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Abstract

Given the availability of several blockchain technologies in permissioned contexts, blockchain
application designers have to cope with the increasing complexity of choosing which technology
and consensus algorithm best fit a specific use case. However, the lack of a standard framework
allowing to assess scalability of permissioned blockchain platforms and to compare performances
and features of consensus algorithms makes the development of a sensible evaluation a costly and
difficult time-consuming problem. Throughout this article, we propose a practical scalability
and applicability evaluation of the Quorum blockchain and its consensus algorithms. Although
we apply our evaluation workflow to a financial use case, we define a methodology that can be
generalized to any permissioned blockchain technology. We leverage Hyperledger Caliper as a
benchmarking tool, and Docker as a deployment tool, making our analysis easy to be repeated,
cross-platform, and cost-effective.

1 Introduction

Over the past decade, with the rise and growth of Bitcoin and Ethereum, more and more companies,
from FinTech to retail industry, are more than willing to integrate blockchain-based solutions within
their application portfolios. Accordingly, permissioned blockchains have been developed to satisfy
the need to create closed consortia and private networks among a restricted number of companies
and institutions. This allows to integrate the advantages of blockchain technologies, while keeping
performances and privacy of data that permissionless blockchains may lack. In the heterogeneous
and fast-growing environment of permissioned blockchains, it is becoming harder and harder to mark
precisely and distinguish clearly the differences between features provided by any particular technol-
ogy. Moreover, many voting-based consensus protocols are being proposed to replace permissionless
consensus algorithms. Therefore, deciding which technology best fits a specific use case is a complex
task: guarantees and performances of each blockchain platform need to be deeply explored, and a
thorough analysis is challenging to perform.

Throughout this work, we illustrate a methodology to carry out an accurate analysis of a permis-
sioned blockchain framework. The main contributions brought by our methodology are summarized
as follows: fill the gap between theoretical analysis of consensus algorithms and practical scalability
evaluation; systematization of tools and techniques to accomplish performance measurements; fully
open source approach (developed extensions for measurement tools are publicly available); use of
standard containerization tools to deploy permissioned blockchain networks in order to dramatically
drop setup times and increase interoperability. Therefore, by following our workflow, a blockchain
application designer can achieve a significant insight on performances of a specific platform, by lever-
aging open-source software technologies and common hardware infrastructures, so to make costs of
such analysis very low. As a case study we selected ConsenSys Quorum blockchain, since it in-
troduces the possibility of executing private transactions between participants, and it offers several
plug-and-play consensus protocols the blockchain can be run with, thus enabling a clear comparative
analysis.

Section 2 gives an overview of Quorum architecture, focusing on the privacy feature. Then, in
Section 3 we show how a pragmatic analysis of multiple consensus algorithms can be developed,
based on their formal specifications, by outlining the main aspects to be examined and focused. In
Section 4, we present our methodology, and then we describe metrics, workloads and tools used for
our experiments; in Section 5 outcomes are discussed and conclusions are delivered.
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2 Quorum features

Quorum [8] is an Ethereum-based [38] distributed ledger protocol, that enables the creation of a
permissioned blockchain network with support to transaction privacy. The open source project has
been initially developed by J.P. Morgan Chase, with a focus on financial use cases; recently, it has
been acquired by ConsenSys. Quorum has been introduced in the broad ecosystem of permissioned
blockchains to meet the following needs:

• Execute private transactions and smart contract operations.
• Adopt multiple consensus mechanisms in a plug-and-play fashion.
• Provide flexible and expressive network permissions management.

Quorum is built after the official Go implementation of the Ethereum protocol (geth): the rationale
behind this choice is that, by minimizing the changes required to Go-Ethereum, continuity with
future versions of the public Ethereum code base is easily achievable. Each Quorum node consists
of two main services:

1. Quorum Client: it is the extended geth client, which is responsible for executing the
Ethereum p2p protocol (by accepting connections only from participants to the permissioned
network), and the consensus algorithm (see Section 3).

2. Privacy Manager: it is a software module that enables private transactions and private
smart contract operations. It consists of two components: the Transaction Manager, and
Crypto Enclave (see Section 2.1 for more details).

Fig. 1 illustrates the architecture of a 3-nodes Quorum network, outlining interactions between
services and components of each node.

Figure 1: Interaction schema of a Quorum network

2.1 Transaction Privacy

The main idea behind the introduction of Quorum transaction privacy feature is to leverage cryp-
tographic operations provided by the Privacy Manager. The payload of private transactions goes
through an encryption process [7], so that only nodes specified into the transaction are allowed to
access payload information. Accordingly, the block validation process is modified with respect to
classical Ethereum, such that every node validates all public transactions and any private transac-
tion they are allowed to, by executing the contract code associated with the transactions. On the
other hand, a node that is not permitted to a specific private transaction, will skip the execution of
contract code associated with that transaction.

Furthermore, it is worth noting that (as shown in Fig. 1) public transactions are handled by
the Quorum Client, whereas private transactions need to be processed also by the Privacy Manager,
which implies a higher computational overhead.

The default Privacy Manager adopted in the latest versions of Quorum is Tessera [9]: it is
implemented in Java, and it is used to enable the encryption, decryption, and distribution of private
transactions. The Tessera Transaction Manager is the central actor during private transactions
processing: it interfaces with the other entities of the infrastructure, such as its corresponding
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Quorum Client and the other Tessera nodes, and manages the lifecycle of private data. More
precisely, it accomplishes the following tasks:

• Self-manages and discovers all nodes in the network, by establishing p2p connections with the
other nodes Transaction Managers, and by broadcasting peer/key information
• Communicates with the Enclave for encrypting/decrypting private transaction payloads
• Maintains a local off-chain database to store encrypted payload data

The Crypto Enclave instead, is designed to provide the encryption/decryption operations required
by the Transaction Manager, as well as the key management. That enables all sensitive operations
to be handled in full isolation, so preventing any leakage into external areas of program memory.
Thus, the Transaction Manager, which handles peer management and database access, does not
perform any encryption/decryption, greatly reducing the impact an attack can have.

Given the inherent duality of private and public transactions, a segmentation of the state database
is implemented: all Quorum nodes maintain a local unique private state, made up of private trans-
actions, and share a common public state, created through public transactions. In Ethereum, the
blockchain state of each node is stored in special tree structures called tries (Modified Merkle Pa-
tricia Tries) [13]. Therefore, Quorum stores the state of public contracts in a public state trie that
is globally synchronized, while the state of private contracts is stored in a private state trie, that is
not synchronized globally. However, each node is able to verify it has the same set of transactions
of the other participants, since the block validation process also includes a check of the global

Transaction hash, namely, the hash of all transactions in a block, both public and private ones [6].

3 Consensus Protocols

Before diving into performance measurements of a permissioned blockchain technology, it is crucial
for an application designer to have a clear overview of the features and intrinsic differences of each
consensus protocol provided by the platform. In this section, we develop a comparative analysis
based on the formal specifications of consensus algorithms offered by Quorum. In order to ease the
comparison process, we suggest to explore and focus on the following fundamental features of each
protocol:

• Fault-tolerance degree
• Details of the leader election sub-protocol
• Communication complexity during normal operation
• Number of message rounds and block proposers per step
• Quorum size
• Consensus finality and possibility of forks
• Consistency guarantees with respect to the CAP Theorem [3]

More precisely, an analysis based on the CAP Theorem allows to better understand which properties
among strong Consistency (C), Availability (A), and Partition-tolerance a specific distributed system
trades off.

A Quorum network can be deployed with three different consensus algorithms: Raft [28], Clique
Proof-of-Authority [35], and IBFT [26]. Since permissioned blockchains are characterized by a
strict node identity management and a relatively low number of participants, unlike permission-
less environments, there is no need of cryptoeconomics consensus mechanisms (e.g., Proof-of-Work,
Proof-of-Stake) to keep the network safe. Thus, mining (PoW) or minting (PoS) activities related
to incentives, are useless in permissioned blockchains: blocks are validated by an a priori selected
group of authorities, hence any misbehavior can be detected, and suspected malicious nodes can be
voted out.

3.1 Raft

Raft [28] is a distributed consensus algorithm based on Paxos [20]. It operates under the Crash failure
model, where every node failure (e.g., message omissions, network partitions, or simply hardware
failures) is assumed to be a node crash: hence, n ≥ 2f + 1 must hold, where n is the total number of
nodes, and f is the maximum number of nodes that can exhibit crash failures. Raft works by first
electing a leader in the group of nodes, then giving the leader complete responsibility for accepting
transaction requests and managing the replication of the logs (i.e., blocks) on the other nodes. Every
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node can be in one of the three states: follower, candidate, or leader. It is important to point out that
the leader election process is deterministic, thus the algorithm cannot make progress until a leader
has been chosen by the majority of nodes; moreover, the leader, which acts as a block proposer, can
remain the same for many rounds of the protocol execution, as long as a strict majority of followers
receive periodic heartbeat messages from it (hence we refer to it as a strong leader).

Raft servers communicate via two types of RPCs: the RequestVotes RPC is used by candidates
during elections to collect votes; the AppendEntries RPC is used by leaders to replicate log entries.
A block is considered committed by the leader, whenever AppendEntries RPC returns succesfully
from the majority of servers, thus as soon as the entry is replicated onto at least f +1 nodes (quorum
size). Since the leader, during normal protocol operation, broadcasts n AppendEntries messages,
and waits for at least f replies, Raft has an overall linear communication complexity, with two
message exchanges per protocol step.

From a CAP Theorem [3] perspective, Raft can be considered as a C-P system: in fact, it
guarantees partition tolerance (P), while providing strong consistency (C). When a network partition
happens in a Raft cluster, only the partition with a majority of nodes can commit and execute client
operations. The servers in the minority partitions are not able to commit client operations, should
they be read or write operations: they simply do not reply to client requests, hence availability is
sacrificed in favor of strong consistency. Therefore, Raft guarantees instant consensus finality [36]:
as soon as the leader committed a block to the blockchain, all transactions included in the block
are immediately confirmed, and the block cannot be eventually discarded. Hence, Raft prevents
transient forks from occurring.

3.2 Clique PoA

Clique PoA [35] is a Proof-of-Authority consensus algorithm, purposely designed for enabling private
networks within the Ethereum platform: it emulates the design of the Ethereum mainnet PoW
consensus, so that every client can be extended with this consensus protocol with minimal effort. It
is based on the idea that blocks may only be minted by a set of trusted signers called authorities:
each authority is identified by a unique id, and a strict majority (i.e., n/2 + 1, out of n total trusted
nodes) of authorities is assumed to behave honestly and follow the protocol.

In order for Clique to be a Byzantine fault-tolerant protocol (e.g., avoid spamming attacks), the
solution devised suggests that each authority is allowed to propose a block every n/2 + 1 blocks,
where n is the number of nodes. Thus, at any time there are at most n− (n/2 + 1) nodes allowed to
propose a block, and the subset of proposers rotate through the whole set of authorities. If a node
exhibits arbitrary behaviors, it can be voted out from the authorities list: a vote can be expressed
by each node at each epoch, and if a quorum of votes is reached, the faulty node is removed from
the list (so that it can no longer affect the network).

Despite tolerating Byzantine failures, this algorithm is generally more efficient in terms of com-
munication complexity with respect to traditional BFT protocols (such as PBFT [4] or IBFT [26]),
because it only guarantees eventual consensus finality: it adopts an eager strategy, according to
which the block proposers broadcast the block to the other authorities, and they update their copy
of the blockchain accordingly (as in a PoW algorithms). Since there can be multiple proposers
at each protocol step, the possibility of blocks being concurrently appended in different orders by
different nodes is contemplated: thus, transient forks can occur, but they are resolved afterwards
by specific reconciliation protocols (e.g., GHOST [34]). Therefore, after analyzing Clique under the
CAP properties, it can be inferred that it is an A-P protocol: it trades off strong consistency for
availability (A), while being partition-tolerant (P). Since blockchain nodes may have different views
of the chain due to transient forks, and since inconsistencies are later resolved, Clique satisfies the
eventual consistency property.

3.3 IBFT

Istanbul BFT [26] is a Byzantine fault-tolerant protocol based on PBFT by Castro and Liskov [4].
Byzantine consensus is deterministically solved: first, a leader or proposer is elected (as in Raft),
then each proposed block undergoes multiple communication phases between nodes before being
committed to the blockchain. Four types of messages are exchanged among nodes:

1. PRE-PREPARE, PREPARE, COMMIT: are used during normal operation of the algorithm.
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2. ROUND-CHANGE is used to choose a new leader when the current one is suspected to have failed
or communication is not timely.

Currently, the practical implementation of IBFT adopted by Quorum [22], offers two leader election
strategies:

• Round-robin: this is the default leader election strategy, in which a different proposer is
selected for each block decision step.

• Sticky proposer: a new proposer is chosen only when a round-change is started, thus when-
ever a node is suspected to behave maliciously.

In both cases, each node is aware of who will be the next block proposer, since it is decided by mean
of a deterministic calculation based on node IDs.

As PBFT, also Istanbul BFT makes sure there is only one proposer for each round; moreover the
proposer needs a quorum of responses by other servers in order to make any progress. This implies
that in case of a network partition which involves more than f nodes (over at least 3f +1 nodes), the
protocol does not commit any decision until the partition is resolved and communication becomes
timely again (thus, consensus is not violated during partitions). For this reason, we can assert that,
from a CAP point of view, IBFT is C-P: it guarantees strong consistency (C) and partition tolerance
(P). Therefore, as in Raft, forks cannot occur and instant finality is ensured.

3.4 Expectations

Characteristics of each consensus protocol are clearly organized in Table 1, so to allow a preliminary
evaluation of their performances. Since Raft is a CFT protocol, we expect it to perform better
than the other two (which instead are BFT protocols): the reason is to be searched in the failure
model they cope with and, accordingly, in their communication complexity. It is worth reminding
that, although Clique and IBFT are both resilient to Byzantine failures, the former is a probabilistic
protocol and only provides eventual finality (i.e., weak consistency), whereas the latter guarantees
instant finality (i.e., strong consistency). Thus, due to Clique having linear communication complex-
ity, we expect its performance measurements to be closer to Raft. Hence, at a first glance, we would
expect IBFT to be outperformed by Clique especially in larger networks, given its pessimistic ap-
proach to consistency – in Clique fork conflicts are resolved rather than prevented – and its quadratic
complexity. However, IBFT deterministic leader election and instant finality could result in better
transaction processing time than Clique, particularly in small networks. Furthermore, it would be
interesting to compare the round-robin and sticky proposer election strategies within IBFT, to see
whether there are relevant differences between the two.

4 Performance Analysis

In order for a blockchain application designer to have a complete insight of performances of a specific
blockchain framework, it is necessary to connect and transform the comparative analysis developed
on the formal specifications of consensus algorithms (Section 3) into tangible measurements and
experimental results. As follows, we illustrate the methodology we developed for merging theoretical
and practical results, and then we describe metrics (4.2), tools (4.3), and workloads (4.4) useful to
evaluate performances and scalability of a permissioned blockchain.

4.1 Methodology

Our main objective is to show the methods we have defined to analyze a blockchain technology,
so that any interested people can follow the detail of it, for replication’s sake. The algorithm in
steps provides a complete and clear insight of a blockchain framework, starting from the theoretical
foundations of the consensus layer, to the performances it is capable of under specific workloads
and topology settings. Moreover, fundamental goal of our workflow was its easy applicability to
any blockchain platform. Our methodology involves two phases, the macro steps and the micro
ones. The macro-level describes how to drive the study of the blockchain framework and how to
relate it with the scalability of its main features. The micro-level describes in a closer view how
to operationally setup and perform benchmarking analysis on performances, by focusing on specific
metrics.
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The macro-level consists of the following steps:

1. Study of the blockchain framework main features. For Quorum, we focused on the privacy
properties of transactions, which is the main breakthrough.

2. Analysis of the consensus algorithm (or algorithms, if more) based on official documentation.

3. Draw a summary of the analysis made in step 2, by focusing on fundamental criteria for
evaluation of consensus protocols as listed in Section 3.

• If multiple consensus algorithms are available within a specific framework, a comparative
analysis as shown in Table 1 could help.

4. Choice of benchmarking tools to perform measurements of the blockchain performances: refer
to available tools listed in Section 4.3.

• In case the chosen tool does not support the blockchain framework of interest, implement
specific extensions.

5. Choice (or development, if not available) of deployment tools to run the blockchain network
with a configurable number of nodes.

6. Measurement of performances targeting TPS and Latency metrics (see Section 4.2).

7. Elaboration of results and comparison with theoretical analysis of steps 1 and 2.

The micro-level methodology is a finer grain detail of the above step 6 and it is in charge of defining
how to perform effectively scalability tests on the blockchain network. It consists of several decisions
that depend on the use case:

• Choice of the network topologies for the tests, typically starting with the smallest possible
number of nodes, up to the network size required.

• Choice of the type of workloads: for instance, we choose the Smallbank (see Section 4.4)
workloads because of the interest in financial applications.

• Choice of the different transaction send rates (see Section 4.5): the more send rates adopted,
the more precise the final insight on performances will be.

• In case of multiple consensus algorithms within the same framework, adjustment of the block
production rate to make protocols comparable with each other with the same block proposing
rate..

• Choice of well-dimensioned hardware to run the experiments on.

These steps represent our methodology for analysis and testing of a blockchain framework and
they may apply both for permissioned and permissionless blockchains: in fact, all permissionless
blockchains are typically open source, and most allow to setup local networks using containerization
approaches such as Docker.

4.2 Metrics

A standardization of performance evaluation metrics for blockchains, has been proposed by the
Hyperledger Performance and Scale Working Group (PSWG) [18]. Throughput and latency are
identified as characterizing metrics to assess scalability of a blockchain system. Specifically, trans-
action throughput is defined as the number of transactions per second processed by the blockchain
network: in our case, we consider only successful transactions, hence we can also refer to the through-
put as goodput. A transaction is successfully processed when it is included in a block and committed
as part of the blockchain. Transaction latency is the time interval elapsed between the submission
of a transaction, and the point in time in which the result is available on every correct node in the
network (after consensus and propagation time).

Scalability can be measured by analyzing how throughput and latency vary when adding more
blockchain nodes to the system: we expect a higher transaction latency when testing larger networks,
since the consensus process has to reach out a higher number of nodes. Accordingly, for the same
reason, we expect throughput to go down when adding nodes to the network. Furthermore, especially
when evaluating PBFT-like protocols such as IBFT, latency could be particularly high, due to the
quadratic communication complexity during normal operations, and to view changes of the system
when electing a new blocks proposer.
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4.3 Tools

Due to the big momentum of permissioned blockchains, several benchmarking frameworks specifically
for this category of blockchain technologies have been developed recently: although the common
effort to define a standard for performance analysis, blockchain communities often come up with
different tools and framework architectures. The most notable benchmarking frameworks, at the
best of our knowledge, are the following:

• Hyperledger Caliper [16]
• Blockbench by Dinh et al. [12]
• Chainhammer by Dr. Andreas Kruger [19]
• BCTMark [32]

The tool chosen for driving this testbed is Hyperledger Caliper because, beyond the clarity of its
documentation, it is easily extensible and it relies on a broad community of developers. However,
in order to test the Quorum blockchain, we developed an adapter for Hyperledger Caliper, since
Quorum is not yet a supported SUT (System Under Test) in the current version of Caliper (v0.4.1).
Our code is available on GitHub [24]: our project is based on a fork of Hyperledger Caliper v0.3.0
(March 2020). Furthermore, to ease the test process and to make our version of Caliper accessible
to others, we wrapped it in a Docker image available on Docker Hub [23]. Using the image provided,
it is possible to deploy Caliper Master and Workers (extended with support to Quorum) as Docker
services.

Another tool we implemented [25] allows to easily spin up a Quorum network with a customizable
number of nodes, using Docker Compose. Although it is only to be used for testing purposes,
it supports Raft, IBFT and Clique PoA consensus mechanisms, and it uses Tessera transaction
manager (which is more up-to-date and more production-ready than the Constellation [5] transaction
manager). Our tool is based on another GitHub project [30] which only supports Constellation.
Moreover, we allow for deterministic accounts and keys creation, which is very useful when it comes
to setup Caliper tests which need to use the same private keys and the same Ethereum account
addresses in all tests.

4.4 Workloads

For our benchmark, we used a simplified variation of an OLTP (Online Transaction Processing)
workload called SmallBank [1]. Given that Quorum is purposely built for the financial sector, we used
a benchmark which provides some functionalities reflecting a banking system. The implementation
of the SmallBank logics is provided via smart contract: it can be found in the Hyperledger GitHub
repository [17]. The smart contract is written in Solidity language and it contains three functions
to simulate banking operations:

• open (write-only): stores strings representing fake bank accounts, associated with an integer
representing the amount of money (write operation).
• query (read-only): given an account string, returns the amount associated with it (read oper-

ation).
• transfer (read-write): simulates a money transfer between two accounts (read and write

operation).

Then we implemented Caliper workload files in order to allow worker processes to call the smart
contract functions using the Quorum privacy feature.

4.5 Test Structure and Settings

The design of our test follows a tree structure. Each consensus protocol has been tested against
both public transactions (base Go-Ethereum functionalities) and private transactions (Quorum en-
hanced privacy features). Then, for each protocol, we tested both public and private transactions
against three different blockchain network configurations: 4-node, 8-node, and 16-node networks. In
this way we could analyze how throughput and latency vary based on the number of peers, so to
assess scalability. Furthermore, each network topology has been subject to five different transaction
submission rates: 25 TPS, 50 TPS, 100 TPS, 200 TPS, and 400 TPS, for both read and write opera-
tions. Thus, considering 4 different consensus protocols (i.e.: Raft, IBFT sticky, IBFT round-robin,
and Clique), the total number of experiment cases we obtained is then 120. Moreover, we executed
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each test case three times and we calculated both TPS and Latency as the average of the three
measurements; we also calculated standard deviation on such results.

Another important variable to take into account when testing consensus protocols is block time,
which is the frequency of block generation. Baliga et al. [2] evaluate the effects of block time
variations on throughput and latency using Raft: their results show that, by increasing block time
and keeping the input transaction rate constant, throughput remains more or less constant, whereas
latency visibly increases. Since Raft default block time is 50 ms, while IBFT and Clique block time
is 1 second, we increased Raft block time to 1 second as well, so to make protocols comparable.

When executing workloads with private transactions, we decided to make the smart contract
private for all Quorum nodes, hence we set every node as party to each private transaction. This
would not be a valuable choice in a real-world application, because such a private transaction is
equivalent to a common public transaction, where every node in the system is aware of its payload.
However, we wanted to test how much overhead Tessera causes on the private transaction submission
process, thus we emulated the worst case scenario in terms of computational complexity: every node
Tessera service must encrypt (on write operations) and decrypt (on reads) the payload of each
transaction for all participants in the network.

For conducting our experiments, we setup an Amazon EC2 instance with 16 virtual CPUs (8
cores with 2 threads per core), 64 GB of RAM and Ubuntu 18.04 installed on it. For sake of
simplicity, we deployed the blockchain nodes and the Caliper processes in the same machine, using
Docker containers. We simulated a real network environment by injecting random delays between
containers via pumba [21], a tool for emulating containers and network failures within Docker: more
precisely, we caused a delay of 100 ms with a jitter of 50 ms, based on ping statistics for servers
between Europe and United States [37]. Our experiment has very affordable costs and it is easily
reproducible; furthermore, time required to spin up the network and to manage it, is very optimized
thanks to Docker Compose.

In order to collect data through Caliper, we deployed 4 Caliper workers as Docker containers:
each of them submitted transactions to one node of the blockchain. Thus, even in a network
of 16 nodes, we setup the system to send transactions only to 4 Quorum nodes, then requests
are propagated throughout the network. Our choice is justified by the fact that generally, in a
permissioned environment, an organization could decide to expose only a subset of the nodes to
accept transaction (i.e., write) requests from the users, whereas the other nodes could either be
“read-only” nodes or validator nodes participating to the consensus process. Moreover, when an
input rate is chosen in Caliper, for instance 100 TPS, it is divided among the workers so that they
reach the send rate as a group. Therefore, there is no difference in having 4 or 8 workers in terms of
transaction send rate. The only remarkable difference is in the fact that if 8 workers send requests
to 8 different blockchain nodes, then it will take longer for the gossip algorithm to communicate
transactions to the consensus leader, hence the latency will likely increase. We measured whether
the system performances were affected by a larger number of workers sending requests to distinct
blockchain nodes (e.g.: 4 workers send requests to 4 nodes, 6 workers to 6 nodes, and 8 workers to 8
nodes): as expected, for the same input rate (400 TPS) we obtained an increase of latency and an
overall decrease of throughput.

However, in future experiments the number of workers, as the maximum number of blockchain
nodes, could be increased, without neglecting the hardware resources that should be changed ac-
cordingly.

5 Results

Throughout this section, we discuss experiments on both public and private transactions. Overall,
we expect the resulting throughput of public transactions to be higher than the throughput of private
ones, due to the overhead of Tessera cryptographic operations on private payloads. However, it is
important to remark that executing transactions against a public contract is equivalent to testing
the basic geth client, whereas Quorum-specific functionalities are tested through the execution of
private transactions.

It is worth noting that, regardless of testing public or private transactions, 4-node networks are
expected to perform generally better than 8-node networks, which in turn are expected to show
better performances than 16-node ones. The reason for this is that blockchain systems do not
physiologically achieve scale-out properties; nevertheless, we want to show that even when the SUT
is subject to a growing input transaction rate, the resulting throughput trend should be sub-linear:
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this would imply that a network is capable to absorb an increasing workload without degrading
performances.

5.1 Raft

The write-only workload tested with Raft shows that, in public transactions execution, the three
network topologies produce a similar throughput up to an input rate of 200 TPS. However, at 400
TPS input rate, the measured throughput of the 16-node network negatively diverges from the 4-
node and 8-node networks, demonstrating that larger networks have generally lower performances.
Latency instead, shows an opposite trend with respect to throughput. With public transactions,
4-node and 8-node configurations result in the same latency, stable around 1 second (consider that
block-time in Raft is set to 1 second). Overall, private transactions produce a higher latency than
public ones, as expected.

Similarities of the transfer workload throughput chart (Fig. 3a) and the open workload through-
put chart (Fig. 2a), suggest that complexity of write operations dominates over the read operations.
Graphs of 4-node and 8-node networks tested against public transactions overlap, thus they resulted
in approximately the same throughput. However, the reason for the throughput to slightly change
and the latency to remain constant between the two scenarios is related to the way Caliper calculates
throughput and latency.

1. throughput = succ / (final max - create min), where final max is the latest time amongst
all workers in which a transaction is considered as committed, and create min is the earliest
time of transaction creation

2. latency = total delay / succ, where:

• single transaction delay (i.e., latency) is measured as final - create, where final is
the time in which the transaction is set to success status, and create is the time of
transaction creation

• each worker calculates the sum of delays of transactions it has submitted: delay sum +=

(final - create)

• total delay is the summation of all delay sum returned by each worker

Let’s suppose to conduct two different experiments on two distinct machines at the same time,
such that final max 1 = final max 2 and create min 1 < create min 2. Assuming 1600 total
transactions submitted, 4 workers, and 100 TPS input rate, it is possible to obtain the following
measurements:

• throughput 1 = 1600 / 1621925597 - 1621925576 = 1600 / 21 = 76.19 TPS

• throughput 2 = 1600 / 1621925597 - 1621925577 = 1600 / 20 = 80 TPS

As regards the latency, we could realistically obtain the following results:

• latency 1 = (1990 + 1975 + 2025 + 2010) / 1600 = 5 seconds

• latency 2 = (1800 + 2200 + 1770 + 2230) / 1600 = 5 seconds

Thus, we obtained two different experiments in which latencies are the same, whereas throughput 1

is less than throughput 2, because the time frame in which throughput is calculated changes by
just 1 second. These results could be due to the 4 workers not being perfectly synchronized when
starting to submit transactions. Hence, different throughput results and same latency values for
4-node and 8-node networks are explained.

Furthermore, latencies registered in the read-write workloads are analogous to the write-only
workloads, with small differences in absolute values. When testing the query workload, we obtained
a negligible constant latency – approximately 10 ms – in each network configuration; for this reason,
we only reported throughput of read operations (Fig. 4). On public contract execution, the read
throughput graphs of the three networks overlap, whereas private transactions graphs show different
slopes. The reason is that the read operation over public smart contracts is a simple look-up to
the local geth datastore (LevelDB [11]) of the node receiving the request, while read operations
executed on private contracts are forwarded to every Tessera Manager of nodes participating to the
read private transaction. In the former scenario, since requests are always submitted to 4 blockchain
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Raft Clique PoA IBFT

Fault-tolerance
CFT

n ≥ 2f + 1
BFT

n ≥ 2f + 1

BFT
n ≥ 3f + 1

Leader Election
Deterministic Strong

Leader
Probabilistic
Weak Leader

Deterministic
Strong/Weak Leader

Communication
Complexity*

O(n) O(n) O(n2)

#Message Rounds
per Step*

2 1 3

Quorum Size* f + 1 No quorum

⌊
n+f
2

⌋
+ 1

#Block Proposers
per Step

1 n− (n
2 + 1) 1

Consensus Finality Instant Eventual Instant

Forks No Yes No

CAP Analysis C - P A - P C - P

Table 1: Overview of Quorum consensus protocols
*During normal operation

(a) Throughput (b) Latency

Figure 2: Raft open (write-only) workload performance results
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Workers Input Rate (TPS) Throughput (TPS) Avg Latency (s)

4 400 52.8 14.9
6 400 48.9 15.3
8 400 49.8 20.8

Table 2: Effects of adding workers in an 8-node Quorum network running Raft with private trans-
actions on the read-write workload.

nodes (see 4.5), the throughput is the same regardless of the network size, because read operations
are only executed by mean of a local look-up by the same subset of 4 nodes; in the latter, every
node is set as private party to the read transaction, thus each node Tessera Manager is triggered by
the read operation, causing the throughput to change based on the number of nodes in the network
(due to Tessera cryptographic operations and communication overhead).

Moreover, unexpectedly, the 4-node network produces an overall higher throughput with private
transactions rather than with public ones: this can be due to LevelDB being slightly slower than
Tessera H2 in-memory database [27] to retrieve transaction payload information in small networks.

As follows, we reported standard deviation results for both throughput (Table 3) and latency
(Table 4) obtained with the transfer workload. Generally we obtained a higher variance with
private transaction tests; the highest variance in throughput is shown by the 16-node network with
public transactions at 400 TPS input rate. Such variance is mainly due to the random delays
produced by pumba [21]. Overall, both throughput and latency variances show acceptable values.

Input (TPS) 4-n-PUB 8-n-PUB 16-n-PUB 4-n-PRIV 8-n-PRIV 16-n-PRIV

25 0.00 0.00 0.00 0.17 0.81 0.98
50 0.00 0.00 1.15 0.36 0.50 0.81
100 0.92 1.50 1.39 0.38 3.74 3.24
200 0.25 0.16 0.57 4.05 0.58 2.47
400 1.18 1.01 9.18 2.58 0.87 0.58

Table 3: Raft standard deviation of Throughput measurements on transfer workload (TPS).

Input (TPS) 4-n-PUB 8-n-PUB 16-n-PUB 4-n-PRIV 8-n-PRIV 16-n-PRIV

25 0.01 0.27 0.27 0.30 0.56 0.60
50 0.02 0.02 0.02 0.02 0.23 0.36
100 0.05 0.02 0.02 0.24 0.77 0.74
200 0.02 0.03 0.12 0.85 2.76 0.68
400 0.18 0.07 0.80 0.84 0.64 1.05

Table 4: Raft standard deviation of Latency measurements on transfer workload (seconds).

5.2 Clique PoA

The probabilistic approach of Clique, designed to be integrated with the Ethereum Rinkeby test
network, implies that forks can occur, but they are eventually resolved. Given the rotating leader
schema and the voting mechanism to cope with byzantine failures, it resulted in slightly lower
throughput values than Raft (a clear comparison is shown in 5.4). However, data produced the same
patterns as for Raft: private transactions performed overall worse than public ones, confirming the
overhead of Tessera operations on the system. The only exception to the pattern is represented by
the 16-node network, whose throughput (Fig. 5a) visibly declines between an input rate of 200 TPS
and 400 TPS: at 400 TPS input rate, the 16-node network with public transactions almost coincides
with the throughput registered within the 4-node network with private ones; moreover, at the same
data-point the 8-node network and 16-node network resulted roughly in the same throughput. The
decline of throughput of the 16-node network tested with public transactions, could be due to race
conditions occurring in Clique when block-time is very short (in this case, 1 second): this problem
is better explained in Section 5.4.
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(a) Throughput (b) Latency

Figure 3: Raft transfer (read-write) workload performance results

Figure 4: Raft query (read-only) workload performance results - Throughput
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The latency chart obtained with the open workload (Fig. 5b) shows that at 200 TPS input
rate, confirmation delay for a private transaction in a 4-node network is greater than the delay
for a public transaction to be confirmed in a 16-node network; inversely, at 400 TPS the 16-node
blockchain network with public transactions becomes slower than the 4-node network tested against
private transactions.

These results prove that, whenever a large permissioned network (more than a dozen of nodes)
running a BFT consensus protocol is stressed with a high transaction submission rate, both latency
and throughput are negatively affected. In addition to inevitably higher consensus times, in large
networks the likelihood of submitting transactions directly to the leader drops when the number of
nodes increases, resulting in some chunks of transactions being submitted to non-proposer nodes.

With regards to the read-only workload (Fig. 7), we obtained almost the same values as for Raft
(Fig. 4): this confirms that read operations are independent of the specific consensus mechanism,
since they do not update the nodes state. Moreover, it is worth noting that even in this case the
4-node network tested with private read transactions performs better than all networks with public
transactions, showing that results are consistent with the ones obtained in Raft.

In Table 5 and Table 6 we show respectively the throughput and latency standard deviations
for each test case of the transfer workload: some variance results, especially those at 400 TPS
input rate, are even more accentuated than in Raft. This made us suppose that Caliper workers
precision is affected by the fact that each worker is a single-thread process: in fact, every worker is
in charge of submitting transactions and listening for their confirmations, while gathering time data
(this problem is also outlined in Section 5.5). Thus, especially in experiments with larger networks
and with high transaction input rates, workers may be overloaded by tasks and some measurements
could be subject to lower accuracy.

Input (TPS) 4-n-PUB 8-n-PUB 16-n-PUB 4-n-PRIV 8-n-PRIV 16-n-PRIV

25 0.00 0.00 0.00 0.00 0.06 1.69
50 0.00 0.00 0.00 0.00 0.00 0.96
100 0.00 0.00 0.00 0.12 0.12 2.4
200 0.26 0.00 7.5 3.12 0.76 2.51
400 0.70 0.06 17.03 7.18 7.11 2.00

Table 5: Clique standard deviation of Throughput measurements on transfer workload (TPS).

Input (TPS) 4-n-PUB 8-n-PUB 16-n-PUB 4-n-PRIV 8-n-PRIV 16-n-PRIV

25 0.04 0.00 0.02 0.01 0.33 0.78
50 0.01 0.00 0.01 0.02 0.36 0.40
100 0.00 0.00 0.07 1.24 1.36 0.58
200 0.01 0.00 0.29 0.56 1.69 1.17
400 0.01 0.01 1.1 7.13 2.37 0.82

Table 6: Clique standard deviation of Latency measurements on transfer workload (seconds).

5.3 IBFT

As stated in Section 3, IBFT achieves instant finality (hence, strong consistency): blocks are im-
mediately confirmed to be included into the blockchain and no transient forks can happen, since
each block undergoes a three-phases agreement procedure before being committed. This pessimistic
approach to consensus could suggest that IBFT performs worse than Clique: in fact, it performs
better under some network configurations (Fig. 5.4), probably due to its deterministic leader election
mechanism. In this section, we only present results obtained with the read-write workload, since the
transfer operation is the most commonly used in a banking scenario. We focus on the comparison
between performances measured with the round-robin leader election policy and the sticky proposer,
on both public and private transactions.

Before running the tests, we had contrasting expectations about the possible outcomes. On one
hand, the sticky proposer strategy sounds like a lightweight solution, since the leader is changed
only in case it behaves maliciously or it crashes; however, in larger networks, if the proposer never
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(a) Throughput (b) Latency

Figure 5: Clique open (write-only) workload performance results

(a) Throughput (b) Latency

Figure 6: Clique transfer (read-write) workload performance results

Figure 7: Clique query (read-only) workload performance results - Throughput
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fails, it could become a system bottleneck, since it can easily be saturated with requests. On the
other hand, the round-robin strategy implies frequent view changes to be applied: since a block can
be decided only if the majority (> 2/3) of nodes has the same view of the system, this could cause
a significant delay on transaction processing within extended networks.

Results clearly represent our preliminary thoughts about performances of the two strategies.
Tests with public transactions (Fig. 8) show that 4-node and 8-node networks have the same trans-
action latency, steady around 2 seconds, whereas in 16-node network the sticky proposer strategy
slightly outperforms the round-robin. As regards throughput, 4-node networks overlap on the same
values; on 8-node configuration round-robin performs better than the sticky proposer, as opposed
to 16-node network. Private transactions (Fig. 9) reported interesting results as well: on 16-node
networks the round-robin algorithm results in a higher transaction throughput than the sticky pro-
poser, while on 4-node networks the sticky proposer strategy beats the round-robin at 400 TPS
input rate. Contrasting trends are shown by the latency chart (9b): in the 8-node network, the
sticky proposer presents a higher transaction delay up to 200 TPS input rate, whereas at 400 TPS
the round-robin is slightly slower than the sticky proposer; the 4-node topology shows overall the
lowest latency, even though it reaches the same latency as 8-node networks at 400 TPS input rate.

These results are alternatively in favor of the two leader election policies examined, reinforcing
the thesis that both have advantages and disadvantages which are offset from one another; thus, it
cannot be inferred which policy is the best just by looking at performance metrics. However, it is
recommended to use the round-robin strategy, since it avoids single point of failure, resulting in a
more secure choice for a BFT protocol.

5.4 Comparisons

In order to have a comprehensive view of a permissioned blockchain performances with different
consensus protocols, a comparative analysis should be developed on experimental results. Such
comparison is the practical counterpart of the theoretical comparison presented in Table 2, thus it
represents step 7 of the macro-methodology described in Section 4.1. We focus on condensing results
of the read-write workload with private transactions, since privacy is the novel feature introduced by
this blockchain platform. Moreover, we only show IBFT with round-robin leader election strategy,
so to make it comparable with the rotating proposers subset of Clique PoA.

As we expected (see Section 3.4), overall Raft shows a higher throughput (Fig. 10) than the
two byzantine protocols. One may note that Raft is lightly outperformed by both Clique and IBFT
only within the 8-node configuration between 25 and 200 TPS input rates. Notwithstanding, this
is an exception with respect to the other results, that could be due to the injection of random
delays between the blockchain nodes: if such delays are particularly long for the Raft leader, then
the resulting throughput and latency can likely be penalized. However, this may be corrected by
increasing the number of experiments for each test case (for instance, from 3 to 10), so to produce
a much higher statistical population, and therefore more accurate data.

Moreover, with regards to throughput, Clique performs visibly better than IBFT in the 16-node
network, whereas in the other two configurations, IBFT shows on average a slightly better through-
put: this is a surprising result, because we supposed IBFT quadratic communication complexity
would have been a point against it in every network topology. An explanation for this can be found
in the way Clique implements the choice of a block proposer: since there could be multiple proposers
for each block, transient forks can occur (see Section 3.2), and in the presence of forks, chain reor-
ganization time must be taken into account. Moreover, Clique suggested block period is 30 seconds
(since it has been developed to emulate the Ethereum mainnet), but we set it to 1 second: as it
has been pointed out in this GitHub issue [33], 1 second is a quite small block period, and if block
processing time exceeds the block period, race conditions between nodes can occur. However, IBFT
higher complexity emerges in latency results, especially in the 16-node (Fig. 11b) network: here in
fact, quadratic communication complexity has a much higher impact on network performances than
the presence of possible forks in Clique.

Another noticeable result is Raft latency in Fig. 11c, which overcomes the byzantine protocols
latencies on an input rate of 400 TPS: this could be caused by the sticky leader (or strong leader)
being congested on high input rates, therefore slowing down the entire transaction execution process.

Overall, the benchmark results gave us interesting insights on the real performances of consensus
protocols applied to practical test scenarios. Experimental data helped us in better understand-
ing which characteristics of each consensus algorithm have a major impact on throughput and
latency in different blockchain network dimensions, and confirmed our expectations (see Section
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(a) Throughput (b) Latency

Figure 8: IBFT transfer (read-write) workload with public transactions: comparison between
sticky proposer and round-robin proposer policies.

(a) Throughput (b) Latency

Figure 9: IBFT transfer (read-write) workload with private transactions: comparison between
sticky proposer and round-robin proposer policies.
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3.4). Therefore, the evaluation of performance measurements is the completion of the theoretical
analysis outlined throughout Section 3, and charts like Fig. 10 and Fig. 11 represent an effective
practical insight of comparison reported in Table 1.

5.5 Applicability and Scalability

With regard to scalability, we can state that all three consensus protocols tested against private
transactions exhibit a remarkable decline in throughput when the number of peers in the network
increases. On average, with private transactions, throughput decreases of 1/3 TPS whenever the
number of nodes doubles. Throughput trends over all protocols and network configurations is visibly
logarithmic: we did not obtain a significant increase in throughput when increasing the input rate
from 100 TPS to 200 TPS, and from 200 TPS to 400 TPS. With regards to latency, it generally
increases over all topologies. Moreover, we tried to push our tests over 400 TPS input rate, but it
resulted in a large part of transactions failing. This is probably due to either:

• RPC server buffers of Quorum nodes being limited to 128 KB.
• Tessera transaction manager being a bottleneck for transactions execution.
• Caliper worker being a single-thread process in charge of both submitting transactions and

waiting for their receipts.

Baliga et al. [2] claim to solve the last issue in the bullet points above, by splitting the Caliper
worker process in two separate processes, one for submitting transactions and one for listening: code
of such a change has not been open sourced, making this correction unavailable to the community.
However, it is worth noting that all transactions submitted during our experiments were executed
successfully (no rejected transactions): we did not make any architectural modifications to Quorum
servers and Caliper workers architecture, in order to minimize changes required to the frameworks.

To sum up, our evaluation results show that IBFT represents the best choice for Quorum in
financial applications, such as stablecoins or CBDCs (Central Bank Digital Currencies) [14]; in
fact, it guarantees strong consistency and fault tolerance to byzantine failures with performances
comparable to both Raft and Clique. Furthermore, it reaches its optimal results with respect to
the other protocols, if the network is deployed with a number of nodes in the order of a dozen.
However, we are quite confident that by conveniently dimensioning Quorum blockchain nodes (i.e.,
by allocating enough hardware resources for production grade environments) and by improving
Caliper as a benchmarking tool (as we expect), performances can be improved with respect to the
experiments we have conducted. Nevertheless, obtaining the best throughput and latency results
for a Quorum network is outside the scope of this research: we focused on showing a valid and
repeatable methodology for analyzing a permissioned blockchain technology to achieve a tangible
insight (with good approximation) on its scalability.

6 Related works

To the best of our knowledge, the first and only performance evaluation of Quorum prior to our
work has been published by Baliga et al. [2] in 2018. They adopted Hyperledger Caliper as well, but
neither source code of Caliper extensions for Quorum nor deployment documentation are publicly
available, making their experiments difficult to reproduce. Furthermore, they compare Raft and
IBFT consensus mechanisms by performing benchmarks on a three-nodes network for Raft, and a
four-nodes network for IBFT, which is the minimum peer number for both (respectively): in this
way, they were not able to assess real scalability of the networks because of the fixed number of
peers.

In 2017, Dinh et al. [12] proposed Blockbench, the first framework for benchmarking per-
missioned blockchains: the paper focuses on comparing Ethereum, Parity, and Hyperledger Fabric.
However, Hyperledger Caliper established itself as the reference benchmarking tool: it has been
designed with flexibility and extensibility in mind, it provides a thorough documentation, and the
project is maintained by a broad community of developers, since it is part of the Hyperledger um-
brella project [15] hosted by the Linux Foundation.

Another framework for blockchain testing was developed by De Angelis [10], which focused on
security properties of the system: in his work, he illustrates how to integrate a Byzantine client into
the blockchain network in order to simulate several attacks and study their collateral effects. His
work mainly focuses on PoA algorithms, such as Aura [29] and Clique PoA [35].
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Figure 10: Throughput transfer (read-write) workload with private transactions: comparison
between Raft, IBFT round-robin, and Clique.

(a) Latency 4-nodes (b) Latency 8-node (c) Latency 16-node

Figure 11: Latency of transfer (read-write) workload with private transactions: comparison
between Raft, IBFT round-robin, and Clique. The y-axis on Figure 11b and 11c share their label
with Figure 11a, which is Latency (s).

18

Jo
urn

al 
Pre-

pro
of



7 Conclusion

In this paper, we outlined a general workflow for benchmarking permissioned blockchain platforms
and related consensus algorithms. We presented as practical case study the ConsenSys Quorum
blockchain: it offers three plug-and-play consensus mechanisms, which have been analyzed, also
taking into account the CAP trade-off problem [3]. The theoretical analysis (Section 3) performed
on Raft, Clique PoA and IBFT, can be transposed to every consensus algorithm. Then, we outlined
methodology and tools to drive and produce performance evaluations of blockchain technologies, by
comparing different consensus mechanisms under different network configurations. While previous
works limit the generalizability of the results, our approach is totally replicable, open source and it
provides new insights into the scalability quality of consensus protocols, by performing tests on a
variable number of blockchain nodes.

Although this research clearly illustrates the effects of different parameters on performance and
scalability of permissioned Quorum networks, it also raises many questions. For instance, further
research is needed on security considerations: future works should address trade-offs between se-
curity and performance, or even effects of byzantine nodes on network safety. Moreover, an open
source modification to the Caliper framework could be proposed so to make the worker processes
multithread (as in [2]), thus alleviating the transaction rejection issue on high input rates. This
modification could also increase measurement accuracy.

Nevertheless, our tools are ready to be used to collect data on many more combinations of per-
formance variables and network configurations of Quorum. Specifically, it could be meaningful to
analyze memory and CPU consumption of blockchain nodes, by leveraging Prometheus [31] as a
monitoring tool (already integrated with Caliper). Furthermore, the deployment tool we imple-
mented [25], could be extended so to allow new nodes to dynamically join the Quorum network
without need of static IPs: in that case, the overhead of the reconfiguration protocol of consensus
mechanisms must be studied.

Overall, our tools can be taken as examples to implement new Caliper plugins to test other
blockchain platforms in the financial context. Testing and comparing performances of different
permissioned blockchains can be useful both for research scopes and for practical applications, since
this technology is being considered for adoption in interesting financial scenarios, such as interbank
transactions and Central Bank Digital Currencies [14]. In addition, alternative workloads can be
proposed so to extend benchmarks to other use cases, such as supply chain.

To conclude, the workflow we proposed is flexible enough to be applied to any permissioned
blockchain context: it is useful for assessing and analyzing performances of various consensus algo-
rithms within the same blockchain framework, but it also enables cross-blockchain comparisons.
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