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Abstract—In this paper we address the issue of retaining
user anonymity within a permissioned blockchain. We present
the ChainAnchor architecture that adds an identity and
privacy-preserving layer above the blockchain, either the private
blockchain or the public Blockchain in Bitcoin. ChainAnchor
adds an anonymous identity verification step such that anyone
can read and verify transactions from the blockchain but only
anonymous verified identities can have transactions processed.
We refer to such blockchains as semi-permissioned blockchains.
ChainAnchor builds upon and makes use of the zero knowledge
proof mechanisms of the EPID scheme, which has the advantage
of an optional cryptographic binding to a TPM tamper-resistant
hardware. The use of tamper-resistant hardware provides a
significant increase in security, not only for identity-related
information but also for the protection of keys used by Bitcoin
wallet applications.

Index terms: Cryptography, Identity Management, Anonymity,
Digital Currency.

I. INTRODUCTION: IDENTITIES AND ANONYMITY IN
PERMISSIONED BLOCKCHAINS

The rise to prominence of the Bitcoin decentralized digital
currency system [1] has introduced new interest in blockchains
as a infrastructure mechanism for maintaining a shared ledger.
The success of the Blockchain distributed ledger within Bit-
coin as a permissionless and public blockchain system has
created interest in the possibility of permissioned and pri-
vate blockchains. Furthermore, the decentralized processing of
transactions in Bitcoin has raised interest in the possibility of
a “decentralized digital identity” system for public and private
blockchains.

In considering permissioned private blockchains, there is
a risk that users of the system may loose the degree of
anonymity which they enjoy within Bitcoin as a permission-
less system. In the Bitcoin system a user obtains anonymity
because he or she generates the public-key pair used to transact
in Bitcoin. Only the user knows his/her private-key. When
designing permissioned blockchains, there is the temptation
to simply link the user’s Internet identity (from outside the
blockchain) to the user’s public-key for the purposes of
enforcing access control over the private blockchain. However,
this act of linking may result in the disclosure of the true
identity of the user holding the public-key. In turn, this may
limit the social acceptability of permissioned blockchains and
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Fig. 1. ChainAnchor Layers

limit their adoption to only private organizations or closed
consortiums.

In this paper we address the issue of retaining user
anonymity within permissioned blockchains. We present the
ChainAnchor1 architecture that adds an identity and privacy-
preserving layer above blockchains (including the Blockchain
in the current Bitcoin system).

ChainAnchor adds an anonymous identity verification step
using the EPID scheme [2] that allows anyone to read
and verify transactions from the blockchain but allows only
anonymously verified identities to have their transactions
processed. We refer to such semi-private blockchains as
semi-permissioned blockchains to distinguish it from “hybrid
blockchains” – which refers to a business model [3].

Semi-permissioned blockchains are useful in a number of
deployment scenarios, such as within a consortium of com-
peting members who need to share a common ledger but who

1The name “Chain Anchor” is derived from the analogous concept of trust
anchors in the TAMP protocol (RFC5934).
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need to retain anonymity when transacting to the ledger in
order to maintain their competitive edge.

In developing the ChainAnchor architecture we seek to
fulfill the following objectives:

• Anonymity of users: Users achieve the same degree of
anonymity as is currently achieved in the Bitcoin system.

• Anonymous permission verifiability: Verification of
a User or Miner leaves them in the same degree of
anonymity as in the Bitcoin system.

• Permissions Enforcement: Only anonymous Users who
have obtained permission will have their transactions
processed. Similarly, only Miners who have obtained
permission will have their work remunerated.

• Revocation of transaction keys: A verified anonymous
User whose private-key has been lost or stolen can
anonymously request the priovate-key be placed on a
“revoked-keys” list.

• Functional independence: The permissions mechanism
must be independent from the blockchain (including the
current Blockchain) and does not alter its operation.

• No change to current Bitcoin keys: The current Bitcoin
keys and addresses remain unchanged.

A note regarding terminology: in this paper we use the
current public permissionless Blockchain (cap “B”) in the
Bitcoin system as the focus of our discussions regarding
ChainAnchor. This is primarily because the Blockchain is an
operational distributed ledger within an operational peer-to-
peer (P2P) network of several thousand nodes. It has been well
studied and readers are assumed to be familiar with it. As such,
designing ChainAnchor for the public Blockchain will allow
it to be deployable also in private blockchain systems – which
may have a different transaction/block format and may have
different consensus algorithms. We use the term transaction
keys generically to refer to public-key pair that the user self-
generates and owns in Bitcoin.

The rest of the paper is organized as follows. In Section II
we provide some background to the EPID and DAA schemes
that underlie ChainAnchor. Readers familiar with EPID and
DAA can skip this section.

In Section III where present the proposed ChainAnchor
architecture. Section IV briefly explains two possible deploy-
ment modes of ChainAnchor (a fully permissioned deploy-
ment, or a mixed permissioned/permissionless deployment).
We also briefly discuss some possible remuneration models
for Miner who participate in ChainAnchor.

We follow with a discussion on integration of ChainAnchor
with Identity Providers and identity management protocols in
in Section VI, and close the paper with some proposed future
work.

The current paper seeks to be readable to a broad audience
and to focus on deployment aspects in the context of services.
As such it does not cover in-depth the cryptography behind
EPID and DAA, which has already been well treated else-
where. Here we focus instead on the functions and protocols
above the EPID layer.

Readers seeking more details on the EPID scheme will find
a short summary in the Appendix which follows the notational
convention of [2]. The current paper focuses on an RSA-based
EPID scheme based on the Camenisch-Lysyanskaya signature
scheme [4] and the DAA scheme of Brickell, Camenisch and
Chen [5]. Readers are directed to the authoritative papers
of [5] and [2] for an in-depth discussion. An EPID scheme
using bilinear pairings can be found in [6]. It is based on the
Boneh, Boyen and Schacham group signature scheme [7] and
the Boneh-Schacham group signature scheme [8].

II. BACKGROUND: EPID AND DAA

We propose to build the ChainAnchor system for permis-
sioned blockchains based on the Enhanced Privacy ID (EPID)
scheme [2], which is an extension of Direct Anonymous At-
testation protocol (DAA) [5] for user privacy in the TPMv1.2
hardware [9].

A. DAA and the Trusted Platform Module

The DAA protocol was developed initially to solve a
requirement for privacy within the Trusted Platform Module
(TPM) hardware chip [9]. The TPM is the security hardware
that was developed by the PC industry starting from 1999
within the Trusted Computing Group (TCG) consortium for
the purpose of providing low-cost tamper resistant crypto-
graphic hardware for the worldwide PC market. To date,
several hundred million TPMs (version 1.2) have been manu-
factured and have shipped within PC computers worldwide.

The design of the TPM followed three (3) important prin-
ciples of trustworthy computing [10]:
• Unambiguous identification: A given TPM instance must

be unambiguously identifiable.
• Operates unhindered: A given TPM instance must be able

to operate unhindered.
• Truthful attestations: A given TPM must be able to

correctly report its internal status truthfully.
Although the TPMv1.2 hardware possesses a number of

advanced security and privacy-enhancing features, currently
the TPM is most commonly used to store cryptographic keys
for files/folder encryption (e.g. Microsoft’s BitLocker [11]) or
for keys to access self-encrypting disk drives [12]. Thus it
is not an exaggeration to state that much of the TPMv1.2
advanced functions today remain underutilized. Part of the
reason is the current lack of supporting infrastructure for
deploying these advanced features (see [13]–[15]).

The DAA protocol was a feature built into the TPM version
1.2 as a privacy mechanism to prevent the tracking of TPM
hardwares. Each TPM is unambiguously identified by a public
key pair (referred to as the Endorsement Key (EK) pair). The
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EK private key resides inside the TPM hardware and cannot be
read-out of the TPM. The EK public key is placed within an
EK-Certificate structure as a way to convey the manufacturing
provenance of the TPM hardware. However, since the EK-
Certificate (containing EK public key) is accessible outside
the TPM, there was concern about the possibility of tracking
TPMs based on the EK public key.

In order to counter this potential privacy weakness, the DAA
scheme was added in TPMv1.2 by the Trusted Computing
Group to prevent an external entity from tracking a TPM. At
the same time the DAA scheme allowed any external party to
gain assurance about the provenance of a given TPM hardware
– that the TPM is a genuine hardware produced by a legitimate
manufacturer that conforms to the TCG specifications.

In the DAA scheme, an entity called the Issuer would create
a group public key that is shared across many TPMs. Each
TPM, however, would obtain a unique membership private
key from the Issuer. The notion of a “group” here refers to
a group of legitimate TPM chips, manufactured by a known
manufacturer compliant to the TPM specifications.

To “authenticate” as a group member – namely to prove
that a TPM is legitimate – the TPM generates a signature
using its membership private key such that the signature can
be verified by a Verifier entity using the group public key.
Essentially, the DAA scheme allows a verifier to know that
a TPM was produced by a manufacturer, but not learn about
the identity of the TPM (i.e. which TPM created the DAA
signature).

B. Why EPID and DAA: Motivations

There are a number of reasons why we believe EPID (and
the DAA on which it is built) offers an attractive direction for
anonymous verifiable identities for permissioned blockchains
and other Internet related applications:
• Substantial deployment base: The DAA protocol is a

core part of the TPMv1.2 standard specification, and
supported by the majority of industry PC OEMs. Today
several hundred million TPMs (Version 1.2) are already
in the field within PC computers and other devices.

• Standards Status: The EPID scheme reached ISO
International Standard status in 2013 (see [16] and [17]).

• Option to bind to tamper-resistant hardware: The EPID
protocol can be deployed without TPMv1.2 hardware,
with the option to add and enable a tamper-resistant
TPM at a later stage. This option may be attractive to
Identity Providers who may wish to deploy ChainAnchor
in a phased approach. The TPM hardware can internally
generate a Bitcoin public key pair, and sign the Bitcoin
transactions using these on-board keys. If the User
loses his/her device with the TPM, the Bitcoin currency
will be irretrievable, but will be secure from theft (i.e.
currency destroyed).

• Backup of hardware-based keys: The hardware also offers
a Backup-and-Migration protocol (see [18] and [19])
that allows sealing of keys (including user’s keys) for
off-device secure backups. As such, it provides a strong
mechanism for users to “backup their currency” (i.e.
Bitcoin private keys). The TPMv1.2 backup protocol will
only restore the sealed keys to the same TPM hardware.
The TPMv1.2 migration protocol will only move/transfer
the sealed keys to a new TPM hardware that has
undergone a take-ownership by the same user/owner.

EPID is not the only anonymous identity protocol available
today. The work of Brickell et al. [5] introduced the first RSA-
based DAA protocol in 2004. A related anonymity protocol
called Idemix [20] employs the same RSA-based anonymous
credential scheme as the DAA protocol. However, Idemix
cannot be used with the TPMv1.2 hardware (or the new
TPMv2.0 hardware).

Another related protocol called U-Prove [21] can be
integrated into the TPM2.0 hardware (see [22]). However, the
U-Prove protocol has the drawback that it is not multi-show
unlinkable [23], which means that a U-Prove token may only
be used once in order to remain unlinkable.

III. CHAINANCHOR DESIGN

Our proposed ChainAnchor system makes use of the zero-
knowledge proof protocol of EPID to allow a User to prove to
a Permissions Verifier entity that the User is a member of the
Permissioned Group and therefore has the privilege to have
their transactions processed and added to the blockchain. The
permissioned-group is created by a Permissions Issuer entity
at the request of a creator (organization or person).

The User has to cryptographically “bind” his or her trans-
action public-key to the zero-knowledge proof sent to Permis-
sions Verifier, resulting in that transaction public-key being
recognized as an “identity” that had obtain permission to
transact on the blockchain. The Permissions Verifier adds
the approved transaction public-key to a Verified Identities
Database operated by the the Permissions Verifier. Depending
on the deployment mode, this database may instead be op-
erated by the Permissions Issuer. Similarly, a Miner (mining
node) who wishes to participate in ChainAnchor must perform
the same zero-knowledge proof process.

Depending on the mode of operation (see Section IV) the
Verified Identities Database can be private or be publicly
readable. The method to read from the database is out of scope
here, though there is considerable deployment experience for
such databases in the form of CRL-databases in X509-based
PKI [24] using protocols such as OCSP [25].

Note that the User can bind as many self-asserted transac-
tion public-keys to the zero-knowledge proof sent to Permis-
sions Verifier as needed (either through submitting in batches,
or submitting individual public-key one at a time). This is
consistent to the design and operations of Bitcoin today where
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Fig. 2. Overview of ChainAnchor interactions

a User can use any number of self-created public key pairs in
Bitcoin.

ChainAnchor adds an additional simple step to the process-
ing (mining) of a transaction performed by a Miner. Prior
to mining a transaction signed by a given transaction public-
key, the mining node needs to look-up the Verified Identities
Database to check that the transaction public-key is listed in
that database. That is, it needs to check that User’s public key
is “permissioned” to transact on the blockchain.

Similar to EPID and related schemes, the Permissions
Verifier is assumed not to be in collusion with the Permis-
sions Issuer, and both are expected to be a separate entities
(physically, operationally and legally).

In the following we describe the entities in the ChainAnchor
system and the steps of ChainAnchor.

A. Entities in the System

The set of entities in ChainAnchor does not depart signif-
icantly from the those in EPID and DAA. However, in order
for EPID to be deployable with the current Bitcoin system –
which is currently a system running independently from any
existing identity infrastructures – in ChainAnchor we propose
to converge the roles in EPID with those found in identity
management protocols today as deployed by Identity Provider
(IdP) services. Section VI will discuss integration with Identity
Providers.

In ChainAnchor, we define transactions and blocks of trans-
actions as follows:

• Permisisoned-Transaction:
We define a permissioned-transaction to be one in
which the originator and recipient of the transaction are
members of the same permissioned-group.

• Permisisoned-Block:
We define a permissioned-block to be a block of
permissioned-transactions. That is, for each transaction
in the block the originator and recipient of the transaction
are members of the same permissioned-group.

Figure 2 summarizes the entities and the interactions among
the entities:

• Identity Provider and Permissions Issuer (IdP-PI):
ChainAnchor merges the Permissions Issuer function
with the Identity Provider function to reflect the need,
among others, for addressability of the anonymous User
who holds the self-asserted transaction public-key (i.e.
Bitcoin public-keys).

That is, the Identity Provider function will need the
ability to communicate out-of-band with the anonymous
User outside the blockchain system in order to engage
the User in the ChainAnchor-related protocols (e.g. noti-
fying a User of a suspected compromise of their private
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keys, group discovery, etc). The IdP-PI also acts as the
revocation manager for EPID-related revocation variants.

The IdP-PI creates a Permissioned Group that imple-
ments the permissioned blockchain on behalf of an owner.
For a given permissioned-group, there is one (and only
one) IdP-PI.

• Permissions Verifier (IdP-PV):
The Permissions Verifier is the entity that performs the
anonymous identity verification of a given a User by
running the EPID zero knowledge proof protocol with
that User.

In ChainAnchor the Permissions Verifier function is also
operated by an Identity Provider that must be distinct
from the Permissions Issuer. This ensures both IdP-PI
and IdP-PV entities remain honest. Indeed, this is a core
design aspect of the DAA feature in TPMv1.2.

The Permissions Verifier maintains Verified Identities
Database containing all the Bitcoin public keys belonging
to the anonymous Users who have successfully run the the
zero-knowledge proof protocol against the Permissions
Verifier. The database only contains the Bitcoin public
keys and the time-stamp of the successful zero-knowledge
proof protocol completion. No other identifying informa-
tion is stored by the Permissions Verifier.

The IdP-PV together with the IdP-PI realize the
permissioned-group that implements the permissioned
blockchain. For a given permissioned-group, there can
be multiple independent IdP-PV entities (although only
one IdP-PI).

• Miner:
The Miner in ChainAnchor is entity that processes
(mines) a permissioned-block and records it on the
blockchain.
In implementation, the ChainAnchor Miner is the same as
the miner in Bitcoin with the extra step performed by the
ChainAnchor Miner. When composing transactions into
a block (i.e. the candidate block), for each transaction the
Miner must check that the public-keys of the transaction
are in the Verified Identities Database at the IDP-PV. That
is, it must verify that every transaction going into the
candidate block is a permissioned-transaction.

This simple look-up step will prevent the Miner from
wasting CPU cycles on transactions that are not part of
the permissioned-group.

Similar to the User, a Miner wishing to participate in a
given permissioned-group must perform the anonymous
identity verification to the Permissions Verifier (IdP-PV)
and have its transaction (Bitcoin) public-key added by
the IdP-PV to the Verified Identities Database of the
permissioned-group.

This is to ensure that the Miner can have query-access to
the database of the group, and that the Miner can claim

the reward for mining permissioned-blocks. Section IV
discusses the modes of operation of ChainAnchor and
the possible remuneration models.

• User:
The User in ChainAnchor is the same as the origina-
tor/recipient of a transaction in Bitcoin. The User can
have any number of self-generated transaction public-key
pairs. However, in order to participate in ChainAnchor
permissioned-group the User must perform the anony-
mous identity verification to the Permissions Verifier
(IdP-PV) and have its transaction (Bitcoin) public-key
added by the IdP-PV to the Verified Identities Database
of the permissioned-group.

By being a member of a permissioned-group, a User
has query-access to the database of that group. This
allows the User as the originator of a transaction to
verify that a recipient is also a member of the same
permissioned-group prior to sending the transaction.

• Creator/Owner:
Although not shown explicitly in Figure 2, a permissioned
blockchain must be created and owned by an organization
or individual. We refer to this entity or person as the
owner of a permissioned-group (mechanism) that
implements the permissioned blockchain. The IdP-PI
and IdP-PV are service providers that realize and deploy
the permissioned-group on behalf of the owner of the
permissioned blockchain.

B. Keys in the System

The ChainAnchor system uses a number of cryptographic
keys – beyond the User’s transaction public-key pair. These
keys are summarized as follows:
• Membership Issuing Private Key:

This key is generated by the IdP-PI for each
permissioned-group that the IdP-PI establishes. This
key is unique for each permissioned-group. This key is
used by the IdP-PI in enrolling or adding new Users to
the permissioned-group. For each permissioned-group
impelemented by the IdP-PI, the IdP-PI entity must
generate a unique Membership Issuing Private Key,

• Membership Verification Public Key:
This key is generated by the IdP-PI and is delivered over
a secure channel to the Permissions Verifier entity (IdP-
PV). This key is unique for each permissioned-group.
The key allows the IdP-PV to validate the membership
of a User (in the corresponding permissioned-group)
through the zero knowledge proof protocol that the
IdP-PV executes with the User.

• User’s Transaction Public-Key Pair:
This is the transaction public-key pair (i.e. Bitcoin
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public-key pair) that the User uses to transact on the
permissioned blockchain.

• Personal Identity Public-Key Pair & Certificate:
These are traditional public-key pairs and X509 certifi-
cates that identify the entity that posses them. Being
service providers, the IdP-PI and IdP-PV are assumed to
have X509 certificates. Users may not have a certificate
but are assumed to have personal public-key pair. These
keys are denotes as follows (in the notation of [2]):

– IdP-PI public-key pair: We denote the public key
pair of the IdP-PI as (KPI ,K

−1
PI ) with the public

key being KPI .

– IdP-PV public-key pair: Similarly, we denote the
public key pair of the IdP-PV as (KPV ,K

−1
PV ) with

the public key being KPV .

– User’s transaction public-key pair: We denote
the User’s transaction (Bitcoin) public-key pair
as (Kbitcoin,K

−1
bitcoin), with the public key being

(Kbitcoin).

– User’s personal public-key pair: We denote
the personal public-key pair of the User as
(Kuser,K

−1
user) with the public key being Kuser.

The User must never associate his/her personal
public-key pair with his/her transaction (Bitcoin)
public-key pair

C. ChainAnchor Protocol Steps

In the following, we describe the steps of the ChainAnchor
design (see Figure 2).

[Step 0] IdP-PI Establishes Permissioned Group:
This step is not shown in Figure 2. Depending on the busi-

ness model of the IdP-PI and IdP-PV, the IdP-PI can establish
permissioned-group as fee-paying service to customers (e.g.
Enterprises).

As part of the creation of a permissioned-group, the IdP-
PI generates a number parameters that are unique to the
permissioned-group and are used to create two important keys
related to the function of the IdP-PI as the Permissions Issuer:
• Membership Verification Public Key: KMV PK

The IdP-PI creates this key to be used later by the
Permissions Verifier entity (IdP-PV) when engaging
the User in the zero-knowledge proofs protocol. (See
Equation 2 in Appendix A).

• Membership Issuing Private Key: KMIPK

The IdP-PI creates this key in order to issue unique keys
to Users in the system that allows the User later to prove
membership to the Permissions Verifier entity (IdP-PV).
(See Equation 3 in Appendix A). This issuing private key
is kept secret by the IdP-PI.

[Step 1] IdP-PI Publishes Verification Public Key:
In this step, the IdP-PI makes known the Membership Verifi-

cation Public Key (KMV PK) to the Permissions Verifier (IdP-
PV). We assume a secure channel with mutual authentication
is used between the IdP-PI and IdP-PV entities.

[Step 2] User Requests Membership
An anonymous User obtains permission to transact on

the permissioned blockchain by requesting membership to
the permissioned-group that implements the permissioned
blockchain. The User sends the request to the IdP-PI that
manages the permissioned-group of interest. The User must
perform a number of steps to become a member:
• User obtains the Membership Verification Public Key:

The User must obtain KMV PK from the IdP-IP using
a secure channel, with mutual authentication (e.g.
using their respective public keys KPI and Kuser).
The Membership Verification Public Key is shown in
Equation 2 in Appendix A.

• User validates the Membership Verification Public Key:
Prior to using some of the parameters in the key the User
must verify that these parameters are formed correctly.

• User generates commitment parameters: The User uses
some of the parameters in the Membership Verification
Public Key to create his/her own commitment parameters
that “blinds” the User’s own secret keying material. (See
Equations 4 and 5 in Appendix A).

• User sends commitment parameters to the IdP-PI: The
User sends the commitment parameters to the IdP-PI,
who in-turn must verify that these parameters are formed
correctly.

In requesting membership to the IdP-PI as the service
provider, the User may need to reveal his/her actual identity
in order to be admitted into the permissioned blockchain.
This process is external to the blockchain. Hence the User’s
personal public-key pair used to secure the download of
KMV PK and to upload the blinded commitment parameters

Although the IdP-PI may learn the User’s true identity (e.g.
for business purposes), a User must never reveal their personal
public-key pair or their identity to the IdP-PV entity.

In creating secure channels with either the IdP-PI or
IdP-PV the User must never use his/her transaction (Bitcoin)
public-key pair, as that would destroy the anonymity of the
transaction public-key pair.

[Step 3A] IdP-PI delivers Group-Member Keying Parameters
In this step, the IdP-PI generates a number of group-

member keying parameters that are specific to the requesting
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User, based on the commitment parameters that the User had
submitted in the previous step.

[Step 3B] User Generates User-Member Private Key
Upon receiving the user-specific group-member keying pa-

rameters, the User uses these parameters to generate his/her
own User-Member Private Key, denoted as KUMPK . (See
Equation 6 in Appendix A).

It is worthwhile to note at his point that there is a Many-
to-1 asymmetric relationship between multiple User-Member
Private Keys and the single Membership Verification Public
Key (KMV PK) that was delivered from the IdP-PI to the IdP-
PV entity in Step 1. That one verification public key KMV PK

allows the IdP-PV verify all permissioned-group members (i.e.
Users) who wield their own respective User-Member Private
Key KUMPK

More specifically, if two Users U1 and U2 independently
presents a message with a signature-of-knowledge (see Equa-
tion 8) created using keys KUMPKu1 and KUMPKu2 respec-
tively, then the Permissions Verifier IdP-PV can verify both
signature using the one verification public key KMV PK but
it will not be able to distinguish between Users U1 and U2.
Indeed, it is this very feature found in the DAA scheme [5]
that motivated the adoption of the DAA scheme for privacy-
enabling the TPM hardware.

As part of this step, the User has to choose a base parameter,
which can be a random base or a named-base (See Equations 4
and 5 the Appendix). In choosing between the random-based
or named-based approaches, there is essentially a trade-off be-
tween full anonymity (privacy) and convenience. The named-
based approach may be useful if several IdP-PV entities exist
and the User seeks to use the IdP-PV that he or she trusts.

The signatures from the User states (identifies) the identity
of the IdP-PV entity that the User seeks to use. However, in
this case the IdP-PV entities may build-up a correspondence
list between the EPID key used in the signature and the
transaction (Bitcoin) public-key, thereby somewhat reducing
the anonymity of the User in exchange for improved value
added services provided by the IdP-PV.

[Step 4] User Anonymously Proves Membership to IdP-PV
The anonymous membership verification protocol consists

of a number of sub-steps following the challenge-response
model. The User sends a request to the Permissions Verifier
(IdP-PV), and in-turn the IdP-PV challenges the User with
some parameters that the User must respond to.

In engaging the IdP-PV entity, the User must never use
his/her own personal public-key pair, as this would disclose
the User’s true identity.

In requesting the IdP-PV for an anonymous membership
verification, a secure channel with only one-way authentication
is required. That is, only the IdP-PV needs to prove its true
identity as a service provider. This is because the User must
obtain assurance that it is engaging the correct IdP-PV, and
not a bogus server masquerading as the IdP-PV. As such, the
secure channel between the User and the IdP-PV must use the
server-side certificate of the IdP-PV. (This is already common
everyday practice today by many service providers).

The sub-steps of the anonymous membership verification
protocol are as follows (Figure 3):
• The User sends a request to the IdP-PV for an

anonymous membership verification. Although
unnecessary, depending on the implementation the
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User may include a copy of his/her transaction public
key Kbitcoin.

• The Permissions Verifier IdP-PV responds by returning
a challenge message m and a random nonce npv to the
User. Note that if the User is a bogus entity or person,
they would not have engaged the IdP-PI in Step 2 and
Step 3 with a unique (User-chosen secret) commitment
parameter. As such, a bogus user will not be able to
continue undetected by the IdP-PV beyond the next step.

• Upon receiving the challenge message m and the
random nonce npv from the verifier IdP-PV, the User
must compute a “signature of knowledge” of the
commitment parameter that the User supplied to the
IdP-PI in Step 2. The signature-of-knowledge is denoted
as σ. (See Equation 8 in Appendix A).

As input into the signature-of-knowledge computation,
the User inputs:

– The User’s Membership Verification Public Key
(KMV PK) which the User obtained from the Per-
missions Issuer IdP-PI in Step 2. (See Equation 2 in
Appendix A).

– The User’s own User-Member Private Key KUMPK

which the User computed in Step 3. (See Equation 6
in Appendix A).

– The challenge m and the nonce npv obtained from
the Permissions Verifier IdP-PV.

• As part of the ChainAnchor protocol, the User must
sign the value σ using the User’s transaction private
key K−1bitcoin. The signature is denoted as SIGσ . The
User can use the signature algorithm that is already
built-in and deployed in the Bitcoin system (e.g. ECDSA
using secp256k1 curve). This provides a very simple
cryptographic binding between the User’s transaction
key-pair and the signature-of-knowledge proof σ.

• The User sends the following three values to the IdP-PV:

(σ, SIGσ,Kbitcoin) (1)

• The IdP-PV validates signature-of-knowledge σ, and re-
turns an acknowledgement of a successful verification
process to the User. The IdP-PV then adds the User’s
transaction public key Kbitcoin to the Verified Identities
Database.

(At this point the IdP-PV has the option to generate
a new “anonymous Internet identity” for the User and
returning it to the User as part of the acknowledgment.
This identity provides addressability of the anonymous
User outside the blockchain system. This will be

discussed further in Section V).

Equation 1 represents the cryptographic binding between
the proof of membership values and the User’s transaction
public key pair. Depending on the implementation of the
permissioned-group, the User could also send a batch of
transaction public keys (Kbitcoin1

,Kbitcoin2
, . . . ,Kbitcoinj

) in
Equation 1 to the IdP-PV. However, this batch processing
approach may allow the IdP-PV to later track and correlate
transactions using these keys.

A further improvement can be made by the User including
the basename value in the signature sent to the Permissions
Verifier. This allows the User to choose the Permissions
Verifier that he or she trusts, several of which may exists at
any one time. This approach is taken the DAA-SIGMA key
exchange protocol [26], which embeds DAA within the key
agreement flows.

[Step 5] User Transacts on Permissioned Blockchain
In this phase the User transacts on the permissioned

blockchain in the usual manner (as in Bitcoin), using the
transaction private-key K−1bitcoin to sign transactions.

[Step 6] Miner Processes Transaction
Following the normal Bitcoin transaction processing in the

peer-to-peer network, a Miner fetches a transaction (i.e. from
the pool of unprocessed transactions) and prepares to process
that transaction.

[Step 7] Miner Validates User’s Public Key
Prior to processing a transaction for inclusion into a block,

a Miner participating in the ChainAnchor permissioned-group
must check that the public-key found in the transaction
has been approved to participate in the permissioned-group.
That is, the Miner must first look-up the Verified Identities
Databases at the IdP-PV to ensure the public key is in the
database.

Miners who are not participating in the ChainAnchor
permissioned-group will be oblivious to this validation step
and will process the transactions in the usual Bitcoin way.

[Step 8] Miner Records Transaction
If the public key Kbitcoin used in the User’s transaction

exists in the Verified Identities Database, the ChainAnchor
Miner proceeds with processing the transaction (i.e. add
to block, perform proof of work, etc). Otherwise the
ChainAnchor Miner ignores the transaction.

D. Revocation of Lost or Stolen Keys

One of the major weaknesses – or strengths, depending
on one’s point of view – of Bitcoin is its lack of a key
management infrastructure that supports end-users revoking
keys which they suspect have been compromised or stolen.
When a Bitcoin private key is lost or stolen, there is the
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danger that any Bitcoin currency associated with that lost
key will be stolen (i.e. currency transferred in a transaction
to another Bitcoin public key or address). Furthermore, the
decentralized and permissionless design of Bitcoin ensures that
there is no centralized authority or control. Consequently, there
is no entity in Bitcoin to whom a user can request or effect
the revocation of keys (i.e. keys that the User self-generated).
This weakness (strength) is a direct corollary of the anonymity
of the self-asserted (self-generated) key pairs in Bitcoin.

In a permissioned-group in ChainAnchor there is opportu-
nity for revocation services to be provided by the IdP-PI or
the IdP-PV entities depending on the type revocation required.
Currently we propose ChainAnchor to support two types of
revocations:
• Simple revocation (IdP-PV):

In the simple revocation, we assume that the User still has
a copy of their transaction public-key pair, but suspects
that the private key has been compromised (i.e. copied).
Here the User wishes to prevent further use of that trans-
action public-key pair in the permissioned blockchain.

The User sends a revocation-request message to the
Permissions Verifier (IdP-PV), which is signed using
the still-extant private key. Here the IdP-PV essentially
plays the role of a “Revocation Authority” (much in
the manner of X509 Certificate Authorities operate a
Certificate Revocation List (CRL) service [27]).

Note that the IdP-PV will only respond to requests
from existing anonymous verified members (i.e. Users
whose transaction public-keys are already in the Verified
Identities Database).

• EPID-based revocation (IdP-PI):
The second type of revocation makes use of the underly-
ing EPID revocation mechanisms, where the Permissions
Issuer (IdP-PI) entity becomes the revocation authority
for the Permissions Group (since it was the IdP-PI who
generated and “published” the Membership Verification
Public Key in Step 1 and who provided the User with a
unique Group-Member Keying parameters in Step 3).

EPID supports three variants of revocations: (a) re-
vocation based on the User-Member Private Key, (b)
revocation based on the signature-of-knowledge that the
User computed in Step 4 above, and (c) revocations done
proactively by the Permissions Issuer who may suspect
that a User has lost their keying material which the User
had obtained from the Permissions Issuer (in Step 3A).

The reader is directed to Appendix A and to [2] for more
details on the EPID-based revocation variants.

E. Discussion

It is important to pause here to review what has been
achieved in binding the the transaction (Bitcoin) public-key
pair with the zero knowledge proof of membership:
• User remain anonymous to IdP-PV: It is important to

note that when the User requests the Permissions Verifier

IdP-PV for an anonymous membership verification
the User signs the request using one of the user’s
transaction public-key pairs (and not a personal public-
key pair that can identify the User). Following Bitcoin,
it was the User who self-generated the transaction
public-key pair (keeping the private-key secret). As such,
the User remains anonymous to the Permissions Verifier.

• User remain anonymous to IdP-PI: Although the User
may have used his/her own personal public-key pair
in requesting membership to the IdP-PI (in Step 1)
and therefore made known their real-world identity
to the IdP-PI, the IdP-PI has no knowledge of which
transaction (Bitcoin) public-key pairs are owned by
the User. Subsequent to Step 3A the User becomes
anonymous even to the IdP-PI because the User injects
a secret parameter when generating the User’s User-
Member Private Key KUMPK (see Equations 4, 5 and 6
in the Appendix).

• Simple binding to transaction key pair: We have used a
digital signature as a simple binding mechanism between
the transaction public-key Kbitcoin and the proof of
membership (the value σ in Step 4). This is primarily
due the availability of the digital signature function
within the Bitcoin-core open source code. We note
that other more complex cryptographic bindings can be
also be applied, including the injection of the User’s
transaction key Kbitcoin as input into deriving the User’s
secret parameters (i.e. parameter f in Equations 4, 5
and 6 in the Appendix).

IV. MODES OF DEPLOYMENT AND INCENTIVES

In this section we discuss two modes of deployment for
ChainAnchor. Although other modes can be used, we limit
discussion to only these two modes.

A. Deployment Modes

• Homogenous Permisioned Nodes:
In this deployment mode (Figure 4), all of the nodes
participating in the peer-to-peer network are ChainAn-
chor nodes. That is, they all implement and enforce the
ChainAnchor anonymous identity verification steps. All
validated transactions in every block are permissioned
transactions.

This mode of deployment may be attractive to a
closed private blockchain deployment that is separate
from the permissionless blockchain in Bitcoin, and may
use its own non-standard transaction and/or block payload
format.

In this mode every node on the network must perform
independent validation of each new transaction block,
including verifying that each transaction is performed
by a permissioned User (i.e. the transaction public
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key is listed in the Verified Identities Database). Non-
conforming transactions are simply dropped.

• Mixed Permisioned-Permissionless Nodes:
In this mode of deployment, ChainAnchor is deployed as
an overlay above the current permissionless Blockchain.
Thus the peer-to-peer network is a heterogenous mix of
Bitcoin nodes and ChainAnchor nodes. The Bitcoin nodes
will be oblivious to permissioned-transactions.

Here a Miner has the capability to act as either a Bitcoin
miner or a ChainAnchor miner. That is, a ChainAnchor
mining node operates as a “dual-headed” server, where
it can process both ordinary Bitcoin transactions and
ChainAnchor permissioned-transactions.

However, the difference lies in the homogeneity of the
blocks of transactions they process and the remuneration
obtained from processing permissioned-transactions. In
order to be remunerated, when a Miner chooses to work
as a ChainAnchor mining node, it must create a block
consisting only of permissioned-transactions.

In this mode of deployment, both the Permissions
Issuer entity (IdP-PI) and the Permissions Verifier entity
(IdP-PV) are assumed to have bitcoin-addresses that are
known to members of the corresponding permissioned-
group.

B. The Mixed Permisioned/Permissionless Mode

As mentioned before, we define a permissioned-block to be
a block of transactions where for each transaction in the block
the originator and recipient of the transaction are members of
the same permissioned-group.

Depending on the degree of strickness of implementation,
the mixed permisioned/permissionless network in ChainAn-
chor offers a number of interesting features:

• The originator of a permissioned-transaction can verify
if the recipient is a member of the same permissioned-
group.

• The recipient of a permissioned-transaction can verify if
the originator is a member of the same permissioned-
group.

• A ChainAnchor mining node participating in a given
permissioned-group can verify if an unconfirmed trans-
action belongs to the permissioned-group. That is, both
the originator and recipient are members of the same
permissioned-group.

• The Permissions Issuer entity (IdP-PI) and Permissions
Verifier entity (IdP-PV) can independently verify whether
a block contains only of permissioned-transactions, or
if a block contains a mix of ordinary transactions and
permissioned-transactions.

In this mixed mode, when a Miner chooses to operate as a
ChainAnchor mining node, it must create blocks consisting
only of permissioned-transactions. The goal here is not to
create a separate chain, but rather use the current permission-
less Blockchain to carry permissioned-transactions relating to
Users in ChainAnchor.

Mining and consensus over a block of permissioned-
transactions is achieved the same way as in Bitcoin trans-
actions. In Bitcoin miners receive two types of rewards for
mining, namely new coins (created with each new block of
transaction) and transaction-fees (from the User/originator)
related to each transaction included in the block.

In ChainAnchor a successful miner receives a further ad-
ditional reward for completing a block consisting only of
permissioned-transactions. Being a participant in a ChainAn-
chor permissioned-group, the mining node can look-up the
Verified Identities Database to check if both the originator
and recipient are members of the same permissioned-group. As
such, the mining node can be selective in choosing transactions
to process.

Note that to a plain Bitcoin mining node (i.e. not par-
ticipating in a ChainAnchor permissioned-group) a block of
permissioned-transactions looks no different than ordinary
Bitcoin transactions. A plain Bitcoin node may be oblivious
to the fact that a transaction originated from (and destined to)
Users who are participating in a permissioned-group. The plain
mining node will not know to look-up the Verified Identities
Database at the IdP-PV.

Although beyond the scope of the current work, a ChainAn-
chor miner that created the block may embed information
about the ChainAnchor permissioned-group inside the block
header (e.g. permissioned group-ID) but such information will
be ignored by non-ChainAnchor nodes.

When ChainAnchor is deployed in a mixed permis-
sioned/permissionless mode, both the Permissions Issuer entity
(IdP-PI) and Permissions Verifier entity (IdP-PV) must inde-
pendently verify that a block contains only of permissioned-
transactions. Furthermore, both the IdP-PI and IdP-PV must
verify that the successful miner is also a member of the
permissioned-group. Note that both the IdP-PI and IdP-PV
have access to the Verified Identities Database.

A dishonest Permissions Verifier entity (IdP-PV) – who
denies payment to a successful participating miner – will
be found-out by the IdP-PI and other mining nodes who
participate in the same permissioned-group. This is because
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the IdP-PI can see (on the Blockchain) if the IdP-PV had
made payment to the successful miner (i.e. payment to the
miner’s bitcoin-address). It is in the interest of the IdP-PI –
who is a service provider operating the permissioned-group
on behalf of the group creator – to ensure that the IdP-PV
remain honest.

C. Remuneration Models: Fixed Fees & Pro-Rata

In the ChainAnchor mixed permisioned/permissionless
mode a successful miner receives a further additional pay-
ment (beyond the new coins and transaction-fees in Bitcoin)
for completing a block consisting only of permissioned-
transactions. This additional fee is paid by the Permissions
Verifier entity (IdP-PV) to the successful miner using a sepa-
rate Bitcoin transaction. Since the originator and recipient of
this payment are members of the same permissioned-group, the
occurrence of this payment can be verified by other members
of the permissioned-group (and indeed by anyone) by looking
at the from the underlying Blockchain (ie. search through
confirmed transactions).

Nodes who are not members of the permissioned-group
will only see a currency transfer from an originator (IdP-
PV) to a recipient (the successful miner). However, members
of the permissioned-group can independently verify that a
bitcoin-address Kminer has successfully mined NPG number
permissioned-blocks and has received the same NPG number
of payments from the bitcoin-address KPV . Here Kminer is
the miner’s bitcoin-address and KPV is the bitcoin-address of
the IdP-PV.

The reward fee for completing a ChainAnchor
permissioned-block is advertised by the Permissions Issuer
entity (IdP-PI). The mechanism to advertise this fee is beyond
the scope of the current work, but it should contain at least
the following information:

• Group ID: This is the identity (e.g. GUID) of the
permissioned-group. This value may be meaningful only
to members of the permissioned-group.

• Identity and address of the IdP-PI and IdP-PV: This
is the identity (e.g. X.509 certificate) and the bitcoin-
address of both entities.

Although outside the scope of the current work, a less strict
approach can be used for the block of transactions where a
block is permitted to carry both ordinary Bitcoin transaction
and permissioned-transactions. In this case, the reward for
the a successful miner may be computed as a “pro rata”
proportional to the number of permissioned-transactions in the
block.

Finally, the mixed permisioned/permissionless mode of de-
ployment maybe attractive to organizations who seek to run
their own permissioned-group but who do not wish (or cannot
afford) to deploy their own private blockchain consisting of a
private peer-to-peer network of nodes.

In this mode of deployment, the private organization (as
the owner of the ChainAnchor permissioned-group) can set
their own reward structure for participants in the permissioned-
group. If the reward for mining a permissioned-block is
considerably higher than the reward of mining an ordinary
Bitcoin block, a miner may opt to solely process permissioned-
transactions. A miner may in fact participate in multiple
permissioned-groups simultaneously, thereby increasing the
overall income from mining these various permissioned-blocks
of transactions.

V. ADDRESSABLE ANONYMOUS INTERNET IDENTITIES

The Bitcoin system currently does not provide “identities”
in the sense of Internet identities that possesses the feature
of addressability [28]. In Bitcoin an address is derived from a
User’s public key by simply passing the key through a SHA256
hash, and then passing the result through a RIPEMD160 hash.
The result is a 160-bit value (i.e. 20 bytes) that is referred to
as an “address” in Bitcoin. Sending currency to a User means
sending a transaction instructing a transfer of the currency to
that address. As such, the notion of a bitcoin-address only
has semantic meaning within the Bitcoin system. That is, this
160-bit identifier is “addressable” (routable) only within the
Bitcoin system.

Currently there are some new services within the Bitcoin
ecosystem that offers linking between a user’s Bitcoin address
and an Internet identity (e.g. the user’s Gmail address or
Twitter handle). However, today most free email services
require the user to submit additional personally-identifying
information under the guise of “account recovery” informa-
tion (e.g. a mobile phone number). As such, these services
effectively remove the anonymity of the Bitcoin public key.

In order for ChainAnchor to support human-friendly identi-
ties, it must provide a mapping between the human-identifier at
the digital identities layer and the bitcoin-addresses (or public
keys) at the Blockchain layer (see Figure 5).

A. Degrees of Relationships in ChainAnchor

Figure 5 illustrates the degrees of relationships among
identities in the ChainAnchor architecture:
(a) User’s known Internet identity and the IdP-PI: In

ChainAnchor when a human user seeks to participate
within a permissioned group, he or she must be approved
buy the group-owner (creator). This implies that some
form of personally-identifying information (PII) must be
disclosed from the user to the group-owner (and possibly
the IdP-PI entity that is hosting the permissioned group
for the owner).
As such in Figure 5(a) we assume that the Permissions Is-

suer (IdP-PI) entity has some PII about the user Alice (e.g.
her mobile phone number) and can identify the human
person (whose identity is alice@idp-issuer.com
in the Figure). Indeed, today it is common practice for
providers of free email services to request the user’s phone
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Fig. 5. Degrees of Identity Relationships in ChainAchor

number (and possibly location) at the time of account
creation.

Thus, in Step-2 of Section III-C, The IdP-PI knows the
true identity of the human User (Alice) – namely when
the User obtains the Membership Verification Public Key
KMV PK from the IdP-IP, and when the User submits
the commitment value that “blinds” the User’s own secret
keying material (Also see Equations 4 and 5 in Appendix
A).

(b) IdP-PI and the User’s Bitcoin public key: The anonymity
of the User is realized (Figure 5(b)) when in Step-3B of
Section III-C the User generates on his/her own User-
Member Private Key, denoted as KUMPK . (Also see
Equation 6 in Appendix A).

The cryptographic blinding function that the User
employed in Step 2 of the protocol prevents the
Permissions Issuer (IdP-PI) entity from knowing that
the key KUMPK was generated by the person (Alice)
whose Internet identity is alice@idp-issuer.com
in Figure 5.

(c) User’s Bitcoin public key and the IdP-PV: The Permis-
sions Verifier (IdP-PV) entity has no way of correlating be-
tween the User’s bitcoin key pair (which is self-generated
by the User) and the Internet identity employed by the
User (Figure 5(a)) to engage the Permissions Issuer entity.

When the User anonymously proves his or her member-
ship to IdP-PV (in Step-4 of Section III-C, Equation 1),
no personally-identifying information is given from the
User to the IdP-PV. In the entire ChainAnchor protocol,
the Internet identity of the User is never disclosed to the

IdP-PV.
Thus the relationship in Figure 5(c) is truly an

anonymous one. The IdP-PV only knows that the key-
holder of the Bitcoin public key has successfully prove
that he or she has been given permission to join the
permissioned-group being operated by the IdP-PI as a
service provider.

(d) Derived anonymous Internet identity for the key-holder:
The cryptographically anonymous relationship between
the Bitcoin key-holder (i.e. our User) and the IdP-PV in
Figure 5(c) lends to the possible creation by the IdP-PV
of a new anonymous Internet identity for the User. We
treat this in the next section.

B. Derived Anonymous Internet Identities

As mentioned previously, the cryptographically anonymous
relationship between the User and the IdP-PV in Figure 5(c)
lends the IdP-PV to create an anonymous Internet identity for
the User, as shown in Figure 5(d).

As a service to the anonymous User (Alice), the IdP-
PV could create a random (but humanly readable) Internet
identity for the User (e.g. anon123@idp-verifier.com)
and maintain the association between the user’s Bitcoin public
key and this new derived identity. Thus, the user Alice now
has a new anonymous Internet identity that she can use on
the Internet – which is linked to her transaction public key
(Bitcoin address) by the IdP-PV.

What makes this approach different from current systems
that link a Bitcoin public key directly to an Internet identity
(carrying PII) is the following:
• Trust derived from the IdP-PI permissions: In creating

the new anonymous Internet identity, the Permissions
Verifier is deriving trust from the Permissions Issuer
entity who had admitted the User (Alice) to the
permissioned-group (but without knowing Alice’s
Bitcoin public keys). Thus the IdP-PV has sufficient
assurance that the User is a known user to the IdP-PI,
and that he or she possesses some Internet identity that
was either issued by the IdP-PI or was issued by another
entity who was federated to the IdP-PI.

• No personally identifying information is disclosed:
Since the IdP-PV is deriving trust from the IdP-PI who
admitted the User into the permissioned-group, the
IdP-PV does not need any PII from the User in order to
create the new anonymous Internet identity for the User.

• Anonymously addressable: The Internet identity issued by
the IdP-PV (e.g. anon123@idp-verifier.com) in
Figure 5(d) is addressable and routable. It can be used
like any other Internet identity, with the IdP-PV entity
stepping-in as its validation-point when its legitimacy as
an identity is challenged.

That is, when a Relying Party (such as an
online merchant) queries the status of the identity
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anon123@idp-verifier.com, the RP can obtain
a signed assertion (e.g. SAML2.0 assertion, or OIDC
Claim) from the IdP-PV as the identity-issuer that attests
to the truthfulness of this anonymous address. In this role,
the IdP-PV is acting in its full capacity as an Identity
Provider operating under some legal trust framework.

VI. INTEGRATION WITH IDENTITY MANAGEMENT
PROTOCOLS

In ChainAnchor we propose to integrate the EPID-related
functions of the Permissions Issuer and Permissions Verifier
with identity management functions and protocols found in
Identity Provider (IdP) services today.

We use the term “identity management” in the sense of
IdP as defined in SAML2.0 [29] systems, and within the
more recent OpenID-Connect [30] system and User Managed
Access (UMA) system [31]. The later two systems belong to
the same family due to their common underlying token-based
authorization mechanism called OAuth2.0 [32].

To provide historical context, Figure 6 illustrates the 4-
corners model of authentication and authorization, mapping
ChainAnchor entities into that model. The 4-corners model
emerged out of the credit-card industry in the 1970s and 1980s
and provided a scalable processing model, where a card from
an issuing bank could be processed by any merchant and any
clearing bank. The model played an influential role in the
PKI space in the mid-1990s and in the development of core
concepts within identity management, notably SAML2.0 [29].

A. Integration with IdP Systems and Services

Integration with the current identity management protocols
and systems brings a number of advantages:
• Mature technology based on standards: Identity manage-

ment functionality today is a mature technology that is

supported in both Enterprise systems and in consumer-
facing services.

This lends ChainAnchor to be embodied within an IdP
server product for an intra-Enterprise scenario, or as a
service offered by an IdP service provider.

• Support for basic models of delegation: Identity manage-
ment technology today capture and technologically rep-
resent both session-based in-person authorizations (e.g.
web browser single-sign-on (Web-SSO)) [33] that require
the user to be present throughout the session, and also
“delegated authorizations” from the user to an application
(native application or web-based) that do not require the
user to be present at all times [32].

This lends ChainAnchor to be deployable in both
scenarios. For example, ChainAnchor could be integrated
into a software wallet application on the User’s PC
computer or mobile device. Alternatively, ChainAchor
could be integrated into a hosted wallet web-application
(operated by a third party) where the User would
“delegate” the web-application to transact (on the
Blockchain) on behalf of the User without needing the
User to be present at all times.

• Existence of Legal Trust Frameworks: Federated identity
management is a reality today within market verticals
and related industries. These are typically governed by
a Legal Trust Framework (LTF) agreements that clearly
delineate the right and obligations of entities participating
in the federation ecosystem. Examples of LTF agreements
are FICAM [34] and SAFE-BioPharma [35]. Note the
X509 Certificate Practices Statement (CPS) agreements
are also a form of a legal trust framework.
This is relevant for ChainAnchor because we believe

that a scalable deployment of anonymous verifiable
identities will require extensions to the current LTF that
delineates the roles and legal obligations of each entity
in the system. Extending existing LTF agreements to
include EPID-functions represents a more achievable
goal that creating a new legal trust framework solely for
EPID.

• Existence of CAs for hardware-certificates: Although
Certificate Authorities (CAs) have “dropped out of
favor” in the public mind in recent years, CAs and X509
certificates remain a crucial infrastructure component for
the Internet today and into the future. This infrastructure
will be needed should ChainAnchor be deployed with
the TPMv1.2 hardware.

B. Goals in Integration

In integrating ChainAnchor to identity management entities,
we seek to fulfill the following objectives:
• Extend IdP functions to support blockchain identities.

Provide new protocols and layer-bindings to allow
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Identity Providers to manage blockchain identities,
including Bitcoin addresses.

• Support Management of Permissioned Groups by IdPs.
Allow Identity Providers to support the function of cre-
ating and managing Permissioned Groups (e.g. as a ser-
vice), independent of the underlying blockchain technol-
ogy (i.e. current Bitcoin/Blockchain or future blockchain
ledgers).

This allows Enterprises and other organizations
to outsource part or all of their private-blockchain
management to Identity Providers that implement
ChainAnchor.

• Support federation between IdP-PI and IdP-PV entities.
Extend the the current identity-federation protocols
to carry EPID-related parameters and configuration
metadata between IdP-PI and IdP-PV entities.

• Support attribute assignments. Support the binding
between anonymous identities in ChainAchor with
attributes issued by external Attribute Authorities (or
Attribute Providers).

C. UMA Model for Identity & Resource Protection

In integrating the Permissions Issuer and Permissons ver-
ifier with identity management functions of the IdP, we are
proposing to follow the User Managed Access v1.0 (UMA)
standard [31] for distributed authorization. This is because the
UMA standard is a broader super-set of the OIDC1.0 [30]
and OAuth2.0 [32] standards. The term “resource” in UMA
includes objects (e.g. files, URLs, configurations, etc) as well
as RESTful API Endpoints.

Figure 7 shows ChainAnchor entities within the context of
the UMA distributed authorization model:

• Resource Owner creates permissions group (Fig-
ure 7(a)): The group-creator requests IdP-PI to create a
permissioned-group, and the Creator selects one or more
Permissions verifier entities IdP-PV. In UMA terminol-
ogy, the group creator/owner is referred to as Resource
Owner (RO).

The RO selects the protection levels required (e.g.
authentication methods), as well as the access-policies
to be applied to the resource. The resource in this
case includes the Group-Member Keying Parameters
(that the User must obtain from IdP-PI in Step 3A of
Section III-C) and the API End-Point at the IdP-PV to
which the User executes the anonymous membership
proof protocol.

• Client requests access to Group-Member Keying Param-
eters (Figure 7(b)): Here the User running the Native
Client requests access to a resource (namely the the
Group-Member Keying Parameters) that is sitting at the

Resource Server (RS#1) and is protected by Authoriza-
tion Server (AS#1) owned by the IdP-PI. The Client must
first obtain authorization from AS#1, which may also
include an authentication step.

Depending on the business model of the IdP-PI entity,
the Resource Server (RS#1) could be owned and operated
by the IdP-PI or it could owned by the Group Owner (as
the RO). This may be a subtle difference, but this allows
the IdP-PI some flexibility in offering its services. For
example, a corporate customer might want to operate
its own Resource Server RS#1 in-house (containing the
sensitive Group-Member Keying Parameters belonging
to the corporation), but may wish to outsource the
authorization tasks to a commercial IdP-PI service
running AS#1.

• Client requests access to Membership Verification End-
point at IdP-PV (Figure 7(c)): Here is the User run-
ning the Native Client seeks to anonymously prove its
membership of the permissions group to the IdP-PV. As
such, the Client is requesting access to the Membership
Verification Endpoint at Resource Server RS#2 at the IdP-
PV. Since the endpoint itself is a protected resource, the
Client needs to obtain authorization from Authorization
Server AS#2 that is protecting RS#2.

Note that the Verified Identities Database is another
protected resource at Resource Server RS#2 at the
IdP-PV. As such, a Miner in ChainAchor who wishes to
verify that a Bitcoin public key is in the Verified Identities
Database would need to obtain access authorization from
the Authorization Server AS#2 belonging to the IdP-PV.

Depending on the configuration of the Authorization Server
AS#2 and the Resource Server RS#2 at the IdP-PV, the
Membership Verification Endpoint could in fact be located at
the AS#2. In other words, the Resource Server function at
the IdP-PV entity could be co-located at (or collapsed into)
the Authorization Server AS#2.

D. User choosing Permissions Verifier entity

In ChainAnchor as in EPID and DAA, it is important that
the Permissions Verifier IdP-PV entity is distinct from the
Permissions Issuer IdP-PI, both in terms of legal services as
well as implementation. This is to avoid collusion on the
part of the IdP-PI and the IdP-PV, who together may wish
to sell “bogus” ChainAchor services at the expense of the
Group Creator/Owner and the Miners who participate in the
permissioned-group.

As such, in ChainAnchor a User is given the power to
choose the Permissions Verifier that the User trusts (e.g. by
reputation or by independence). How the User selects the IdP-
PV service provider is a business model that is beyond the
scope of the current work.

Once the user finds a suitable Permissions Verifier IdP-PV,
the User must get the IdP-PI to “publish” (i.e. give) a copy
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Fig. 7. Mapping IdP-PI and IdP-PV to the User Managed Access (UMA) Model

of the Membership Verification Public Key (KMV PK) to the
IdP-PV. This is Step 1 of ChainAnchor in Section III-C.

In ChainAnchor we propose to extend the OIDC [30]
exchange (authorization-code grant sequence) to implement
this phase. See Figure 8.

• User authentication using Internet identity:
In messages (1) to (2) of Figure 8 the User chooses the
Permissions-Group (denoted as group_id) that he or
she wishes to join. The User requests (or triggers) the
Permissions Verifier to obtain the Membership Verifica-
tion Public Key pertaining to the desired group.

Note that here the User uses his or her Internet identity
(e.g. alice@freemail.com) to connect to the User’s
account at the IdP-PV entity. The User does not release
any information about their Bitcoin keys.

• User authorize IdP-PI to deliver public key KMV PK :
In messages (3) to (5) of Figure 8 the Permissions Issuer
requests the User to authenticate himself or herself to the
Permissions Issuer and at the same time “authorize” the
Permissions Issuer to release a copy of the Membership
Verification Public Key to the Permissions Verifier.

The ”authorization” construct used here is the
mechanism used by OAuth2.0 to permit one entity to
obtain access to a resource (which in this case is the
relevant key KMV PK). In OAuth2.0 the process takes
two steps, where an authorization code is issued to a
recipient (here the IdP-PV), who then swaps it for a
token proper.

• IdP-PV swaps code for tokens:
Following standard OIDC flows, in messages (6) to (7)
of Figure 8 the Permissions Verifier (acting as the Client
to the Permissions Issuer) obtains two tokens, namely the
access_token and the id_token. These two tokens
are part of the OIDCv1.0 standard.

In ChainAnchor we extend the protocol by adding a
third token (epid_token) for the purpose of delivering
the Membership Verification Public Key KMV PK .

• IdP-PV uses EPID-token to get public key KMV PK :
ChainAnchor extends OIDC by introducing two addi-
tional messages (8) and (9) and a new end-point (called
the EPID-Info end-point).

In messages (8) and (9) the Permissions Verifier uses
its epid_token to obtain access to the desired resource
(namely the key KMV PK) by presenting the token to the
relevant EPID-Info end-point at the Permissions Issuer.

At the end of the above exchange, the Permissions Verifier
is in possession of the Membership Verification Public Key
KMV PK for the relevant permissioned-group.

E. User proving anonymous membership

There are a number of ways to implement the anonymous
membership verification protocol (Step 4 of Section III-C).
Here we describe two promising avenues for implementing
this step:
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• REST-based approach: In this implementation approach
the Client (operated by the User) goes through the steps
of Figure 3 using a REST-based request-response mes-
sage format (i.e. set of GET, PUT, POST, and DELETE
messages).

Here the Constrained Application Protocol (CoAP) [36]
may provide a suitable transport implementation for these
REST messages. Firstly, CoAP supports different types of
payloads, including JSON [37] payloads which is the for-
mat used in the JSON Web Tokens (JWT) [38] deployed
in OIDC and UMA. Furthermore standard methods exists
for JWT tokens signing [39] and encryption [40].

Secondly, CoAP supports constrained devices which
the User may be using (e.g. mobile phones, specialized
wallet hardwares, etc). As such, choosing to implement
the ChainAnchor anonymous membership verification
protocol in a CoAP-friendly manner may have benefits
in terms of expanded use-cases and broader types of
devices.

• SSL cipher-suite approach: In this implementation ap-
proach the anonymous membership verification ex-
changes are implemented as part of the SSL handshake
between the Client and the IdP-PV. This is the approach
taken in the SIGMA protocol [26] and its variant SIGMA-
CE implementation for constrained environments.

In this approach, a new SSL/TLS cipher suite must
be defined and must be implemented by both the Client
and the Authorization Server (or Resource Server) that
provides the Membership Verification Endpoint.

VII. CONCLUSIONS & FURTHER WORK

In this paper we have proposed the ChainAnchor system
that allows a User (i.e. holder of a transaction key-pair) to
prove anonymously that the User is a member of a permis-
sioned blockchain, and therefore have his or her transactions
be processed and be added to the permissioned blockchain.
ChainAnchor makes use of the zero-knowledge-proof protocol
of the underlying EPID scheme that is part of ChainAnchor.
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The User has to cryptographically “bind” the User’s transac-
tion public-key (i.e. Bitcoin public-key) to the zero-knowledge
proof sent by the User to a Permissions Verifier entity. Users
who successfully prove their membership of the permissioned
blockchain to the Permissions Verifier will have their trans-
action public key added to the Verified Identities Database
operated by the the Permissions Verifier. The database contains
the transaction public-keys of Users who have successfully
prove their membership using the zero-knowledge proof pro-
tocol, together with the time-stamp of the proof. No other
identifying information is stored by the Permissions Verifier.
Similarly, a Miner (mining node) who wishes to participate in
ChainAnchor must perform the same zero-knowledge proof
process and have its public key be added to the database.

We suggest two modes of deployment, with differing
possible incentive models. In the first deployment mode –
namely the homogenous permisioned nodes – all of the nodes
participating in the peer-to-peer network are ChainAnchor
nodes. This is equivalent to a fully private blockchain, where a
private organization operates all nodes of a private peer-to-peer
network.

In the second deployment mode – called the mixed
permisioned-permissionless nodes – ChainAnchor is de-
ployed as an overlay above the current permissionless public
Blockchain. Thus the peer-to-peer network is a heterogenous
mix of Bitcoin nodes and ChainAnchor nodes, with the
plain Bitcoin mining nodes being oblivious to permissioned-
transactions that are part of a permissioned-group.

When a Miner chooses to work as a ChainAnchor
miner, it must create blocks of transactions that are purely
permissioned-transactions. The goal here is not to create
a separate chain, but rather use the current permission-
less Blockchain to carry permissioned-transactions origi-
nating from Users in ChainAnchor. ChainAnchor miners
are rewarded higher for performing proof-of-work on a
permissioned-block, with the source of remuneration coming
from the owner of the permissioned group. The node performs
the same proof-of-work as in the current Bitcoin, and the same
consensus mechanism is used.

This mode of deployment has the advantage that it allows
an organization to overlay their own permissioned group atop
the public permissionless Blockchain, while maintaining the
anonymity of its group-members. This obviates the need for
the organization to operate their own private peer-to-peer
network of nodes, which maybe costly and have a lower
level of resilience against collusions. This mode also has
the advantage that it permits a private organization to recruit
miners who are willing to process permissioned-blocks on an
exclusive basis, and remunerate these miners at a higher rate.

Finally, we have proposed to integrate the ChainAnchor
zero-knowledge-proof protocol with the identity management
protocols found in Identity Provider (IdP) services today
(notably OpenID-Connect and UMA). There are multiple
advantages to integrating with standard identity management
protocols. These include a high degree of maturity of the
protocols, the availability of mechanisms for delegation of

authorizations, and the existence of legal trust frameworks that
can be extended to support the roles and responsibilities of
entities within a ChainAnchor deployment.

The current design of ChainAnchor fulfills the objectives
set at the start of the current paper. These objectives include
retaining the same degree of anonymity as is currently
provided for in Bitcoin, providing anonymous permission
verifiability, and achieving functional independence from the
current Blockchain in the Bitcoin system.

Looking ahead, there are number of features or aspects that
we plan to address:
• Support for Anonymous Attribute-Groups in IdP:

ChainAnchor allows a user to prove that he or she is
a member of an attribute-group – which is simply a
permissioned group whose members are users who posses
a given attribute (also called assertions in SAML2.0 or
claims in OpenID-Connect).

The User must obtain evidence of an attribute (e.g.
“Residence of Massachusetts”, ”Age over 18”, etc) from
external sources or attribute authorities (e.g. bank, trans-
portation authority, school, etc). The User then presents
these assertions to the Permissions Issuer (IdP-PI) entity
when the User seeks to obtain the group-member keying
material from the IdP-PI. The User can proves to the
IdP-PV that he or she is a member of the “Age over 18”
group.

This approach – though much less sophisticated
than the approach in [23] – provides a practical
on-ramp for Identity Providers who wish to support
anonymous attribute-groups without departing from the
ChainAnchor/EPID scheme.

• RESTful design for zero-knowledge proof protocol: We
plan to address the issue of implementing the EPID zero-
knowledge proof protocol within a RESTful exchange.
This would allow ChainAnchor to be deployed using
different transport protocols (e.g. HTTP, CoAP, et).

• Support for Anti-Money Laundering (AML):
ChainAnchor in the mixed permisioned-permissionless
mode can be used for AML purposes. This would need
proactive voluntary disclosure from the User since it is
the User who self-generated his/her Bitcoin public key
pair. Here ChainAnchor would be used to establish a
permissioned-group for “verified” (AML-friendly) and
“unverified” transactions.

This feature may be attractive to concerned citizens
who may wish to see Bitcoin grow over time but who
may wish to reduce the amount of laundered currency
passing through the Bitcoin network. Using ChainAn-
chor such users can remain anonymous but have the
option to disclose their identity (i.e. disclose the link
between derived anonymous Internet identity and Bitcoin
keys) when legally challenged regarding a suspicious
transaction. Such legal challenges should come from the
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appropriate authorities (e.g. US Treasury Department).
Note that when a user discloses one of their ChainAn-

chor public key pairs it does not affect the user’s re-
maining public key pairs that are also part of the same
permissioned group.

APPENDIX A
SUMMARY OF EPID

The EPID Scheme consists of a number of protocols or
phases leading to a user proving his/her membership in a given
group. In the following we summarize the RSA-based EPID
scheme as defined in [2].

A. Issuer Setup

In order to create a group membership verification instance,
the Issuer must choose a Group Public Key) and compute a
corresponding Group-Issuing Private Key).

For the Group-Issuing Private Key the Issuer chooses an
RSA modulus N = pNqN where pN = 2p′N + 1 and qN =
2q′N + 1 and where pN , pN , p′N and q′N are all prime.

The Group Public Key for the particular group instance will
be:

(N, g′, g, h,R, S, Z, p, q, u) (2)

The Group Issuing Private Key (corresponding to the Group
Public Key) is denoted as:

(p′N , q′N ) (3)

which the Issuer keeps secret).
In order to communicate securely with a User, the Issuer

is assumed to possess the usual long-term public key pair
denoted as (KI ,KI

−1), where KI is publicly know in the
ecosystem.

Any User who has a copy of the Group Public Key
(N, g′, g, h,R, S, Z, p, q, u) can verify this public key by
checking the following:
• Verify the proof that g, h ∈ 〈g′〉 and R,S, Z ∈ 〈h〉.
• Check whether p and q are primes, and check that q |

(p− 1), q 6 | (p−1)q and uq ≡ 1 (mod p)
• Check whether all group public key parameters have the

required length.

B. Join Protocol: User and Issuer

In the join protocol, a given User seeks to send to the Issuer
the pair (K,U) which are computed as follows.
• The User chooses a secret f and seeks to convey to the

Issuer a commitment to f in the form of the value U .
• The value U is computed as

U = RfSv′ (4)

where v′ is chosen randomly by the User for the purpose
of blinding the chosen f .

• Next the User computes

K = BI
f (mod p) (5)

where BI is derived from the basename of the Issuer
(denoted as bsnI ).

The goal here is for the User to send (K,U) to the Issuer and
to convince the Issuer that the values K and U are formed
correctly.

In the above Equation 5, a User chooses a base value B and
then uses it to compute K. The purpose of the (B,K) pair
is for a revocation check. We refer to B the base and K as
the pseudonym. To sign an EPID-signature, the User needs to
both prove that it has a valid membership credential and also
prove that it had constructed the (B,K) pair correctly, all in
zero-knowledge.

In EPID and DAA, there are two (2) options to compute
the base B:

• Random base: Here B is chosen randomly each time
by the User. A different base used every time the
EPID-signature is performed. Under the decisional
Diffie-Hellman assumption, no Verifier entity will be
able to link two EPID-signatures using the (B,K) pairs
in the signatures.

• Named base: Here B is derived from the Verifier’s
basename. That is, a deterministic function of the name
of the verifier is used as a base. For example, B could
be a hash of the Verifier’s basename. In this named-base
option, the value K becomes a “pseudonym” of the User
with regard to the Verifier’s basename. The User will
always use the same K in the EPID-signature to the
Verifier.

C. Issuer generates User’s Membership Private Key

In response, the Issuer performs the following steps:

• The Issuer chooses a random integer v′′ and a random
prime e.

• The Issuer computes A such that

AeUSv′′ ≡ Z (mod p)

• The Issuer sends the User the values (A, e, v′′).
Note that the CL-signature [4] on the value f is (A, e, v :=

v′ + v′′). As such, the User then sets his/her Membership
Private Key as:

(A, e, f, v) (6)

where v := v′+ v′′. Recall that f is the secret chosen by the
User at the start of the Join protocol.
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D. User proving valid membership

When a User seeks to prove that he or she is a group
member, the User interacts with the Verifier entity. This is per-
formed using the Camenisch-Lysyanskaya (CL) signature [4]
on some value f .

This can be done using a zero-knowledge proof of knowl-
edge of the values f , A, e, and v such that

AeRfSv ≡ Z (mod N) (7)

The User also needs to perform the following:
• The User computes K = Bf (mod p) where B is a

random base (chosen by the User).
• The User reveals B and K to the Verifier.
• The User proves to the Verifier that the value logBK is

the same as in his/her private key (see Equation 5).
In proving membership to the Verifier, the User as the prover

needs to send the Verifier the value

σ = (σ1, σ2, σ3) (8)

where each of the values are as follows:
• σ1: The value σ1 is a “signature of knowledge” regarding

the User’s commitment to the User’s private key and that
K was computed using the User’s secret value f .

• σ2: The value σ2 is a “signature of knowledge” that the
User’s private key has not been revoked by the Verifier
(i.e. not present in the signature revocation list sig-RL
(see section below on Revocations)).

• σ3: The value σ3 is a “signature of knowledge” that the
User’s private key has not been revoked by the Issuer
(i.e. not present in the issuer revocation list Issuer-RL
(see section below on Revocations)).

E. Revocations

The EPID scheme supports three (3) revocation schemes:
• Private-key based revocation (priv-RL):

The first is based on a revocation-list (RL) of the pri-
vate key belonging to the User. If a User’s private key
(A, e, f, v) (see Equation 6) is compromised, the User’s
f is then placed on the revocation list. As such, this
revocation scheme is referred to as the priv-RL revocation
scheme.

• Signature based revocation (sig-RL):
If a Verifier receives a signature from a User and
determines that the the User was compromised, the
Verifier places the (B,K) values of the signature on
the signature-based revocation list (where logBK is the
secret of the compromised User).

When a User seeks to prove that he or she is not
on the sig-RL revocation list, the User (with private key
(A, e, f, v)) needs not only to show that AeRfSv ≡ Z
(mod N) (see Equation 7), but also to prove that his/her
current value f (part of his/her private key) is not in the
sig-RL revocation list.

That is, his/her value f must be shown to be different
from logB̂ K̂, for every (B̂, K̂) pair listed in the sig-RL
revocation list.

• Issuer based revocation (Issuer-RL):
The Issuer-based revocation addresses the case where the
Issuer takes the proactive step of removing (i.e. revoking)
a User form a given group. The Issuer might do so, for
example, when it sees that a User has left the group (e.g.
no activity detected).

To revoke a User, the Issuer places the K value that
the User submitted to the Issuer (see Equation 5 in the
Join protocol) on the Issuer-RL revocation list. Note that
logBI

K is the secret of the revoked User
When a User seeks to prove membership, he/she

must prove that their secret f is not on the Issuer-RL
revocation list. That is, the User must prove that their
f is different from logBI

K̂ for each K̂ present in the
Issuer-RL revocation list.
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