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Abstract
More than 1000 distributed ledger technology (DLT) systems raising $600 billion in investment in 2016 feature the

unprecedented and disruptive potential of blockchain technology. A systematic and data-driven analysis, comparison and

rigorous evaluation of the different design choices of distributed ledgers and their implications is a challenge. The rapidly

evolving nature of the blockchain landscape hinders reaching a common understanding of the techno-socio-economic

design space of distributed ledgers and the cryptoeconomies they support. To fill this gap, this paper makes the following

contributions: (i) A conceptual architecture of DLT systems with which (ii) a taxonomy is designed and (iii) a rigorous

classification of DLT systems is made using real-world data and wisdom of the crowd. (iv) A DLT design guideline is the

end result of applying machine learning methodologies on the classification data. Compared to related work and as defined

in earlier taxonomy theory, the proposed taxonomy is highly comprehensive, robust, explanatory and extensible. The

findings of this paper can provide new insights and better understanding of the key design choices evolving the modeling

complexity of DLT systems, while identifying opportunities for new research contributions and business innovation.
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1 Introduction

Over 1000 systems have emerged in recent years from dis-

tributed ledger technology (DLT), raising $600 billion in

investment in 2016 [75]. They power a large spectrum of

novel distributed applications making use of data

immutability, integrity, fair access, transparency, non-repu-

diation of transactions [87] and cryptocurrencies. These

applications include improving supply-chains

[30, 42, 44, 45], IoT [80], creating self-sovereign identi-

ties1 [5, 48], establishing peer-to-peer energy mar-

kets [2, 35], securing digital voting [43, 60], e-health

[36, 39, 65] and enabling international financial transactions

[71, 87]. The most well-known DLT system is Bitcoin, fea-

turing a novel consensus mechanism2 and a cryptoeconomic
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design3 (CED), which enables untrusted parties to reach

consensus [9]. Bitcoin is the first public DLT system that

prevents double-spending4 and Sybil attacks5 [79].

A distributed ledger (DL) is a distributed data structure,

whose entries are written by the participants of a DLT

system after reaching consensus on the validity of the

entries. A consensus mechanism is usually an integral part

of a distributed ledger system and guarantees system reli-

ability: all written entries are validated without a trusted

third party. Distributed ledgers are designed to support

secure cryptoeconomies, which are capable of operating

cross-border, without depending on a particular political

structure or legal system. These cryptoeconomies rely on

digital currencies referred to as tokens and cryptographic

techniques to regulate how value is exchanged between the

participating actors [6, 16]. The options and choices of a

cryptoeconomy are referred to as cryptoeconomic design

(CED) and this plays a key role in the stability of a DLT

system in terms of convergence, liveness, and fairness [9].

Nevertheless, making system design choices (e.g, on the

type of consensus mechanism) in this rapidly evolving

technological landscape to meet the requirements (e.g.,

security or performance demands) of a broad spectrum of

distributed applications is complex and challenging. The lack

of a common and insightful conceptual framework for DLT

has been cited as a significant barrier in this regard [54, 62].

Moreover, the system configuration space of distributed

ledgers and the cryptoeconomies they support is large, which

has implications on the applicability as well as cost-effec-

tiveness of DLT systems in real-world applications [87]. To

date, these configurations have not been rigorously formal-

ized to guide researchers and practitioners on how to design

DLT systems [22, 23, 62, 82]. Therefore, identifying key

design choices and system configurations that can differen-

tiate distributed ledgers and guide innovation in new DLT

systems can have an impact on reducing the design com-

plexity and cost. It has been argued that this lack of a clear

positioning of DLT systems leads to a fragmentation in the

DLT community and a duplication of effort [76]. The sig-

nificance of this challenge is reflected in the recent tax-

onomies of distributed ledgers [55, 76, 82, 86–88].

This paper derives a useful6 taxonomy of DLT systems

from a novel conceptual architecture. This taxonomy is

then utilized to classify 50 viable and actively maintained

DLT systems. In contrast to earlier work, a novel evalua-

tion methodology is employed that solicits feedback from

the blockchain community and constructively uses it to

validate and further improve the proposed taxonomy and

classification. Moreover, the classification data are utilized

to quantitatively reason about key design choices in the

observed DLT systems, which then, in turn, determine a

design guideline for DLT systems. To make this design

guideline objective, this paper relies on systematic methods

that combine in a novel way (i) literature review, (ii) novel

data collection and (iii) ML-based data analysis. In par-

ticular, the data-driven approach results in a guideline that

structures the modeling complexity of DLT systems and

thus accelerates and simplifies the design phase by

grouping together system design configurations derived

from the attribute values of the taxonomy.

The contributions of this paper are outlined as follows:

1. A conceptual architecture that models DLT systems

with four components. The architecture (Fig. 1) defines

minimal and insightful design elements to illustrate the

inner mechanics of distributed ledgers and the interre-

lationships of their components.

2. A taxonomy (Fig. 2) of distributed ledgers that

formalizes a set of 19 descriptive and qualitative

attributes, including a set of possible values for each

attribute.

3. A classification of 50 DLT systems, including Bitcoin

and Ethereum, backed by an extensive literature

review.

4. A taxonomy evaluation criterion referred to as ‘ex-

pressiveness’ derived from earlier theory on

taxonomies.

5. Crowdsourced feedback from the blockchain commu-

nity to further assess and improve the taxonomy and

classification.

6. A design guideline for DLT systems (Fig. 12), which is

constructed using machine learning techniques to

reason based on empirical data of viable, actively

maintained and academically referenced DLT systems.

7. A methodology (Fig. 3) that utilizes a broad spectrum

of inter-disciplinary methods to derive system design

guidelines by reasoning based on machine learning

techniques, wisdom of the crowd and taxonomy theory.

This paper is organized as follows: In Sect. 2, terminology

and recent taxonomies for DLT systems are discussed. A

conceptual architecture for DLT systems is introduced in

Sect. 3, while a taxonomy is outlined in Sect. 4. Thereafter,

Sect. 5 illustrates the methodology of the conducted

experiments and Sect. 6 presents the evaluation. Section 7

derives based on the findings of the evaluation a design

3 In particular, paying a block reward (Sect. 4.4) and transaction fees

(Sect. 4.2) to its consensus participants.
4 Faulty transactions of the same token to two different receivers.
5 Setup of fake identities to insert faulty information into the

distributed ledger.
6 Usefulness is defined in Nickerson et al. [52] and formerly

introduced in Sect. 5.2.2.
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guideline for DLT systems. Finally, in Sect. 8 a conclusion

is drawn and an outlook on future work is given.

2 Background and Literature Review

Different types of data structures are utilized in distributed

ledgers to store information. In particular, the literature

distinguishes between distributed ledgers (DL) and block-

chains [66, 87], the latter representing one type of data

structure utilized in the former. Another type of data

structure is the directed acyclic graph [46, 88].

The entries of a distributed ledger contain transactions.

Any type of transaction can be stored, ranging from cryp-

tographically signed financial transactions to hashes of

digital assets, and Turing-complete executable programs

[87], i.e. smart contracts. DLT systems often provide ac-

cess rights to these transactions, which determine who can

initiate transactions, write them to the distributed ledger,

and read them again from the ledger [87]. In addition, DLT

systems utilize so-called tokens [86], which are defined as

a unit of value issued within a DLT system and which can

be used as a medium of exchange or unit of account (see

Sect. 4.4). These tokens span a multi-dimensional incentive

system via which they can promote self-organization [41]

and thus lead to benefits in society [38], such as con-

tributing solutions for the UN Sustainable Development

Goals (SDGs) [21]. Hence tokens are identified as another

key component of DLT systems in addition to the dis-

tributed ledger [51]. These components can be modeled

independently, resulting in systems that do not necessarily
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Fig. 1 An overview of the conceptual architecture containing the four key concepts of DLT systems and their relationship: action, consensus,

distributed ledger and token

Fig. 2 Overview of the taxonomy, depicting the two dimensions of

DLT and CED, its four components and 19 attributes

Fig. 3 A novel methodology that combines machine learning

techniques, wisdom of the crowd and taxonomy theory to reason

about a DLT system design guideline

Cluster Computing

123



maintain a native distributed ledger. In such cases, a token

is defined while another system is used to provide the

infrastructure for a distributed ledger. For instance, the

Aragon system does not maintain a natively developed

distributed ledger [20].

The ability to define the type of transactions, access

rights and tokens is used to regulate the behavior of users,

i.e. by limiting and granting access rights to system ser-

vices or by incentivizing specific actions with tokens.

These socio-economic choices not only influence aspects

of the system stability, such as the correctness, liveness and

fairness of the consensus mechanism [9], but also deter-

mine how complex cryptoeconomies emerge [6, 16]. In

other words, cryptoeconomic design (CED) plays a key

role in enabling DLT systems to reach stability and

underpin how the economies form.

A DLT system has to reach consensus before a trans-

action can be permanently written to its ledger [86]. This

consensus mechanism is a functional element of any DLT

system [66], as it enables a decentralized network to take

decisions about the validity of entries in the distributed

ledger [67]. In particular, in the context of DLT systems,

consensus prevents token units from being spent twice [49]

and Sybill attacks [79], which is where fake identities are

used to inject false information into the distributed ledger.

2.1 Comparison of taxonomies for DLT systems

Recent ontologies and taxonomies have been proposed to

structure the design space of DLT systems. A comparative

summary of earlier work is shown in Table 1. Column 3 of

that table depicts if the paper utilizes a conceptual archi-

tecture to construct the taxonomy. Nickerson et al. [52]

suggest to conceptualize the domain of interest for which a

taxonomy is developed. In such a conceptual architecture,

the attributes of a taxonomy should be positioned such that

these are mutually exclusive and collectively exhaustive

[52]. Nevertheless, only Papers 4 and 8 in Table 1 provide

a conceptual architecture (Column 3 in Table 1) that

determines the choice of some of the attributes. For

instance, Paper 4 distinguishes between on-chain and off-

chain components: attributes of the DLT system that exist

on the distributed ledger (e.g. permission management) vs.

attributes that exist outside (e.g. control, data).

A useful taxonomy should be concise and robust [52],

hence using a limited number of attributes that differentiate

the objects of interest. The number of attributes listed in the

papers varies considerably, from 4 to 30 (Column 4 in

Table 1). One explanation is that the papers focus on dif-

ferent aspects of DLT systems and thus study different

(sub)sets of attributes. For instance, Paper 5 focuses on

Internet of Things applications of DLT systems and only

use four attributes (Column 4 in Table 1), whereas Paper 1

designs a taxonomy to model all types of DLT systems and

hence uses 30 attributes (Column 4 in Table 1). Never-

theless, none of the papers justifies the number of selected

attributes. In particular, their impact on conciseness and

robustness of the taxonomy is not evaluated [52]. Also,

several of the attributes potentially overlap with each other

conceptually due to the aforementioned lack of a concep-

tual architecture.

Consensus is identified as a core feature of DLT sys-

tems [67] and as such, it is incorporated in all papers listed

in Table 1. For this reason, it is omitted from this table.

Nevertheless, just four papers consider schemes to incen-

tivize participation in the consensus mechanism (Column 5

in Table 1).

Moreover, only Papers 3 and 5 distinguish between the

different types of data structures in distributed ledgers

(Column 6 in Table 1). For instance, Paper 3 differentiates

between blockchains and directed acyclic graphs. Never-

theless, some of the most recent contributions solely

include blockchain-based DLT systems [14, 76, 82, 87].

Eight papers include cryptoeconomic design in their

taxonomy (Column 7 in Table 1). In particular, seven

papers consider access rights to transactions (Column 8 in

Table 1). Only Papers 1 and 7 derive a taxonomy that

include tokens and their properties (Column 9 in Table 1).

Three papers illustrate a classification of DLT systems

based on their proposed taxonomy (Column 10 in Table 1).

For instance, Paper 5 illustrates the classification of 28

DLT systems. The authors rely on three attributes: data

structure, scalable consensus ledger, and transaction

model [88]. However, neither of the papers introduces a

formal methodology to select the classified DLT systems,

which lowers their objectivity. Also, without a formal

selection methodology, it is not guaranteed that the tax-

onomy enables a comprehensive classification of all known

DLT systems [52].

The usefulness of a taxonomy depends on qualitative

criteria studied in taxonomy theory [52]. An approach to

assess the usefulness of a taxonomy is to utilize crowd-

sourced community feedback and thus the wisdom of the

crowd. This is particularly relevant in the case of DLT

systems and the blockchain community. As the community

shapes the blockchain landscape, soliciting their feedback

can provide both, invaluable new insight into the design of

DLT systems and increase the usefulness of a taxonomy.

Nevertheless, such an endeavor has not been pursued until

nowadays, as shown in Column 11 of Table 1.

Finally, a quantitative evaluation and analysis of tax-

onomy and classification elements by means of statistical

or machine learning methods have not been performed so

far (Column 12 in Table 1). This is a missed opportunity, as

such an approach can provide more objective insights into

the usefulness of taxonomies and identify key design
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choices in DLT systems that structure the modeling com-

plexity of these systems at design phase, as demonstrated in

this paper (Sect. 6.2).

2.2 Summary of limitations

In summary, a few observations can be made about current

DLT system taxonomies. First, they predominantly focus

on the DL and consensus mechanisms, while largely

missing the role of cryptoeconomics and token design,

despite their significant influence on system stability [9].

Second, the interrelationships between the different com-

ponents as well as the choice of attributes are usually not

based on an overarching conceptual architecture. Third,

only three of the papers classify DLT systems. Neverthe-

less, these papers neither utilize a rigorous scientific

methodology nor quantitatively analyze their classification.

As a result, classification is usually not formally validated

and the identification of design choices is limited to qual-

itative criteria. Last but not least, none of the proposed

taxonomies are systematically refined based on feedback

from blockchain practitioners. Such a complementary

external validation process promises to produce more

unbiased taxonomies.

This paper addresses all of the aforementioned limita-

tions identified in the literature and contributes a useful

taxonomy as defined in earlier taxonomy theory [52], built

on a solid conceptual architecture, assessed via classifica-

tions and validated by both, feedback from the blockchain

community and machine learning methods. Moreover, the

quantitative analysis of the classification is utilized to

identify key design choices in observed DLT systems.

3 Conceptual architecture

Based on the study of 50 DLT systems (see Table 2 in

Supplementary Material for an overview of these systems),

a conceptual architecture is introduced in this section. The

architecture is composed of a set of four key components

and shows, how they relate to each other as well as how

they are positioned in the distributed ledger design space.

The architecture is depicted in Fig. 1. The four components

are illustrated in the rest of this section.

Action component: A human or machine performs an

action in the real world (Arrow A in Fig. 1), for example

planting a tree or carrying out a monetary transaction.

Here, at the border between the real world and digital

world, the action is represented digitally, and is referred to

as claim.

Consensus component: Claims are broadcast to all nodes

in the network that can participate in the consensus

mechanism (Arrow B). These nodes (referred to as miners

Table 1 Comparative overview of earlier work outlining the landscape of distributed ledgers

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

ID Paper Concept Attributes Consensus

incentivization

Diff.

DL

CED Access

rights

to

transactions

Token

properties

Classification Community

evaluation

Quantitative

analysis

1 Tasca et al.

[76]

– 30 Yes – Yes Yes Yes – – –

2 Comuzzi

et al. [14]

– 8 Yes – Yes Yes – – – –

3 Xu et al. [87] – 13 – Yes Yes Yes – – – –

4 Xu et al. [86] Yes 7 – – Yes Yes – – – –

5 Yeow et al.

[88]

– 4 – Yes – – – Yes – –

6 Okada et al.

[56]

– 4 Yes – Yes – – – – –

7 Wieninger

et al. [82]

– 11 Yes – Yes Yes Yes – – –

8 Dinh et al.

[23]

Yes 9 – – Yes Yes – Yes (partial) – –

9 De Kruijff

et al. [18]

– 6 (many) – – – – – – – –

10 Sarkintudu

et al. [69]

– 5 – – – – – – – –

11 Notheisen

et al. [55]

– 6 – – Yes Yes – Yes – –

This paper Yes 19 Yes Yes Yes Yes Yes Yes Yes Yes
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in Bitcoin or minters in Peercoin) collect these claims to

write them to the distributed ledger.

Distributed ledger component: Participants in the con-

sensus mechanism combine these claims into entries (re-

ferred to as blocks in Bitcoin) and write them to the

distributed ledger (Arrow C). This representation of a claim

on the distributed ledger is called a transaction. Transac-

tions and their containing objects (e.g. smart contracts) that

exist on the distributed ledger are referred to as on-chain, in

contrast to off-chain objects, which exist on the Consensus

or Action component.

Token component: The way token units are created

depends on whether an incentive system is part of the DLT

system. If it is, there are two options: token units are given

as rewards to nodes for either participating in the consensus

mechanism (Arrow D) or carrying out an action (Arrow E).

While the inherent properties of such tokens (e.g. whether

supply is capped or not) are determined by the design of the

DLT system, the value of the token units is backed by a

source of value, which are cryptoeconomic assets that

reside on-chain (Arrow F, for example other tokens or

executable code) or off-chain (Arrow G, for example

goods, services or commodities).

Example Ethereum: In the case of Ethereum, one type of

action involves deploying a piece of code (Arrow A in

Fig. 1), such as a smart contract. These actions are col-

lected by miners (Arrow B) and written as a block to the

Ethereum distributed ledger (Arrow C). A miner who

successfully writes a block obtains Ether, which refers to

newly created units of a token that serves as an incentive to

mine (Arrow D). The Ether token has inherent properties,

e.g. it has uncapped supply. It also has value because it

enables its owner to access the on-chain computational

power of the Ethereum network (Arrow F).

4 Taxonomy

Based on the conceptual architecture of Sect. 3, a taxon-

omy is designed, using the method proposed by Nickerson

et al. [52]. The goal of the taxonomy is to enable a com-

prehensive classification of DLT systems that enable the

quantitative derivation of key design choices in these sys-

tems. For this, the taxonomy illustrates both, the distributed

ledger technology (DLT) and the cryptoeconomic design

(CED) of academically relevant DLT systems. For this, the

taxonomy positions the four components from Sect. 3

across two dimensions (Fig. 2). The first dimension con-

cerns aspects of the system design related to distributed

ledger technology (DLT)—Distributed Ledger component,

Consensus component—, while the second dimension

concerns aspects pertaining to cryptoeconomic design

(CED)—Action component and Token component. In the

following sections, the attributes of each component are

illustrated in greater detail.

4.1 Distributed ledger

Definition 1 A distributed ledger is defined as a dis-

tributed data structure, containing entries that serve as

digital records of actions.

In the Bitcoin system, an entry in the data structure is

called a block. In the IOTA system, it is called a bundle

[68]. An entry contains a set of transactions (Fig. 1, DL

component). In Bitcoin, these transactions represent the

exchange of cryptocurrency value. The attributes of the

distributed ledger are data structure, origin, address

traceability and Turing completeness.

Data structure denotes in which format data is stored on

the distributed ledger. It can be one of the following:

blockchain, directed acyclic graph (DAG) or other. The

well-known data structure is a blockchain; an

immutable and append-only linked list that has a total order

of elements. Several systems use blockchains, such as

Bitcoin [87], Ethereum [19] and Litecoin [34]. In contrast

to these systems, IOTA uses a directed acyclic graph [88].

This data structure is no longer a linked list, but a directed

graph with no cycles, leading to a partial order of elements.

When compared to Blockchains, DAGs trade off security

(e.g. risk of double spending attack) against a higher

transaction throughput by facilitating fast entry confirma-

tion times [28]. Ripple neither uses a blockchain nor a

directed acyclic graph but instead operates on other con-

sensus-based accounting mechanism [33].

Origin refers to who maintains the distributed ledger.

The attribute value can either be native, if the distributed

ledger is maintained by and for the system itself or exter-

nal, if the system uses a distributed ledger from another

DLT system or hybrid if the systems maintain their own

distributed ledger in combination with a distributed ledger

of another DLT system. The level of maintenance varies

between different DLT systems. Bitcoin develops and

maintains its distributed ledger natively, as does NXT [86].

In contrast, Aragon [20], Augur [33, 59] and Counter-

party [88] does not maintain a native distributed ledger,

opting to use the Ethereum or Bitcoin infrastructure

instead. Systems can use a hybrid approach. Factom

combines a natively developed blockchain and its own

consensus mechanism with the Bitcoin blockchain [87].

Address traceability denotes the extent to which dif-

ferent transactions that originate from or arrive at the same

chain identity, can be linked together. The value can either

be obfuscatable, if the distributed ledger has mechanisms

in place to hide such links or linkable, if these links can be

inferred with some computational effort. The level of
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address traceability varies between the different DLT sys-

tems. Zcash [37] and Monero [74] are so-called privacy

coins, which perform advanced measures to unlink trans-

actions [9]. Hence, the on-chain identities of the actors

remain obfuscated. Bitcoin has linkable address traceabil-

ity [9]. In theory, transactions cannot be linked to a par-

ticular chain identity, but it has been shown that this can

actually be achieved with some computational effort [87].

The same applies to Ripple [50].

Turing completeness refers to whether a Turing machine

can be simulated by the DL and can either be Yes or No.7

Some DLs, such as Ethereum, can execute Turing

machines. This allows Turing complete smart contracts to

be stored and executed [86], in contrast to the Bitcoin

blockchain [9].

Storage denotes whether additional data can be stored

on the distributed ledger beyond the default transaction

information. The attribute value can either be yes if data

can be stored or no, if additional data cannot be stored. The

distributed ledger of Bitcoin allows arbitrary data to be

stored inside transactions. This allows Bitcoin to be used as

a base layer for other DLT systems, such as observed in the

Counterparty system [88]. In contrast to Bitcoin, IOTA

does not allow additional data to be stored [77].

4.2 Consensus

Definition 2 Consensus is the mechanism through which

entries are written to the distributed ledger, while adhering

to a set of rules that all participants enforce when an entry

containing transactions is validated.

The attributes of consensus are finality, proof, write

permission, validation permission and fee. Due to the scope

of the taxonomy to enable a comprehensive classification

of all components of a DLT system (Fig. 1), more granular

consensus attributes such as verification speed are not

considered. Nevertheless, detailed consensus attributes can

be found in [12, 49].

Finality refers to the guarantee that past transactions can

not be changed or reversed. Its value is deterministic if

consensus is guaranteed to be reached in finite time, or

probabilistic if there is some uncertainty over whether

consensus can be reached. In other terms, with regard to the

CAP theorem, a deterministic consensus is consistent and a

probabilistic algorithm can reach eventual consistency

[17]. Byzantine Fault Tolerance (BFT) algorithms tolerate

a class of system failures that belong to the Byzantine

Generals Problem. In particular, a consensus algorithm

with this property prevents, under some guarantees,8 con-

sensus participants from writing a false entry to the dis-

tributed ledger. The classic system layout in BFT are

permissioned systems, which finalize agreement on entries

deterministically and are safe in asynchronous environ-

ments [13]. In contrast, Nakomoto consensus signaled a

transition from these permissioned systems to permission-

less systems that only give probabilistic guarantees about

entries in a distributed ledger [57]. This type of algorithm

validates each new entry using the entire history of previ-

ous entries: An entry is accepted if there is a certain

number of new entries referencing it [9]. For instance, in

the case of Bitcoin, a writer validates a transaction by

considering the whole blockchain and then including the

transaction in a new block. When this block is referenced

by six other blocks, it is confirmed, as the probability that a

second chain of six blocks referencing each other, but not

referencing this block, is low [87], thus leading to eventual

consistency [17]. Similarly, the directed acyclic graph of

IOTA confirms an entry when it is referenced by a sig-

nificant number of new entries [88]. On the other hand,

Ripple does not use a Nakamoto consensus algorithm and it

is guaranteed that consensus can be reached in a finite

period of time [67].

Proof is the evidence used to achieve consensus. The

value can either be proof-of-work (PoW), if consensus is

achieved using the processing power of computers; proof-

of-stake (PoS), if it is achieved through voting processes

linked to (economic) power in the system; hybrid, if it is a

combination [11] of the previous two or other, if another

form of proof is required. Participants in the consensus

mechanism require proof before accepting the validity of

an entry. Bitcoin uses a proof-of-work [86], which is the

solution to a mathematical puzzle that requires computa-

tional processing power and which thus mitigates the risk

of Sybil attacks by linking the power of creating new

entries with computational work to be performed [73]. A

proof-of-stake is used by Ardor [76], which is the approval

of a randomly selected consensus participant who must

hold a stake in Ardor token units. This proof mitigates the

risk of Sybil attacks by linking entry creation power to the

economic value of hold tokens [10].

Write permission denotes who is allowed to write entries

to the distributed ledger. The value can either be restricted,

if participation is restricted or public, if it is not. Besides

the CAP Theorem, a tradeoff between decentralization,

consistency and scalability (DCS) can be observed in DLT

7 There are DLs that enable the execution of programmable scripts

that are purposefully non-Turing-complete [87], e.g. in order to

facilitate secure logic on financial transactions. These will currently

be classified as ‘‘No’’. Hence, in future work the Turing completeness

attribute could be extended to the concept of Computational

Capability which would take values in ‘‘None’’, ‘‘Limited’’ and

‘‘Touring-complete’’.

8 E.g. that malicious participants control less than one-third of the

nodes of the consensus network [13].
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systems [89]. Likewise to the CAP theorem, only two of

the properties can hold simultaneously. In context of write

permission, a restricted access impacts decentralization

negatively and performance positively [89]. In particular, a

restricted write permission can facilitate the deployment of

efficient consensus protocols such as Practical Byzantine

Fault Tolerance (PBFT) [73] which can mitigate Sybil

attacks more efficiently when compared to proof-of-work

algorithms by whitelisting and bounding consensus par-

ticipants to behave correctly via contractual obliagations

[73]. The Bitcoin consensus mechanism is public [86],

meaning that it allows everyone who has computing power

to participate [67] resulting in a system characterized by

high decentralisation [89] that mitigates Sybil attacks via

its proof-of-work (Section 4.2). Conversely, the consensus

mechanism of Ripple is restricted [86], meaning that only a

few trusted institutions can participate [88] resulting in a

centralized system with a higher performance in terms of

transaction throughput.

Validate permission signifies who is allowed to validate

claims before they are written to the distributed ledger. The

value can either be restricted, if participation is restricted

or public, if it is not. As for the write permission, a

restricted validate permission impacts decentralization

negatively and performance positively. In the case of Bit-

coin, writers validate the correctness of claims before

writing them to a block: hence, the validation permission is

public. In contrast, in the case of IOTA, a central entity, the

coordinator, validates transactions before they are collected

in an entry and written to the directed acyclic graph [88]

resulting in a higher scalability of the system.

Fee denotes whether participants in the consensus

(writers and validators) are paid a fee for validating new

entries and writing them to the distributed ledger. The

value can either be yes or no. In contrast to Bitcoin, where

writers/validators are rewarded with fees [67], IOTA

writers and validators receive no fees [88]. In the case of

Ripple, consensus participants are not rewarded with fees,

although actors need to pay a fee [64]. This system layout

is captured by the fee attribute in the Action component

(Sect. 4.3).

4.3 Action

Definition 3 An action is one or more real-life activities

that can be digitally represented in a DLT system as a

transaction.

In this sense, a transaction represents a real-life action

digitally. Attributes that illustrate the access rights to and

the cost associated with these digital representations are

actor permission, read permission and fee.

Actor permission denotes who can perform an action.

The value can either be restricted if actors have to fulfill

special requirements before performing actions or public, if

anyone can perform actions. Bitcoin allows everyone to

create a private key to send and receive token units [76]:

hence, it has a public actor permission. Ripple uses

restricted access rights. In order to comply with regulations

(e.g. know-your-customer), actors need to register [76].

Read permission refers to actors that can read the con-

tents of transactions from the distributed ledger. The value

can either be restricted, if preconditions need to be fulfilled

before permission is granted, or public, if permission is not

restricted. Most DLT systems have public read access in

the sense that everyone can read the content of the actions,

which have occurred, e.g. the number of bitcoins trans-

ferred [76]. Systems utilizing privacy coins often restrict

read access to the actors involved in a transaction (e.g.

Zcash [87]), usually by making an effort to hide the

number of token units transferred [9].

Fee denotes whether an actor has to pay a fee for per-

forming an action that is unrelated to the consensus. The

values are yes or no. Some DLT systems require actors to

pay a fee that is unrelated to the consensus before they can

store an action on the distributed ledger. For instance,

actors have to pay a fee in Augur, which is not distributed

to consensus participants [59] but given to actors providing

services in the system. In the case of Bitcoin, no additional

fee is required to perform an action, except the fee paid to

the consensus participants. Ripple also requires actors to

pay a fee for each action, which is not paid to consensus

participants but is subsequently destroyed [64].

4.4 Token

Definition 4 Token is a unit of value issued within a DLT

system and which can be used as a medium of exchange or

unit of account.

The associated attributes are supply, burn, creation

condition, unconditional creation and source of value.

Supply refers to the total quantity of token units made

available. The value can either be capped, if the total

supply is limited to a finite number or uncapped otherwise.

If demand increases for a token, a capped supply can cause

the perceived token value to appreciate and corresponds to

a deflation in prices nominated in this token. Moreover, it

can result in an appreciated exchange rate with other

tokens, which in turn, increases the stability of a DLT

system [9]. Bitcoin has a capped supply of 21 million units

[76], whereas Dogecoin does not have an upper limit [9].

Burn denotes whether token supply is reduced by

removing token units. The values are yes or no. Some DLT

systems destroy token units in a process referred to as
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‘burn’. If demand remains constant, this decrease in the

money supply causes token units to appreciate and hence,

results in a better exchange rate with other tokens. For

example in the case of Ripple, paid fees are removed from

the total supply and are not returned [64]. In contrast,

Bitcoin has no inherent mechanism to destroy token units.

Transferability refers to whether the ownership of a

token unit can be changed. The value can either be trans-

ferable, if the token can be transferred, or non-transferable

otherwise. Bitcoin token units can be transferred between

different actors. Akasha plans to use non-transferable rep-

utation tokens, so-called Mana and Essence [8].

Creation condition denotes whether the creation of new

token units is linked to the incentivization of the consensus

mechanism and/or an action. The value can either be

consensus, if creation is linked to the consensus mecha-

nism, action, if creation is linked to an action, both, if

creation is linked to the consensus mechanism as well as an

action, or none otherwise. In the case of Bitcoin, new

tokens are created to incentivize the consensus mechanism

[87]. Other systems create new tokens to incentivize an

action. For instance, Steemit creates new steem to incen-

tivize content creation on the platform (e.g. writing blog

articles) [72]. Moreover, Ripple does not use its token to

incentivize the consensus mechanism or an action [64].

Furthermore, hybrid versions are possible, where new

tokens are created to incentivize both the consensus

mechanism and an action. For instance, newly created

token units in the DASH system are awarded to both the

consensus participants and the master nodes, who perform

actions such as mixing transactions to enable obfuscat-

able address traceability [15].

Unconditional creation refers to the number of new

token units that can be created that do not serve to incen-

tivize the consensus mechanism or an action. The value can

either be partial, if some tokens are created uncondition-

ally, all, if all tokens are created unconditionally (e.g. 100

% pre-mined tokens), or none otherwise. At the genesis of

the Bitcoin system, no token units had previously been

mined and all tokens come into existence by incentivizing

the consensus [9]. On the other hand, all Ripple tokens

were created during the genesis of the system. In the case

of Augur, some tokens were created during the genesis of

the system [59].

Source of value denotes the source of a token value and

what it consists of. The value can either be token, if the

token grants access to another token; distributed ledger if

the token grants access to the distributed ledger, e.g. if the

token is needed in order to use the storage or computing

capacity of the distributed ledger; consensus, if the token

grants access to the consensus mechanism, e.g. in a proof-

of-stake type system; action, if the token grants access to

perform or receive actions, goods or services in the real

world; or none, if the token has no source of value. The first

two values (distributed ledger and token) are considered to

be on-chain and the latter two are considered to be off-

chain source of values of a token unit (as depicted in

Fig. 1). The Ethereum token allows everyone to store data

or smart contracts on-chain [87] and to access in this way

the distributed ledger of the network. Hence, the source of

value of Ether token units is that they grant access to the

processing power of the distributed ledger. In contrast to

Ether, the Golem network token units allow holders to

access off-chain computations [33]. Thus, its source of

value is action as the token provides access to a service in

the real world (Action component). Siacoin enables the

storage of arbitrary data on both its distributed ledger [70]

and its off-chain network [83]. Hence its source of values

reside in the DL and Action components.

4.5 Classification of recent DLT based
distributed computing Systems

Table 2 depicts six recent works in the 19 attributes: These

contributions focus on blockchain-based systems and are not

utilizing other structures such as directed acyclic graphs

(DAG) . Moreover, none of the systems utilizes a cryptoe-

conomic token. Li et al. [47] state that creating the economic

model for such a mechanism is a complex design problem.

Two systems develop a native distributed ledger, four sys-

tems use the computing power of the Ethereum blockchain

and one system takes a hybrid approach by combining a

native blockchain implementation with Ethereum in their

system. No other DLT system such as Bitcoin or NEO is

utilized as a first layer system, despite them being used in

viable and actively maintained DLT systems (Table 4 in

Supplementary Material). Finally, the documentation of the

created DLT systems is in some of the recent contributions

not sufficient to identify all attributes which limits the

understanding of the systems design and positioning in the

existing DLT system landscape. In particular, this lack of

positioning could lead to a fragmentation in the DLT com-

munity and a duplication of effort [76].

5 Experimental methodology

This paper relies on a novel methodology (Fig. 3) that

combines a broad spectrum of inter-disciplinary methods to

contribute a useful and practical design guideline for the

DLT community: Based on the introduced conceptual

architecture (Fig. 1) a taxonomy is derived by the method

of Nickerson et al. [52]. Utilizing the taxonomy (Fig. 2), 50

DLT systems are classified. The taxonomy and classifica-

tion are evaluated by (i) the blockchain community via a

survey and (ii) a quantitative analysis of real-world data.
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Furthermore, the quantitative analysis of the classification

by the means of machine learning methods identifies key

design choices in the observed DLT systems that structure

modeling complexity at design phase. The design choices

facilitate the construction of the design guideline. In the

following, the methodologies of the classification (Sect.

5.1), the blockchain community feedback (Sect. 5.2) and

the machine learning analysis (Sect. 5.3) are illustrated.

5.1 Classification

The scope of the classification is to comprehensively cap-

ture the CED and DLT (Fig. 2) of viable, academically

referenced and actively maintained DLT systems. More-

over, the classification aims at capturing the current state of

DLT systems. In particular, features that are about to be

released in the future are not considered. Finally, in the

case that a system is 1st layer (utilizing a native distributed

ledger, e.g. a mainchain) and 2nd layer (utilizing an

external distributed ledger, e.g. sidechains), only the 1st

layer is classified. Likewise, if a system utilizes more than

one token, only the main token is classified.

In order to guarantee reproducibility, objectivity, and

comprehensiveness, a system selection process for the

classification is designed. Figure 4 depicts this process and

visualizes the number of remaining systems per refinement

step. Two websites are used:

– Coinmarketcap.com: Lists DLT systems ranked by their

market capitalization. The rationale is that the eco-

nomic value of a system is a good proxy for its

viability.

– coincodecap.com: This site lists Github indicators of

DLT systems. In particular, it contains information

about the number of code commitments, Github stars,

and contributors to a DLT system. These indicators

capture an active development of a system.

The limitation of these data sources is that they only list

systems that maintain a native cryptoeconomic token.

Hence, Blockchain-as-a-Service systems,9 such as Hyper-

ledger Fabric [4] are not considered. Moreover, depending

on the development strategy of a system, commits might be

Table 2 Classification of recent blockchain-based distributed computing systems in the 19 attributes of the introduced taxonomy

Attribute Khalid [39] Li [47] Rosa [65] Gonzalez [24] Singh [71] Latif [45]

Origin External: Ethereum

(Emulated)

Hybrid: Ethereum

(Emulated)

Native External:

Ethereum

Native External:

Ethereum

Data structure – Blockchain Blockchain – Blockchain –

Address Trace. – Not specified Traceable – Traceable –

Turing Compl. – Not specified No – No –

Storage – Yes – Not specified –

Finality – Probabilisitc Probabilistic – Deterministic –

Proof – Not specified Not

specified

– PoS –

Write Perm. – Restricted Restricted – Restricted –

Validate Perm. – Restricted Restricted – Restricted –

Consensus Fee – Not specified Not

specified

– No –

Actor
Permission

Public Not specified Restricted Public Restricted Restricted

Read
Permission

Public Not specified Restricted Restricted Not specified Public

Action Fee No Yes Not

specified

No No No

Supply – – – – – –

Burn – – – – – –

Transferability – – – – – –

Creation Cond. – – – – – –

Uncond.
Creation

– – – – – –

Source of Value – – – – – –

9 These are systems not utilizing a native distributed ledger, as

defined in Table 3 of the Supplementary Material.
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merged externally and only pushed occasionally as major

updates to Github. This may result in a lower rank of a

DLT system, despite being actively maintained. This lim-

itation is considered in the proposed ranking function

(Equation 1).

Snapshots of the sources were taken on the 17th April

2019 and are merged based on the systems acronym.10 In

order to account for academic relevance, the selection of

the systems is enhanced with the number of mentions of

DLT systems in Elseviers ScienceDirect database11 and

then filtered based on the criterion of whether systems are

actually mentioned in literature (#mentions[ 0). For the

database search, the following search string is utilized on

the API field qs:12 ‘‘PROJECT NAME’’ AND (Blockchain

OR Ledger).

The remaining systems are ranked based on the fol-

lowing ranking function

rðiÞ ¼ 0:6�mcapðiÞ þ 0:3� ccommitðiÞ þ 0:1� ccontrðiÞ
ð1Þ

where mcap is the rank based on the market capitalization

of a system i, ccommit the commitment rank and ccontr the

contributers rank. The weights are chosen to account for

the limitation of the Github activity to be a proxy for active

system maintenance, hence the lower weights. The top 50

systems are then classified, based on an extensive literature

review performed by the first author and checked

independently by the co-authors and the blockchain com-

munity. Sources for the classification are academic litera-

ture, DLT systems websites, and whitepapers. An overview

of the final classified systems can be found in Table 2 of the

Supplementary Material. Moreover, the actual classifica-

tion of the systems is provided in Tables 4-7 of the Sup-

plementary Material.

5.2 Blockchain community feedback

Participants were invited based on their contributions to

Github13 repositories of DLT systems and their official

websites. Participants received a personalized email invi-

tation (Figure 1 in Supplementary Material) to participate

in a scientific survey to rate the classification of their DLT

system and the expressiveness (as defined in Sect. 6.1.3) of

the proposed taxonomy. A total of 326 invitations were

sent and 85 practitioners in the field responded (response

rate 26:1%). 50 respondents completed the survey (com-

pletion rate 58:8%). Only completed surveys are consid-

ered in the analysis. The participants were recruited during

two phases each lasting two months: The first beginning on

the 22nd of March 2018 and the second on 24th July 2019.

The feedback of the first phase resulted in improvements of

the taxonomy, as illustrated in Sect. 2 of the Supplementary

Material, and the feedback of both phases resulted in

improvements of the classification.

5.2.1 Classification

In the first part of the survey, the participants were shown

the classification of the four components and 19 attributes

of the DLT system to which they contribute. Consult Fig. 2

for an overview of the attributes and Tables 4-7 of the

Supplementary Material for the classification ratings. The

participants had the option to agree, disagree, or state that

they were uncertain about the classification. They could

always comment on their decision, irrespective of their

choice.

In order to calculate the consistency with which par-

ticipants rated the classification of the same system, the

consistency per attribute is calculated as follows: Assum-

ing equidistance in the Likert scale [53], the participant

responses are represented by a linear scale whereby 0

denotes disagreement, 0.5 denotes uncertainty, and 1

denotes agreement. Then, for each DLT system from which

more than one response was obtained, as illustrated in

Table 3, the consistency of responses is calculated for each

system and attribute with the mean absolute error between

the responses. Then, the average consistency for each

attribute over all DLT systems is obtained by calculating

Fig. 4 Identification and selection process of top 50 systems for

classification ranked according to Sect. 5.1. The final classification is

provided in the supplementary materials

10 A three-letter code identifying the token of a system.
11 Database of peer-reviewed literature, enabling full-text searches:

https://www.elsevier.com/solutions/sciencedirect (last accessed: Jan-

uary 2021).
12 Searches over all article excluding references: https://dev.elsevier.

com/tecdoc_sdsearch_migration.html (last accessed: May 2019). 13 Available at https://github.com (last accessed: January 2021).
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the weighted average value of the previously calculated

mean absolute errors.

5.2.2 Taxonomy

In the second part of the survey, the blockchain community

is asked to evaluate the taxonomy (Fig. 2). Nickerson et al.

propose five criteria to assess the usefulness of a taxonomy

[52]. Namely, a taxonomy is

– concise, if it uses a limited number of attributes,

– robust, if it uses enough attributes to clearly differen-

tiate the objects of interest

– comprehensive, if it can classify all known objects

within the domain under considerations,

– extensible, if it allows for inclusion of additional

attributes and attribute values when new types of

objects appear,

– explanatory, if it contains attributes that do not model

every possible detail of the objects but, rather, provide

useful explanations of the nature of the objects or help

to understand future objects.

The literature review (Sect. 2) reveals differences regard-

ing how many attributes should be included in a robust

taxonomy of DLT systems. Also, the scope of the classi-

fication is to comprehensively classify the CED of all

academically relevant systems. Thus, considering these

two points, the taxonomy is evaluated using the robustness

and comprehensiveness criteria of Nickerson et al. [52]. To

this end, this paper introduces the concept of

expressiveness:

Definition 5 A taxonomy is expressive when it is robust

and comprehensive.

where a robust and comprehensive taxonomy are given

by Nickerson et al. [52]. The perceived expressiveness of

the developed taxonomy can be determined by asking the

survey participants:

Question 1 How expressive is [component/attribute] to

differentiate between and classify DLT systems.

This formulation neither exposes survey participants to

the theory of expressiveness, comprehensiveness, and

robustness nor overloads them with a high number of

questions.

The consistency calculation for the taxonomy feedback

follows along the lines of the classification (Sect. 5.2.1):

Despite utilizing a five-point Likert scale (from very non-

expressive to very expressive) to create values ranging

from zero to one, the calculation of consistency remains the

same as the one for the classification.

5.3 Machine learning analysis

In order to extract the key design choices from the classi-

fied DLT systems, two state of the art unsupervised

machine learning methods are applied to the classified

systems. Because the data is not labeled, supervised

methods such as logistic regression are not utilized that

would require access to such appropriate training data:

1. Mulitple Correspondence Analysis (MCA) is a statis-

tical method that is widely used in the social sciences

and which is applied in recent machine learning

contributions [61, 78]. It can analyze data without a

priori assumptions concerning the data, such as data

falling into discrete clusters or variables being inde-

pendent [1, 25]. It is a generalization of the principal

component analysis (PCA) for categorical data coded

in the form of an indicator matrix or a Burt matrix [26],

which aims at summarizing underlying structures in the

fewest possible dimensions [85]. In particular, MCA

identifies new latent, pair-wise orthogonal dimensions,

which are a combination of the original dimensions.

[27]. Similar to PCA, these dimensions are ordered by

their power to explain the amount of variance in the

data [1].

Table 3 Survey participants per DLT system, their specific roles, and

experience

DLT system Total

Aragon 2
Ark 1
Bitcoin 1
Bitcoin Cash 2
BitShares 2
Byteball 1
Cardano 3
Dash 6
Decred 1
DigiByte 1
Ethereum 1
Factom 1
Golem 1
IOTA 2
Komodo 1
MOAC-MotherChain 1
Monacoin 1
Monero 4
NEM 1
NEO 1
Nexus 2
PIVX 1
ReddCoin 1
Siacoin 1
Skycoin 1
Steem 1
Stellar 1
Storj 1
Stratis 1
TRON 2
Verge 1
Waves 1
Zcash 2
Total 50

Role in Project Total

Project Lead 7
Core/Team Developer 21
Team Member 8
Advisor 1
Community Developer 4
Community Member 2
Other 7
Total 50

Experience Total

> 3 years 15
1-3 years 29
< 1 year 6
Total 50
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2. Kmeans [31] for varying k is applied on the classifi-

cation to cluster the DLT systems based on their

attribute values. Clustering is a universal machine

learning technique, broadly utilized in data mining

[32]. The optimum number of clusters is derived by

both, performing a bootstrap evaluation that determines

the stability of the clusters [29] and by two well-known

cluster evaluation metrics: Silhouette and Calinski-

Harabasz [63].

MCA is utilized in the machine learning analysis of Sect.

6.2 to identify underlying design choices in the classified

systems because it can reduce the complexity of the tax-

onomy to fewer dimensions by clustering the original

attributes. This is an advantage of this method when

compared to other standard unsupervised methods such as

hierarchical clustering. K-means is then applied to validate

the identified design choices. The significance of this

approach lies in the fact that the design choices are derived

quantitatively by reasoning based on validated empirical

data: the viable and actively maintained DTL systems

classified according to the taxonomy (Sect. 5.2.1).

6 Experimental evaluation

The evaluation aims to identify key design choices that

govern the modeling complexity of DLT systems at design

phase. In order to base these insights on a strong footing,

first, the taxonomy and classification are validated by

feedback from the blockchain community (Sect. 6.1). Then

two machine learning methods are applied on the classifi-

cation to mine the design choices on a quantitative basis.

(Sect. 6.2).

6.1 Blockchain community feedback

The taxonomy (Sect. 4, Fig. 2) and classification

(Table 4-7 of the Supplementary Material) are evaluated

using feedback from the blockchain community.

6.1.1 Demographics

Table 3 shows the demographics of the survey participants.

In particular, it shows participants specific roles for the

systems and their experience. The 50 participants work in

(core) technical (25 developers) and strategic (7 Project

leads) positions. Moreover, 15 participants have more than

3 years of experience, 29 participants have worked 1 to 3

years, and 6 participants have worked for less than a year in

the field of DLT systems. Moreover, Table 3 illustrates that

the participants are involved in 33 out of the 50 classified

systems.

6.1.2 Classification

Figure 5a depicts the aggregate acceptance level for each

of the components. The Distributed Ledger component

received the highest acceptance level with 88:0%, followed

by the Token component (86:8%), Action component

(82:0%) and Consensus component (77:8%).

Figure 6 illustrates the acceptance level for each attri-

bute of the four components. It is noteworthy that the

average approval rating over all components is 83:7%. Five

attributes are above 90%: transferability (96:2%), origin

(92:0%), DL data structure (97:8%), creation condition

(90:0%) and unconditional creation (90:0%). The fig-

ure shows that the highest disagreements relate to the

validate permission (17:4%), source of value (15:4%Þ and
storage (15:4%Þ. The highest degree of uncertainty is

expressed regarding the action fee (18:0%), consensus

finality (17:4%) and consensus proof (13:0%) attributes.

In order to investigate the consistency of the responses,

the weighted consistency averages for each attribute are

depicted in Fig. 8. The overall consistency is on average

89:9%. The lowest consistency measured relates to the

consensus type (79:2%) and action fee (82:4%), correlating

with the higher degree of disagreement observed earlier.

The highest consistencies are observed for the DL data

structure (100:0%), origin (97:3%), actor permission

(96:4%), supply (95:8%), creation condition (95:6%) and

unconditional creation (95:6%) attributes.

In a nutshell, the acceptance level of 83:7% over all

components and the average consistency of 89:9% indi-

cates the acceptance of the classification by the

community.

6.1.3 Taxonomy

Figure 5b depicts the expressiveness of the four compo-

nents as perceived by the survey participants. The Con-

sensus component is seen as the most expressive (92:0%),

followed by Distributed Ledger (90:0%), Token (70:0%)

Fig. 5 Acceptance level of the classification and expressiveness of

taxonomy components as perceived by survey participants
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and Action component (64:0%). The highest uncertainty

relates to the Action (24:0%) and Token (22:0%) compo-

nents. The Action component consists of the lowest num-

ber of attributes, which may decrease its perceived

expressiveness. In particular, the reduced number of attri-

butes seems to hinder differentiation between DLT sys-

tems. Moreover, the literature review reveals, that

Consensus is included in all taxonomies (Sect. 2). Thus this

component might have been the most familiar to the par-

ticipants resulting in higher expressiveness.

15 participants commented on the expressiveness of the

components. They stated that a component depicting the

governance of a system should be illustrated by the tax-

onomy (26:6%),14 including the funding of a DLT system.

Three participants (20%) mention that the Action compo-

nent is not expressive enough to illustrate specific features

of a system, such as the distribution of actors. Similar

statements were made about the Token component

(20:0%). In particular, it has been stated, that inter-token

dynamics should be covered and that further attributes are

required to illustrate the creation conditions and 1st and 2nd

layer tokens (20:0%). Moreover, the quality of code

implementation, type of programming language, strategy

of code development and scalability of the system has been

mentioned (26:6%) as expressive attributes missing in the

taxonomy. One participant stated, that the source of value

attribute should be more sharply defined,15 and another

used the opportunity to further elaborate on the system

functioning. Finally, some participants made statements

endorsing the construction of the taxonomy (13:3%).

Figure 7 depicts the perceived expressiveness of the 19

attributes. The five most expressive attributes are deemed

to be transferability (88:5%), read permission (86:0%),

origin (84:0%), actor permission (82:0%), write permis-

sion (82:0%) and DL data structure (82:0%). Action

fee (26:0%), storage (23:1%), consensus type (22:0%) and

burn (22%) raise the highest degree of uncertainty. The

least expressive attributes are deemed to be the consensus

proof (14:0%), burn (14:0%) and Turing completeness/

unconditional creation (each 12:0%) attributes. Despite the

Action component being the least expressive component,

two of its attributes are amongst the top five most

Fig. 6 Classification evaluation of the attributes, grouped component-wise

Fig. 7 Expressiveness evaluation of the attributes, grouped component-wise (N = 50)

14 In brackets are depicted the percentage for which this responds

type accounts for the overall received comments. Please note, that the

percentages do not add up to 100% as a survey participant’s

comments can account for more than one responds type.

15 Since the participant’s feedback the definition of the source of

value has been revised. Please refer to Sect. 2 of the Supplementary

Material
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expressive attributes. This supports the consideration to

extend the action component by adding further attributes. A

similar observation is made for the Token component:

transferability is the most expressive attribute, but the

perceived expressiveness of its component is lower than for

the DL and Consensus components, which suggests

extending the attributes of the Token component.

The assessment of the feedback regarding the attributes

provided by the survey participants during the first

recruitment phase lead to an inclusion of further attributes

into the taxonomy. The nature and reasoning of these

adjustments can be found in Sect. 2 of the Supplementary

Material. This inclusion of new attributes indicates that the

taxonomy is extensible [52].

Figure 8b depicts the consistency with which the par-

ticipants evaluated the expressiveness of the taxonomy

attributes. The average consistency over all attributes is

85:5%; meaning that survey respondents from the same

DLT systems rated the expressiveness of the taxonomy

similarly to each other. In particular, they diverge from

each other just 14:5% on average, that is less than one

choice difference on the aforementioned Likert scale.

In a nutshell, the average expressiveness rating of 79%
over all components and the average consistency of 85:5%

indicates that the taxonomy is expressive.

6.2 Machine learning analysis

The multiple correspondence analysis is utilized to identify

underlying design choices in the classified systems. In

particular, the method identifies new latent dimensions,

which are a combination of the original attributes of the

taxonomy. In Table 4 these twelve latent dimensions and

their contribution to the explained variance in the data after

applying Benzceri (optimistic) and Greenacre (pessimistic)

corrections are depicted in decreasing order of importance.

The first four dimensions account for 96:2% of total

variation (for the Benzecri correction) and thus are con-

sidered significant to explain the variance in the data.

Figure 9 depicts how these four dimensions are deter-

mined by both, the original attribute values of the taxon-

omy and the classified 50 systems. The contributions are

calculated by dividing the factor scores of attributes/clas-

sified systems for a dimension by the eigenvalue of that

dimension [1]. The four significant dimensions in the new

vector space are in descending order of explained variance:

– Dimension 1: Illustrates if a system is layered. In

particular, if the system uses a native distributed ledger

or an external one and thus corresponds to the origin

attribute of the taxonomy.

– Dimension 2: Illustrates the participation level in a

system. In particular, the degree of openness is

represented ranging from permissioned (e.g. restricted

Actor permission) to permissionless systems.

– Dimension 3: Illustrates the capability to stake, e.g., if

the system utilizes a PoS typical layout such as a token

providing access to participate in the consensus.

– Dimension 4: Illustrates the level of cryptoeconomic

complexity. The values range from complex (e.g. token

interactions) to simple (e.g. tokens not burnable).

The second, third and fourth dimensions are not trivially

determined by studying the classified systems visually, as

the determining attribute values span over several compo-

nents. Moreover, the differentiation between permissioned

and permissionless systems [81, 84] and the degree of

staking capability [7, 40] reflect ongoing discussion of the

community on the effective design of DLT systems. The

actor permission attribute contributes significantly to the

Table 4 Eigenvalues and corresponding explained variances of MCA

dimensions after applying Benzecri and Greenacre correction

Dim Description Eigenvalue Corrected variances

Benzceri Greenacre

1 Layering 0.311 0.764 0.679

2 Participation 0.060 0.148 0.132

3 Staking capability 0.013 0.032 0.029

4 Cryptoec. complexity 0.007 0.018 0.016

5 0.006 0.014 0.012

6 0.003 0.008 0.007

7 0.002 0.006 0.005

8 0.002 0.004 0.004

9 0.001 0.003 0.002

10 0.001 0.002 0.001

11 0.001 0.001 0.001

12 0 0.001 0.000

13 0 0 0

Fig. 8 Weighted average of consistency calculation per attribute,

using DLT systems consistency values of which more than one

response is obtained
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construction of the permissionless dimensions, as depicted

in Fig. 9b, and hence this dimension extends the permis-

sionless concept from the consensus to the Action com-

ponent. Neither Bitcoin nor Ethereum contributes

significantly to the construction of the new dimensions,

despite being studied the most in academic literature (588,

respectively 296 citations in Elsevier’s ScienceDirect

database). This might be due to other systems adopting the

design of these well-known DLT systems and hence their

design does not contribute significantly to the variance in

the data. Additionally, observing the systems that con-

tribute the most to the 4th dimension (level of cryptoeco-

nomic complexity), one notices that these are systems that

address a specific domain, respectively address a particular

challenge and hence require an elaborated CED (e.g., PVIX

and Zcoin are privacy chains, and Komodo and Bancor are

decentralized exchanges).

Figure 10 depicts the 50 DLT systems in the new

dimensions. A strong clustering of systems can be observed

for the first two dimensions (Fig. 10a, and a weaker for

the 2nd and 3rd dimensions (Fig. 10b, which is explained

due to to the lower explained variance in the data by the

latter dimension.

Table 5 outlines the cluster stability and the number of

dissolved clusters when applying k-means for various k on

the classified attribute values of the 50 DLT systems.

Comparing the bootmean16 (cluster-wise average Jaccard

similarity) and bootbrd (cluster-wise number of times a

cluster is dissolved) identifies three clusters as the most

stable separation of the classification. This is further vali-

dated by the Silhouette and Calinski-Harabasz score, which

identify two or three clusters to be optimal, as depicted in

Fig. 4 of the Supplementary Material.

Fig. 9 Absolute contribution [1] (flow’s thickness) of attribute values (left) and systems (right) to value of new dimension (middle/italics

underneath the figures). The color code depicts if attribute value/system contributes negatively (red/dark) or positively (green/light)

Fig. 10 DLT systems in the latent dimensions, as identified by MCA.

The labels are determined by the k-means clustering algorithm. The

translation of the identifiers to DLT systems can be found in Table 1

of the Supplementary Material. Moreover, Fig. 3 in the Supplemen-

tary Material illustrates other combinations of dimensions

Table 5 Bootstrap statistics of identified clusters when applying

kmeans with varying k on classification: k ¼ 3 results in the most

stable clusters

k Boot Cluster

1 2 3 4 5 6

2 Mean 0.91 0.95 – – – –

brd 12 1 – – – –

3 Mean 0.96 0.97 1 – – –

brd 0 0 0 – – –

4 Mean 0.75 0.91 0.99 75 – –

brd 19 1 1 21 – –

5 Mean 0.71 0.64 0.43 0.62 1 –

brd 25 32 80 25 0 –

6 Mean 0.82 1 0.70 0.65 0.5 0.64

brd 19 0 23 33 68 44

16 ‘‘Highly stable’’ clusters should yield values of 0.85 and above:

https://rdrr.io/cran/fpc/man/clusterboot.html (last accessed: January

2021).
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In Fig. 10, the DLT systems are labeled based on these

clusters. One notices, considering the distribution of labels

in Fig. 10a, that the three clusters can be identified as 2nd

layer systems, permissioned systems, and permissionless

systems. Likewise, utilizing the same labeling in Fig. 10b,

it is noticed that these three clusters form distinct groups:

2nd layer systems being in the center, followed by per-

missionless and permissioned systems.

Figure 11 depicts the number of new systems per year

and cluster. The number of newly introduced systems

peaked in 2014, when in total 15 of the 50 systems were

introduced. This high number is mainly due to the intro-

duction of permissionless systems. In recent years, the

probability of introducing a permissioned or permissionless

system is equal, while introducing a 2nd layer system has

been lower.

The analysis concludes, that two key design choices in

DLT systems are identified method-independently: layer-

ing and participation level. Moreover, staking capability

and cryptoeconomic complexity are identified by MCA.

The key design choices are not apparent in the taxonomy

but are still captured by a combination of attribute values,

which is an indication of the rich information the taxonomy

can encode and explain. Hence, those findings support the

explanatory capacity of the taxonomy as defined in earlier

taxonomy theory [52]. Moreover, the combination of

attribute values into key design choices identified by the

analysis limits the system configuration options and as a

result reduces modeling complexity of DLT systems at

design phase.

6.3 Summary of findings

The key findings of the performed experiments are sum-

marized as follows:

– The proposed taxonomy (Fig. 2) is useful, as defined in

earlier taxonomy literature [52]. In particular, the

blockchain community validates the taxonomy as

robust and comprehensive (on average 79% expres-

siveness, Sect. 6.1). Moreover, the taxonomy is exten-

sible (Sect. 6.1) and explanatory (Sect. 6.2), as found

by analyzing the blockchain community feedback and

applying machine learning methods on the classifica-

tion. These findings also showcase the educational

value of the proposed taxonomy.

– When compared with other viable and actively main-

tained DLT systems (Table 4 Supplementary Material),

recent distributed computing contributions focus on a

small subset of potential DLT system design configu-

rations (e.g. Blockchain-based systems with no cryp-

toeconomic Token) (Sect. 4.5). The documentation of

design choices in some of the contributions is found to

be limited which hinders the understanding of the

proposed systems functioning and which could result in

a duplication of effort.

– The classification of 50 viable and actively maintained

DLT systems is accepted by the blockchain community

(on average 83:7% acceptance over all components,

Sect. 6.1.2).

– The quantitative analysis of the classification identifies

four key design choices that structure the modeling

complexity of DLT systems at design phase (Sect. 6.2).

Each of these choices combines several attribute values

and thus reduces the configuration complexity of DLT

systems.

In a nutshell, the findings demonstrate that the contribu-

tions of this paper support system designers to systemati-

cally study and design DLT systems: The conceptual

architecture and taxonomy map the space of possible sys-

tem design configurations and thus assist researchers to

position a system within the DLT landscape. For instance,

the taxonomy can support the identification of blockchain

parameters as required by the framework of Pavithran et al.

[58]. Moreover, the classification reflects well the design

configurations of existing DLT systems. Finally, the iden-

tified design choices provide new insights about influential

and determining system elements and thus accelerate the

design process. Hence, the contributions of this work can

support the distributed computing community to (i) explore

the design configuration space of DLT systems, (ii) to

create novel applications and (iii) to document their con-

tributions comprehensively.

7 Design guideline for distributed ledgers

Based on the findings of the analysis (Sect. 6.3), a design

guideline is derived (Fig. 12). The key design choices are

determined quantitatively by applying machine learning

Fig. 11 Number of Github repository creations of classified DLT

systems for the clusters identified by k-means
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algorithms on empirical data. The order is determined by

the level of explained variance, as calculated by MCA.17

Each question corresponds to a binary design decision. For

each decision, the six attribute values that contribute most

to this design choice are illustrated. Moreover, for each

choice, the systems that match best the attribute value

configuration are depicted. Hence, this guideline structures

the modeling complexity of DLT systems and can be used

to accelerate the design phase by grouping together system

design configurations. The ordering of design choices

based on the explained variance in the observed DLT

systems helps to differentiate existing DLT systems. As a

result, the guideline can be used to provide new insights,

support scientific novelty and business innovation. In par-

ticular, it can be used both for designing novel systems

more effectively by providing default system configura-

tions (Attribute values in Fig. 12) as well as to study DLT

Fig. 12 A design guideline of the key design choices in DLT systems,

suggesting an order with which a designer may determine system

configuration. The questions, attribute values, example systems, and

order are a result of analysis conducted using real-world data and

machine learning methods (Sect. 6.2). For each design decision

identified via the MCA analysis, attribute values and the correspond-

ing example systems that match best the respective design decision

are illustrated

17 This proposed order is not strict and it represents which design

choices have the larger impact on differentiating the existing DLT

systems analyzed.
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systems by illustrating similar systems (Example systems

in Fig. 12).

The applicability of the guideline can be presented with

the following: Designers determine the goals of the system

and the constraints they have and then apply the guideline

to identify a default system configuration. For instance, a

designer develops a business model with a complex cryp-

toeconomic design (Decision 4 in Fig. 12). Due to time

constraints, they go for building a second layer system

(Decision 1 in Fig. 12). By looking at the suggested attri-

bute values, the designers focus on attributes of the Action

and Token component. In this case, amongst others, the

designers are guided to consider token interactions (Source

of value: Token) in their cryptoeconomic design. More-

over, by looking at the intersection of the systems falling

under these design choices (Example Systems in Fig. 12),

the Bancor and Aragon systems are identified as similar.

Hence the guideline informs researchers about DLT sys-

tems sharing underlying commonalities.

In a nutshell, the derived guideline structures the mod-

eling complexity of DLT systems at design phase and

determines systems that share similar design choices.

These design choices are systematically and rigorously

determined using machine learning techniques and empir-

ical data from existing viable and actively maintained DLT

systems. Therefore such a guide can provide a more

informed and tailored understanding of the DLT architec-

tural elements, accelerate the design phase, prevent a

duplication of effort and thus support the distributed

computing and business community to innovate more

efficiently.

8 Conclusion and future work

This paper concludes that the evolving complexity of dis-

tributed ledgers can be better understood via a proposed

taxonomy of DLT systems designed according to standards

of state-of-the-art taxonomy theory [52]. To support such

understanding, this paper contributes a systematic and

rigorous classification of 50 viable and actively maintained

DLT systems into the taxonomy using wisdom of the

crowd and machine learning methods fed with real-world

data. From that data a novel design guideline is derived that

identifies key design choices that govern the complexity of

distributed ledgers. The contributed guideline is a result of

a novel data-driven methodology that structures the mod-

eling complexity of DLT systems at design phase and thus

can support the business and distributed computing com-

munity to innovate. Its value in education lies in better

understanding and comparing the design of distributed

ledgers.

Hence, the contributions of this paper can explain and

provide new insights for researchers, practitioners and

entrepreneurs about which choices in the DLT system

design space have the highest impact, where there is room

for innovation and which systems have competitive fea-

tures or shared designs.

The results point to various avenues for future research.

Firstly, the findings of this paper suggest that the taxonomy

can be further extended with additional Action and Token

attributes. Also, a component modeling the governance of

the systems may become critical in deciding if a system has

a decentralized organization (e.g. no trusted party). Sec-

ondly, although the taxonomy represents the current state

of viable and actively maintained DLT systems, the pro-

posed methods to evaluate its usefulness are general.

Hence, future research can quantify with the introduced

methodology the extent to which suggested extensions

affect the usefulness of the proposed taxonomy. Thirdly,

the initial cluster analysis demonstrates that key design

choices can be derived quantitatively by analyzing empir-

ical data of viable and actively maintained DLT systems.

This suggests to extend the classification in future work

(e.g. with Blockchain-as-a-Service systems such as

Hyperledger Fabric [4]) and to apply different statistical

methods to the data in order to validate and further identify

key design choices. In particular, further design choices

that illustrate token layouts such as the identified Staking

Capability (Fig. 12) could facilitate the creation of novel

incentives to address societal challenges [21, 41] (e.g, data

and service management challenges in smart cities [3, 60]).
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