contract analyzer should also know that evenOdd
is a state variable and it cannot be 0 due to the Solidity
compiler bug on the uninitialized struct. However, only a
single security analyzer could correctly detect this case in our
experiments (§VI).

Based on the observations of the errors of contract analyz-
ers, we categorize the findings into three challenges for smart
contracts for contract analyzers.
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• Managing control structures (control flow analysis).
Contract analyzers should be aware of the control struc-
ture of programs and determine the feasibility of every
path. If contract analyzers accept source code, they can
quickly identify control structures. Otherwise, they must
carefully recover the control structures from the byte-
code. The EVM bytecode has no direct jumps; data
flow analysis techniques must be applied, at minimum,
to manage the control structures.

• Following data changes (data flow analysis). Code
reachability is dependent on path feasibility. When
determining the path feasibility of conditional branches,
contract analyzers must evaluate the condition with the
results from the data flow analysis or execution. Because
this effort to perform this process is formidable, each
contract analyzer devises its own way to simplify it
unless target accuracy is lost. Thus, based on the under-
lying model for tracking data flow, the accuracy in
identifying actual vulnerabilities differs among contract
analyzers.

• Compiler (version-dependent) bugs.Although the for-
mer two challenges are more general problems in pro-
gram analysis, the compiler bugs are domain-specific.
Solidity compiler is being actively developed and fre-
quently updated. A new version of the compiler may
change the semantics at the bytecode level to fix the bugs
in the previous versions. Therefore, contract analyzers
must correctly manage the actual semantics of smart
contracts. When contract analyzers accept source-code
only (e.g, Slither), version-aware behavior modeling is
critical for accurate results.

B. TEST CASE COMPLEXITY
Regarding the challenges in §IV-A, we diversify test cases
to help contract analyzers obtain accurate results from com-
plicated smart contracts. Thus, we gradually evolve the com-
plexity of the test cases. Measuring the complexity of pro-
gram codes has been discussed in numerous studies. For
example, cyclomatic complexity [24] provides a method to
quantify the structural complexity of computer programs.
In this paper, however, we focus on smart-contract-specific
problems in arranging the complexity of test cases for con-
tract analyzers. The complexity of test cases is determined
by the difficulty in finding a vulnerability pattern. We refer
to a known vulnerability pattern for security analyzers as a
vulnerability trigger. At the lowest complexity level, the vul-
nerability trigger is directly visible. We enable the execution
path to become more complicated as the complexity level
increases. The security analyzers must manage control and
data flows andmay be deceived by compiler bugs. At a higher
level, we use false-positive errors and false-negative errors.
Only exploitable vulnerability triggers should be correctly
alarmed by contract analyzers.

We define four complexity levels, from Level 0 (L0) to
Level 3 (L3). InL0, the vulnerability trigger is directly acces-
sible and is used to verify whether the security analyzer is

aware of the vulnerability trigger. InL1, the control structures
are added to the vulnerability triggers. The security analyzers
must also follow the changes in data flows to determine
the path to the vulnerability triggers in L2. Finally, in L3,
complex compiler bugs influence the exploitation path to
the vulnerability triggers. For higher levels, the false-positive
errors demonstrate more comprehensively how the security
analyzers verify smart contracts compared to false-negative
errors.

1) LEVEL 0 (L0)
Level 0 is a basic test case of a vulnerability trigger. The test
cases inL0 have a vulnerability trigger at a directly reachable
position and are thus exploitable. If a security analyzer fails
to find the vulnerability trigger, it is also unable to detect the
vulnerability trigger of the same pattern at higher levels.

2) LEVEL 1 (L1): CONTROL STRUCTURES
In L1, we enclose the vulnerability trigger with a control
structure. We use both conditional branches and loops (if
and while, respectively) for constructing control struc-
tures. For verifying the control flow awareness of contract
analyzers, the control structures in L1 have naive, obvious
conditions, such as 2 > 4 or a < 10. We generate test
cases to verify both false-positive and false-negative errors by
complementing the conditions. If a security analyzer detects
the vulnerability trigger in the conditional block under a
false condition, it has a false-negative error in L1. Contract
analyzers that linearly sweeps smart contracts or have errors
on condition evaluation may produce incorrect results.

3) LEVEL 2 (L2): CONTROL STRUCTURES AND DATA FLOW
The test cases in L2 are evolved for verifying whether con-
tract analyzer can manage more general conditions of control
structures. Thus, we set value-dependent conditions for con-
trol structures. To evaluate the condition, contract analyzers
must be aware of possible values of the variables, which
reflects the accuracy of the data flow analysis of contract
analyzers. We also gradually add arithmetic operations and
function calls to data flows to test the value range handling
and inter-procedural analysis. Smart contracts that manage
ERC20 tokens in Solidity are heavily dependent on the use
of math functions even for basic arithmetic operations to pre-
vent the integer overflows and underflows. Thus, managing
complicated arithmetic operations is critical for improving
the accuracy of contract analyzers.

4) LEVEL 3 (L3): COMPLEX BUGS
Errors in compilers distinguish the actual behavior of opera-
tions from the intended behaviors. Furthermore, the incorrect
behaviors caused by compiler bugs are not depicted in the
source code and may be inexactly modeled by the bytecode-
level contract analyzers, disregarding the actual behavior.
In L3, the Solidity compiler bugs are added to test cases
because exploitabilty is dependent on the actual behavior of
compiler bugs, and the honeypot code that uses them. The test
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FIGURE 9. Overall process of TestBreeder.

cases in L3 have vulnerability triggers that are unreachable
due to one of Solidity’s compiler bugs. Hence, the false-
positive errors in the L3 test cases demonstrate the mistakes
of the contract analyzers in understanding the exact behavior
of smart contracts.

V. TestBreeder DESIGN
In this section, we present the system design of TestBreeder.
TestBreeder automatically generates test cases that covers all
complexity levels (§IV-B) for contract analyzers.

A. PROCESS OVERVIEW
As depicted in Figure 9, the process of TestBreeder consists
of two phases: (1) test set generation and (2) analyzer assess-
ment. First, TestBreeder creates a test template for each vul-
nerability trigger. The test template has incomplete code with
several empty slots. For the complexity level, TestBreeder has
code seeds that corresponds to the slots of each part. Test-
Breeder repeatedly generates test cases by filling the empty
slots with code snippets generated from the sets of code
seeds. In this way, TestBreeder prepares test cases covering
all complexity levels for a vulnerability trigger. A test case
consists of the variants of a vulnerability trigger. At the end of
the first phase, the test cases are delivered with descriptions of
the vulnerability types and complexity levels. The dispatcher
assesses contract analyzers in the second phase by selecting
test cases in order of complexity level and by inputting the test
case into the contract analyzers. The results from the tools are
converted to a standardized form.1 The dispatcher proceeds
to the next test case of a higher complexity level in the same
vulnerability category.

B. TEST TEMPLATE CREATION
A test template is constructed for a single vulnerability trig-
ger. Figure 10 illustrates an example of the test template for
the reentrancy vulnerability. A test template has empty slots
of three types: initialization, auxiliary, and enclosure. The
first two slots, initialization and auxiliary, contain the initial

1We used a predefined format of JavaScript Object Notion (JSON).

FIGURE 10. Test template for the reentrancy vulnerability.

definitions of variables and functions used in the code of the
enclosure slot. The enclosure slot determines the complexity
level of the test case. Conditional branches or loops with
the adjusted conditions for the given level are used for the
enclosure slot. As depicted in Figure 10, the enclosure slot is
split into two parts, a prologue and epilogue, to surround a
vulnerability trigger.

C. SEED PLANTING
1) CODE SEED SET
A code seed is a prepared code prototype for a slot. The slots
of the test template are filled with code snippets generated
from code seeds. Because a test template contains slots of
three types, the code seeds of the three types form a code seed
set.

2) INITIALIZATION SEEDS
An initialization seed defines state variables and initial-
ization functions, including the constructor of a contract.
Figure 11 is an example of the initialization seed. The state
variables are used in seeds of other types. The initializa-
tion seed also has functions to initialize the state variables.
In Figure 11, the state variables are initialized via the func-
tionsconstructor andinitialize. A seedmay have a
placeholder marked by ‘$’ for changeable parts. TestBreeder
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FIGURE 11. State variable definitions and constructors for the
initialization seed.

replaces placeholders with appropriate values or operators.
For example, $RANDOM$ in Figure 11 is a placeholder for a
random number.

FIGURE 12. Supplemental functions for the auxiliary seed.

3) AUXILIARY SEEDS
The auxiliary seed has supplemental functions to be used
in the enclosure slot. It provides a functional library for the
enclosure slot. For example, in Figure 12, the auxiliary seed
defines arrayCheck. Because arrayCheck compares
each element of two arrays in nested loops, it can verify
how accurately a contract analyzer manages mixed flows of
control and data used it in the enclosure slot.

4) ENCLOSURE SEEDS
The enclosure seed controls the complexity level of the test
set. It surrounds a vulnerability trigger with prologue and
epilogue components. The components are empty for the
L0 test cases to enable direct exploitation of the enclosing
vulnerability. The enclosure seeds also havemultiple versions
within a single level except for L0, so multiple test cases are
generated for each level.

In L1, we add a control structure, such as if and while,
with a simple condition. We then double it by complementing
the condition, one for a false-positive error and the other
for a false-negative error. The L1 test cases vary between
an acyclic branch (if) and a cyclic branch (while) with
different conditions. Figure 13 illustrates an L1 enclosure
seed using if. To prevent the conditional branch from being
eliminated by compiler optimizers, the branch condition in

L1 can change from an obvious condition, such as false to
a dependent condition (e.g, a < 1).

FIGURE 13. Prologue and epilogue of the L1 enclosure seed.

InL2, arithmetic operations that require accurate data flow
tracing are added to the condition of the control structures.
The L2 test cases diversify by accumulating arithmetic oper-
ations on the variable used in the branch condition. The
relational operators in the branch condition are arranged with
arithmetic operations to verify both false positives and false
negatives. For example, monotonically increasing arithmetic
operations are matched with the greater-than operator in the
condition.

In L3, we use Solidity compiler bugs. We flipped the false
positive and false negative by indicating the target compiler
version as the version number before and after the compiler
bug is patched. In Figure 14, the test case uses the ABI encod-
ing bugs patched in Solidity 0.5.7. The enclosure induces the
bug by specifying the target compiler version (0.5.5) and uses
the function arrayCheck, which is prepared in the auxil-
iary seed. According to the pragma directive, the dispatcher
uses the matched Solidity compiler in building bytecode. If a
contract analyzer detects the enclosing vulnerability trigger
even when the compiler bugs are in effect, it indicates false-
positive errors in the results.

FIGURE 14. Prologue and epilogue of the L3 enclosure seed.

D. COMBINATION AND POST PROCESS
1) COMBINATION
TestBreeder combines a test template with multiple code sets
by placing each seed into the corresponding slot. It fills the
placeholders remaining in the test cases. The placeholder
may require random numbers and merging functions, such
as constructors for initializing variables.

2) POST-PROCESS
In the last step, TestBreeder verifies the test case and gener-
ates metadata. It verifies whether the generated test case can
be compiled by the Solidity compiler. A test case is coupled
with a description, which includes the complexity level, base
vulnerability trigger, planted seed set, and attributes related
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to the placeholder (e.g, whether random numbers are used in
generation).

E. DISPATCHER AND UNIFIER
In the analyzer assessment phase, TestBreeder composes the
prepared seed sets into test cases.

1) DISPATCHER
The dispatcher in Figure 9 finds a test case based on its
description and inputs it into the contract analyzers deployed
in containers. The dispatcher starts from the test case of
the lowest level and proceeds to those of the higher levels.
When a contract analyzer fails to detect the L0 test case,
the dispatcher does not verify the higher test cases, because
it indicates that the contract analyzer cannot recognize the
vulnerability trigger. This process stores and manages the
results of each analyzer as a JSON file.

2) UNIFIER
Every security analyzer uses a different notation to describe
the results. Thus, the TestBreeder unifier transforms the
results into a standardized form to compare with each other.

VI. EVALUATION
In this section, we explain how resilient the existing contract
analyzers are against the test cases generated by TestBreeder.
We also describe the case studies we conducted on notable
errors.

A. IMPLEMENTATION AND EXPERIMENTAL SETUP
We tested five contract analyzers: Manticore [14] (v. 0.3.3),
SmartCheck [18] (v. 2.0), Slither [19] (v. 0.6.9), MythX [15],
and Securify [17].2 For the experiment, we generated 110
test cases from 52 code seed sets on five vulnerabilities.
We implemented TestBreeder with 1,059 lines of Python.
Each contract analyzer was separately operated in an isolated
Docker container. The results of the contract analyzers are
unified to a standardized JSON file using tool-specific trans-
formers in the TestBreeder unifier.

B. DECISION VALIDATION
As described in §V-E, TestBreeder unifies the results from
the contract analyzers into a compatible form at the end
of the process. We implemented the unifier in two steps.
First, for each contract analyzer, we defined an extraction
pattern. For the contract analyzers generating structured out-
put (e.g, JSON outputs from Slither) we directly mapped
the detected vulnerability name field to the name field in
our JSON form. If the contract analyzers produce textual
results, we used the regular expression patterns to extract the
information, such as the vulnerability name. Second, we con-
verted the detected vulnerability names to the standardized
code name in the Smart Contract Weakness Classification
Registry (SWC) [10]. For example, all ‘‘reentrancy’’ variants

2Both MythX and Securify are served online without a version number.

were converted to ‘‘SWC-117.’’ Based on the normalized
output, we checked whether a contract analyzer detects the
vulnerability as intended in the test case, and determined any
false-positive or false-negative errors. Unfortunately, there is
no single authoritative reference test cases for all the contract
analyzers yet.

Hence, to validate the collection process, we verified it
using a reference set composed of the sample examples bun-
dled with contract analyzers and the reference codes from
SWC. We employed the sample code of Slither because its
input type is most limited among the contract analyzers.
We manually inspected the results of the normalized output
from the five contract analyzers and verified that we correctly
interpreted the output and identified the errors.

C. COMPARISON OF CONTRACT ANALYZERS
The test cases generated by TestBreeder challenge contract
analyzers cocerning false-positive and false-negative errors.
Thus, we compared the results of the contract analyzer using
the same terms in this section. In each result, the test cases
were classified by complexity levels and topics, which repre-
sent the variation within each complexity level.

1) REENTRANCY
The reentrancy vulnerability is the most widely covered vul-
nerability by security analyzers, so we compared the reen-
trancy results of contract analyzers. Table 1 presents the
results of reentrancy. The L0 test case is used to verify
whether a security analyzer manages the vulnerability. The
result demonstrates that all five tools detected the reentrancy
vulnerability in the L0 test cases. From L1, three contract
analyzers, Slither, Security, and SmartCheck, found the reen-
trancy vulnerability even in unreachable branches. Symbolic
execution-based Manticore and MythX were not deluded
by the false branches. However, in L3, both tools falsely
reported with the compiler bug, HigherByteCleanStorage.
We describe the more details on error cases in the case study
(§VI-D1).

2) INTERGER OVERFLOW AND UNDERFLOW
Integer overflow and underflow are not covered by all con-
tract analyzers. Table 2 reveals that three tools, Slither,
Securify, and SmartCheck, did not find integer overflow
or underflow in our L0 test cases. Manticore and MythX
resiliently detected integer overflow and underflow at all lev-
els. However, as with reentrancy, both tools resulted in false
alarms when the HigherByteCleanStorage bug influenced the
branch. MythX also falsely reported the unreachable integer
overflow vulnerability only but was correct regarding integer
underflow.

3) BAD RANDOMNESS
As depicted in Table 3, SmartCheck, Manticore, and MythX
can detect the bad randomness vulnerability. However,
MythX and SmartCheck produced false-positive errors from
the test cases of L1 and L2, respectively. In L2, the test
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TABLE 1. False positive and false negative errors on the reentrancy vulnerability. The mark ‘X’ and ‘X’ indicate the occurrence of false positive (FP) and
false negative (FN) errors, respectively.

TABLE 2. False positive and false negative errors on the integer overflow and underflow vulnerability.

TABLE 3. False positive and false negative errors on the bad randomness vulnerability.

cases have more arithmetic operations to burden data flow
analysis. In the case study in §VI-D2, we considered that the
added operations obstruct tracing the use of the inappropriate
random sources in SmartCheck.

4) UNPROTECTED SELFDESTRUCT
In Table 4, MythX successfully detected all test cases.
Manticore found most test cases correctly producing a
false-positive error only with the HigherByteCleanStorage
bug. Slither discovered the vulnerabilities regardless of reach-
ability. However, Securify and SmartCheck could not detect
the unprotected selfdestruct.

D. CASE STUDIES
1) CASE STUDY #1: REENTRANCY
Figure 15 illustrates a generated test case for the
L3 reentrancy vulnerability from TestBreeder with the

HigherByteCleanStorage bug (§II-B2.c). Because of the bug,
Line 15 in Figure 15 cannot be executed. However, Slither
[19], Securify [17], SmartCheck [18], MythX [15], and Man-
ticore [14] produced false alarms. Slither and SmartCheck
were not aware of the bug caused by the Solidity compiler
because they analyze smart contracts at the Solidity source
code level only. Although Manticore, MythX, and Securify
conduct vulnerability detection on the EVM at the byte code
level, the bug misleads the three tools to produce incorrect
results.

We investigated the source code and official documents
of the three tools to find the causes of the false positives.
Securify assumes that all code in the contract is executable,
which is the reason for the false positive. Manticore and
MythX query an satisfiability modulo theories (SMT) solver
to determine whether the if condition (Line 14) can be
satisfied. Nevertheless, they could not determine the effect
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TABLE 4. False positive and false negative errors on the unprotected selfdestruct vulnerability.

FIGURE 15. The test case of TestBreeder for the level-3 reentrancy
vulnerability.

of the bug that prevents Line 15 from executing at runtime.
Based on the code analysis, Manticore does not properly
analyze two EVM instructions (SWAP1 and SWAP2) that
are commonly used to optimize contracts using the Solidity
compiler. The bug in Figure 15 is caused by SWAP1 and
SWAP2. (Appendix §C). In the case of MythX, we could not
perform a code-level analysis because it is not an open-source
project.

2) CASE STUDY #2: BAD RANDOMNESS
Figure 16b presents theL2 bad randomness test case in which
SmartCheck [18] and MythX [15] produced false positives.
As depicted in Figure 16b, the contract performs arithmetic
operations during initialization. Line 9 uses the result of the
operations as a condition of the if statement. Because the
condition is false, Lines 10 and 11 are effectively dead code.
Therefore, the contract is not vulnerable in terms of bad
randomness.

However, the two tools [15], [18] reported a pos-
sibility of bad randomness. SmartCheck converts con-
tracts into a XML-based structures and analyzes then
the data structure to detect security issues. According to
our analysis, SmartCheck uses regular expressions to find

FIGURE 16. A test case of TestBreeder for the bad randomness
vulnerability.

specific keywords or instructions (e.g, now). For example,
if SmartCheck encounters now or block.timestamp,
it determines whether the contract exhibits bad random-
ness regardless of reachability. Because of this limita-
tion, it evaluates that Figure 16b has the bad randomness
vulnerability.
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Although MythX is an outstanding tool, it has a very
high false-positive rate for the bad randomness vulnerability
(Table 3). MythX itself is not open-sourced. However,
one of its core components, Mythril [16], is an open-
source project. Thus, we conducted a code analysis of
Mythril. Mythril identifies specific operations (COINBASE,
GASLIMIT, TIMESTAMP, BLOCKHASH, and NUMBER)
when it verifies bad randomness. In contrast to SmartCheck,
Mythril performs reachability verification by leveraging the
SMT solver, but it determines that Line 11 (Figure 16b) is
reachable. Consequently, MythX produced a false positive.

VII. CONCLUSION
We presented the test suite generator, TestBreeder, to assess
contract analyzers. TestBreeder diversifies test cases by com-
bining vulnerabilities and changing code complexities. Con-
sidering the analysis mechanisms of contract analyzers, Test-
Breeder uses control structures, arithmetic operations, and
compiler bugs (to cause inconsistency between the source
code and bytecode). Our experiment results illustrate that
TestBreeder could find the limitations of the existing contract
analyzers. Recurring false-positive errors, even in advanced
contract analyzers, imply that the test approach of Test-
Breeder is effective in enhancing the contract analyzers that
targets early-stage industries as in smart contracts and the
blockchain. The test suite should be advanced parallel to
the ongoing evolution of contract analyzers. TestBreeder can
continuously expand the test cases by adding more elements
and mutation operators.

APPENDIX A
L3 CODE SEEDS SAMPLES
A. ABI ENCODER BUG
Figure 17 illustrates the code snippets of the code set
with the ABIEncoderV2 compiler bug. The initializa-
tion seed in Figure 17a consists of the pragma direc-
tive and initialization components. The compiler version
that triggers the ABIEncoderV2 bug is 0.5.5. The state
variable init has four random numbers on Lines 7-9.
On Line 18-20, tmp_i and fin_i are originated from the
same value but are written by different values due to the
ABIEncoderV2 bug. For the auxiliary seed, Figure 17b
presents the function arrayCheck verifies the equality of
two given arrays. Finally, in the enclosure seed of Figure 17c
uses arrayCheck as the entering condition.

B. EXPONENT CLEAN UP BUG
Figure 18 illustrates the code snippets of the code set with the
ExponentCleanUp compiler bug. The initialization seed
only has the pragma directive. ExponentCleanUp is
fixed in Solidity 0.4.25, so we use 0.4.24 in Figure 18a. In the
auxiliary seed, the function f returns an unexpected value due
to the ExponentCleanUp bug. On Line 2, while 256 is
assigned into y, theExponentCleanUp bug is triggered in
EVM. For the enclosure seed, then Figure 18c reveals that the
condition on Line 2 is always false.

FIGURE 17. ABI encoder bug example.

FIGURE 18. Exponent clean up bug example.

C. HIGHER-ORDER BYTE CLEAN STORAGE BUG
Figure 19 illustrates the code snippets of the code set with
the HigherOrderByteCleanStorage compiler bug.
The pragma directive in Figure 19a uses Solidity 0.4.3
because HigherOrderByteCleanStorage is fixed at
0.4.4. In the initialization seed, two state variables are
defined. On Lines 1 and 2, both challengeCoin and
random are defined but only challengeCoin is ini-
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FIGURE 19. Higher order byte clean storage bug example.

FIGURE 20. Uninitialized storage pointer bug example.

tialized to 0. In the auxiliary seed of Figure 19b, the
constructor initializes random as the last digit of the
unexpected value, now. Finally, in the enclosure seed,
the HigherOrderByteCleanStorage is triggered on
Line 2 of Figure 19c. The decrement of challenge causes
underflow through the SUB instruction. The underflowed
value overwrites random. Thus, the condition of Figure 19c
cannot be satisfied.

D. UNINITIALIZED STORAGE POINTER BUG
Figure 20 illustrates the code snippets of the code set with
the UninitializedStoragePointer compiler bug.
The pragama directive in Figure 20a uses Soldity 0.4.24
because UninitializedStoragePointer is patched
at 0.4.25. In the initialization seed, two state variables and
a struct type are defined. random is initialized as an inte-
ger of less than 10 on Line 5. lastPlayed is defined
but is not initialized on Line 6. A struct GuessHistory
is also defined but is not initialized on Lines 8-11. In the
enclosure seed of Figure 20b, player and number in

guessHistory are initialized on Line 2-4 as the given
msg.sender and randomNumber, respectively. How-
ever, due to the UninitializedStoragePointer bug,
the separated state values, random and lastPlayed are
instead overwritten as the two given values. Thus, the condi-
tion on Line 5 is always false, with Solidity 0.4.24.
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