CBDC – in the whirpool of discussion

Occasional Paper Series

No. 29 / 2019
Aistė Juškaitė
Sigitas Šiaudinis
Tomas Reichenbachas

December 2019
EXECUTIVE SUMMARY

The topic of central bank digital currency (henceforth - CBDC) has recently gained significant share of attention among policy makers and academics. A wide range of CBDC setups are discussed from the universally accessible central bank accounts or digital tokens to less extreme suggestions of only partly broadening central bank balance sheet access by providing CBDC to wholesale consumers or getting private sector to mediate in the process by providing synthetic CBDC.

This paper recalls the possible CBDC implementation types that are discussed in the current context; reviews some of the discussions among those researching the topic; gives a brief overview of the next-step initiatives taking place among central banks with a potential to lay ground for the practical CBDC implementation; and discusses the main policy implications from financial stability and monetary policy perspectives.

We see CBDC as:

1) a means to meet the global citizen’s need for safe, trustworthy, and cost-efficient instrument for cross-border payments. Just yet there is no perfect technological solution; however, the advancement in technology seems to be able to serve this purpose; the idea of CBDC has a great potential and more and – crucially – joint effort is needed to arrive at the best-suited kind of CBDC, the principle idea of which could be e.g. multicurrency CBDC.

2) a way to address safe medium of payments shortage. Locally addressing this issue in particular requires the least deviation from the current financial system set-up.

3) in no way a universal fit-for-all solution. Different design types of CBDC can have different outcomes. Therefore, when considering CBDC issuance at a national level, one should first of all prioritize the issue that needs to be tackled based on the country specifics and then chose the best-suited way of implementation.

Still, this is only true at individual jurisdiction level. For CBDC to be a global solution, joint effort and agreement is needed.

From monetary policy and financial stability side, no unambiguous assessment can be given to the balance of CBDC benefits and costs. Considerations that CBDC introduction could potentially induce higher instability of bank funding and increased risk of systemic digital bank runs as well as larger role for central banks in financial intermediation are solid. However, there are design choices that could help mitigate unintended side effects.

CBDC is an idea with potential to change some of the conventional financial system realities and deserves a thorough consideration it is currently given. Nonetheless, the focus should be on the ultimate goal – a global solution for a modern day citizen of the world. With proper design, some of the CBDC induced changes that are currently seen as frightening side effects would merely be a change in status-quo - a natural part of progress.

In this context Bank of Lithuania is tackling the issue primarily from the practical perspective. First, experience gained via broadening access to the retail payment system to non-bank institutions provides valuable insights on what if scenario in case of synthetic CBDC. Second, application of distributed ledger technology (henceforth - DLT) to issue digital numismatic coin provides technological hands on experience and know-how.
1. INTRODUCTION

Central bank digital currency (CBDC) has attracted significant attention among policymakers. While discussed and researched widely and even with first steps taken towards its implementation in some jurisdictions, no consensus has been reached on net balance of benefits and costs, optimal CBDC design choice, policy impact assessment. Therefore, this report aims to recall CBDC design types and discuss possible policy implications by drawing on extensive literature on the topic from academia, official institutions’ reports, and policymakers’ positions. At the same time, it reminds there are still unanswered questions.

Literature usually recalls Tobin’s considerations from the 1980s, who already then said that “paper currency and coin are not very convenient media of exchange” (Tobin 1985, p. 23). However, at that time the idea did not gain such a wide attention as has been the case over the several recent years. What has changed over the recent decades to bring this idea to the centre of academics and policymakers’ attention now?

The general agreement is that there are a number of factors that have contributed to the rise of discussion. They are said to be the development of technology that could make a widely accessible CBDC feasible and resilient; emergence of digital currency issuance intentions from private sector; rise of payment services intermediaries and measures; and decreasing use of cash as means for payment in some countries (CPMI-MC 2018; Barrdear and Kumhof 2016).

However, these explanations seem to be rather a description of the current trends than an investigation of the underlying causes for this shift in thinking. The argument that the technology emerged which could make a widely accessible CBDC feasible does not call for discussion; however, technology is only a means of realization of an idea, not a call for the birth of it. More likely, the shift in the current society’s needs is mainly caused by continuing globalisation. The rise of Bitcoin, the interest in Libra idea suggests that today’s society calls for a global unit of account. Indeed, with the development of global supply chains, and international trade, constantly growing e-commerce, and 3.3% of global population living outside of the country of origin (United Nations Population Fund 2015), the need for a universally acceptable and convenient unit of account seems evident. Therefore, the researches of CBDC and related ideas need to not lose sight of the ultimate goal while discussing technical details.

One may also ask why central banks need to address the needs of a changing society as private sector already shows determination to set the footprint. Leaving changes with potential global impact fully in the hands of private sector – institute whose primary goal in today’s form of capitalism is shareholders’ profit maximisation – risks structural changes that would not be in the best public interest. Therefore, the institutions whose primary goal is the good of society cannot stay at the side-lines of this change.

Finally, central banks around the world have already started individual initiatives to look into the concept deeper (with only a few join projects taking place). Single-jurisdictional CBDC can be a solution for expensive cash logistics and financial inclusion issues and bring convenience of the modern day technology. These aspects can have a high priority in some countries. However, would a single-jurisdictional CBDC be capable of meeting today’s global citizen’s need for a universal unit of account? The intuition suggests a single-currency CBDC in the future world will not be sufficient.
The report is organised as follows: section 2 presents CBDC concept, section 3 recalls different CBDC implementation setups, section 4 gives an overview of key literature takeaways, sections 5 and 6 discuss policy implications from financial stability and monetary policy sides, and section 7 concludes.

2. THE CONCEPT OF CBDC

CBDC does not have a single universally accepted definition. Authors usually define the principle idea of CBDC that is not reliant on specific technological choice of implementation or a pre-defined range of potential users. The Committee on Payments and Market Infrastructures (CPMI) and the Markets Committee (MC) define a CBDC as a “central bank liability, denominated in an existing unit of account, which serves both as a medium of exchange and a store of value” (CPMI-MC 2018, p. 3).

Central bank already provides other forms of digital money, such as reserves or settlement accounts, which are mainly accessible to commercial banks. However, CBDC broadens potential user base - it can be accessible to the general society ("general purpose" or "retail" CBDC) or less widely accessible variant of "wholesale" CBDC, which could “be used as a settlement asset in financial markets by firms that do not currently have access to central bank reserves” (Meaning, Dyson, Barker, & Clayton, 2018, p 4).

A number of authors have already analysed the defining properties of CBDC. For example, Bech and Garratt (2017) compose a “money flower”, which maps different kinds of money based on the issuer, form, accessibility and transfer mechanism and identify key properties of CBDC. According to them, CBDC defining characteristics are electronic form, issued by central bank, allowing peer to peer transactions money and in case of retail CBDC – also universally accessible. Another example could be Bjerg (2017), who arrives at the set of three CBDC characteristics – central bank issued, universally accessible, and electronic - by plotting existing forms of money on a Venn diagram. Other authors also discuss the key CBDC characteristics and broaden or narrow down the set of key ones, in such a way arriving at a particular CBDC variant. Section 3 further discusses CBDC design variants that have been discussed.

3. CBDC TYPES

As the name suggests, CBDC should be issued by central bank and have a digital form. However, there are a number of other, “optional” characteristics that a CBDC can have and which define a particular kind of CBDC. The most widely discussed “optional” characteristics, as figure 1 suggests, are related to the accessibility, technical form, and applied interest rate. Section 3 further explains each form of the CBDC based on these characteristics.

Figure 1. “Optional” CBDC characteristics.

<table>
<thead>
<tr>
<th>Accessibility</th>
<th>WHOLESALE</th>
<th>RETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical form</td>
<td>TOKEN-BASED</td>
<td>ACCOUNT-BASED</td>
</tr>
<tr>
<td>Interest rate</td>
<td>REMUNERATED</td>
<td>NON-REMUNERATED</td>
</tr>
</tbody>
</table>
3.1. Wholesale CBDC and retail CBDC

Based on the user base which can access CBDC, it is distinguished into two types of currency: retail or general purpose and wholesale.

Retail or general purpose CBDC refers to a variant of CBDC which, as the name suggests, can be accessible to everyone. As cash is accessible to everyone, such variant would not be a significant deviation from the status quo. In fact, as earlier mentioned some authors, e.g. Bjerg (2017), attribute universal accessibility to be one of the defining characteristics of money and does not consider the variant of restricted accessibility as a form of money at all.

On the contrary, wholesale CBDC would be a restricted-access CBDC. Bech and Garratt (2017) suggest this variant would be accessible only to financial institutions. Others assume, wholesale CBDC could be offered not only to commercial banks and other financial institutions, but also corporates (Murray 2019). While opening access to central bank balance sheet to corporates as well would be some change to the current access, the principle of the wholesale CBDC does not change. It would be used to make wholesale cross-border transactions more efficient.

Distinction of CBDC to wholesale and retail does not assume any particular technological means of implementation or other CBDC features outside the distinction based on customer base. Which means that all kinds of technological implementation can be considered for both – wholesale and retail CBDC.

3.2. Synthetic CBDC

A particular variant of CBDC is the so-called synthetic CBDC, where the access to a central bank liability to society is given with the mediation of private financial institutions; however, without broadening the direct access to central bank balance sheet beyond financial institutions. Synthetic CBDC falls beyond the CBDC distinction to wholesale and retail. Synthetic CBDC actually means hypothetical reserve-backed accounts or tokens, issued by private banks or payment institutions with unconditional provision of adequate bank reserves by the central bank (Adrian 2019, Šiaudinis 2019).

The idea of synthetic CBDC is James Tobin’s 30-year-old proposal, which, however, did not gain support of authorities. Impressed by the US savings and loans association crisis that occurred in the 1980s, Tobin (1987, p. 172) argued that central banks should “make available to the public a medium with the convenience of deposits and the safety of [central bank] currency, essentially currency on deposit”. In essence, he aimed to avoid relying too heavily on deposit insurance. One may assume that the idea was rejected due to undesirable degree of involvement of a central bank into bank funding (Šiaudinis 2019).

Whereas CBDC-related terminology has remained in flux, this particular kind of CBDC is also known as "deposited currency accounts" (Bech and Garratt 2017 with reference to Tobin 1987), “universal (central bank) reserves” (Cœuré 2018, Fegatelli 2019), and “implicit CBDC” (Šiaudinis 2019).

While not being an issuer of CBDC, Lietuvos bankas is worth mentioning in this context. Lietuvos bankas provides technical access to non-bank payment services providers to its payment system

1 Some authors (e.g. Bech and Garratt 2017) name the variant of CBDC accessible to the general public a retail one while the others (e.g. CMPI-MC 2018) chose to highlight the wide accessibility of such CBDC variant by naming it a “general purpose CBDC”. For the CBDC analysis purpose, retail and general purpose CBDC concepts can be used interchangeably to refer to the unrestricted access CBDC. Admittedly, intuition suggests that retail CBDC could refer to the variant used only in retail transactions while general purpose CBDC could be meant for all kinds of transactions.
The non-bank payment service providers are required to segregate their own and clients’ accounts thus safeguarding the funds, one of the appropriate ways being to keep them in the central bank. For such a scheme to be considered a synthetic CBDC, all client funds should be held in the central bank only. There is a technical challenge arising from this: while a central bank can require its payment system users to hold client funds in a central bank, it cannot ensure a smooth and true realization of this requirement from the private participant. One may argue that there is a reliance on payment services providers being supervised entities. However, as the key point of attractiveness of synthetic CBDC is the safety provided by the central bank, extremely high level of confidence should be required from the technical implementation of such a scheme to ensure no technical error or fraudulent action can hurt the 100% backing of private money by central bank liabilities.

The experience of Lietuvos bankas’ shows a high interest for this facility. Such a scheme may be considered to ease the access for smaller financial market players and encourage competition in the payment services industry. This is especially important in jurisdictions with high concentration in financial services sector; where it can contribute to decreasing payment services costs and providing payment services access to a wider part of the society; thus consequently promoting financial inclusion. Finally, Lietuvos bankas’ experience could provide insights to further explore practical implementation of a synthetic CBDC.

3.2. Token-based and account based CBDC

Another distinction of CBDC is based on technological solution.

Token-based money would allow peer-to-peer transactions, while account-based CBDC requires central counterparty for settlements – a central bank. With current technological capabilities, token-based CBDC would be probably based on some sort of distributed ledger technology (Bordo and Levin 2017). Account-based CBDC would not necessarily require a big shift from the current technological central bank setup, as in principle for the account based CBDC all a central bank needs to do is to increase the number of user accounts in central banks. Of course, technological improvements could be needed as the increase in the number of accounts would be rather drastic – in case of retail account-based CBDC it could mean hundreds of millions of accounts (subject to the size of jurisdiction).

The discussion on technology is open with no clear evidence on either variant being the optimal one. Still, one may argue that if CBDC is used as a means to improve cross-border payments, account based option does not solve the current limitation of divergence among worldwide settlement systems. Therefore, either a massive improvement and convergence are needed to align settlement systems worldwide, or a distributed-ledger based solution could be used as a more suitable option. The latter one has an advantage of not having to deal with legacy issues and being capable of focusing precisely on the solution best suited for current day global society.

One angle that gets a particular part of attention in the discussion on token-based vs account-based money is anonymity. Cash has a benefit of guaranteeing user anonymity. There are some proponents of preserving anonymity as a benefit of money. In such case, only token-based money implementation could guarantee anonymity. On the other hand, anonymity is not by default a positive

2 CENTROlink is a payment system, developed and operated by the Bank of Lithuania, which allows customers of financial institutions to execute euro payments across SEPA. (Lietuvos bankas 2019a).

3 Today it is at the discretion of the non-bank PSPs how much client funds to transfer to the central bank. The experience of the Bank of Lithuania shows that the amounts are far less than 100% per cent.
feature, as precisely the anonymous nature of cash enables illicit transactions. Central banks have been putting active effort to make cash less convenient for such uses (by abandoning the banknotes with highest nominal values) and other public institutions are in constant fight against all sorts of illicit transactions. There needs to be a balance and an adequate level of individual person’s privacy needs to be ensured. Anonymity per se is not always an asset; therefore, properly designed CBDC could be unsuitable for the illicit transactions that currently exploit the anonymous nature of cash.

3.3. Interest bearing and non-interest bearing CBDC

Separate discussion whether CBDC should be interest bearing takes place. Again, this feature of CBDC is not dependent on a particular choice of CBDC technical implementation or user base. This discussion stems from the needs of monetary policy. Bordo and Levin (2017) suggest that an interest bearing CBDC could serve as “a secure store of value, with a rate of return in line with other risk-free assets such as short-term government securities.” (p 2) The discussion on the interest-bearing CBDC stems from needs of monetary policy since “the CBDC interest rate could serve as the main tool for conducting monetary policy” (Bordo and Levin 2017, p 2). Therefore, more aspects of interest-bearing CBDC are discussed in the section 6.

4. OVERVIEW OF PUBLICATIONS AND PRACTICAL TESTS IN CBDC AREA

Recently, numerous publications have been released on the topic. The publications focus on a variety of aspects of CBDC and discuss positive and negative implications from different points of view. The discussions are so far at theoretical level with no cases of full practical implementation to draw experience from, therefore opinions vary and there is no consensus on the full assessment of CBDC implications.

This section gives a brief overview of selected publications from the official institutions, central banks, and academia and presents a summary of projects that could provide insights if an institution that runs the project was to decide to take further steps towards CBDC issuance.

4.1. CBDC in publications of official institutions

This section gives a brief overview of selected publications from the official institutions and central banks on the CBDC topic.

BIS Committee on Payments and Market Infrastructures and Markets Committee analyse the concept of CBDC and gives an overview of the implications for monetary policy, financial stability, and payments. The report acknowledges that a general purpose CBDC could provide benefits in the environment of declining cash use. At the same time, the report advocates for analysing alternative options to reach the goals that CBDC targets (CPMI-MC 2018).

BIS recognizes that issuing a general purpose CBDC raises a number of challenges for the issuing central bank, such as meeting anti-money laundering and counter terrorism financing requirements as well as other public policy, supervisory, and tax regulations; ensuring the appropriate degree of privacy while having in mind that a variant of anonymous CBDC would carry reputational risks as such currency could be used for illicit transactions. Cyber-security is mentioned as one the most important operational challenges and in general robustness of new technologies that could possibly be used to issue CBDC remains unclear. Finally, ensuring an issuing central bank has a legal authority as well as answering whether a CBDC can serve as a legal tender is necessary before taking any actions (CPMI-MC 2018).
When discussing the implications of CBDC more broadly, BIS calls for further research to determine the potential implications. While BIS finds that CBDC would likely not change the basic mechanisms of monetary policy implementation; it acknowledges that the CBDC has potential to affect monetary policy transmission and financial markets and could have negative implications to financial stability. The report recognises that “the effects on movements in exchange rates and other asset prices remain largely unknown and also deserve further exploration” (CPMI-MC 2018, p. 2).

International Monetary Fund (IMF) explores the benefits and costs of CBDC as a response to declining use of cash payments (Khiaonarong and Humphrey 2019). IMF sees “a reduction in the cost of supplying cash to the public” (Khiaonarong and Humphrey 2019, p 24) and chance of a higher user convenience as main two benefits of CBDC. On the other hand, the IMF admits that ultimate “costs of digital cash depend primarily on how it is structured and implemented” (IMF 2018, p. 26).

The IMF focuses on the demand side for digital cash to determine the possible attractiveness of CBDC. The IMF admits the possibility of cash replacement by private substitutes. At the same, the IMF sees the need for the CBDC to offer some additional incentive to use it as otherwise it would not be more convenient that private solutions. “Without an additional incentive, the upper limit to the demand for central bank digital currency is likely to be below that of the current level of physical cash” (IMF 2018, p. 29).

In 2017, the central bank of Denmark analysed the necessity for CBDC in Denmark; however, at that point concluded that potential challenges arising from CBDC introduction would outweigh potential benefits. While acknowledging widely used arguments in favour of CBDC in general, Danmarks Nationalbank said that in the Danish context issuing CBDC “would fundamentally change Danmarks Nationalbank’s role in the financial system and make Danmarks Nationalbank a direct competitor to the commercial banks” (Danmarks Nationalbank 2017, p 1). The analysis found additional issues arising from potential CBDC issuance in Denmark, some of which are:

- anti-money laundering and personal data protection requirements would impose additional challenges and requirements on a central bank;
- contributing to rapid and effective payments solution is in line with Danmarks Nationalbank’s objectives. The analysis considered the Danish payment system to be secure and efficient; hence it found no incentive to intervene with CBDC;
- the analysis argued against one of the popular arguments used to back CBDC - namely the interest rate on CBDC as a monetary policy instrument – in Danish context as fixed-exchange-rate policy means that the level of Danmarks Nationalbank’s interest rates is set to maintain stable krone exchange rate; which would also be the case for interest rate on CBDC (Danmarks Nationalbank 2017).

The Riksbank is currently investigating the need for electronic Swedish kronor issuance. However, no final decision has been taken on issuing e-krona yet (Sveriges Riksbank 2019). The interest of the Riksbank in CBDC arises from continuing decline of use of cash in Sweden (Sveriges Riksbank 2018). BIS notes that Sweden is exception in the CPMI jurisdictions context in terms of trends of cash in circulation – while in the CPMI jurisdictions the cash in circulation has grown - typically used as store of value - in Sweden cash in circulation is decreasing (Bech and Boar, n.d.). If such trend continues, the Riksbank sees that e-krona could address the following potential issues:
- e-krona could help to avoid losing society’s access to central bank money, which has lower liquidity and credit risk than private bank money;
- e-krona could serve as contingency measure in case of payments function disruptions in crisis situations;
- e-krona could facilitate maintaining financial inclusion of socially more vulnerable society groups;
- issuing e-krona could increase competition by providing competitively neutral infrastructure solution for payment services providers (Sveriges Riksbank 2018).

The central bank of Iceland researched issuance of rafkrona. It discussed two ways in which rafkrona could be issued: as base money and “as a registered, traceable deposit to a payment account with the Central Bank” (Central Bank of Iceland 2018, p 36). The report acknowledges that the issuance of rafkrona could have a broad range of effects on the current financial system, some of which can be still unknown. At the same time, the Central Bank calls for more research to determine possible effects before it can take a position on rafkrona issuance (Central Bank of Iceland 2018).

Bank of Lithuania as a member of Eurosystem is not in a position to issue CBDC but is taking a proactive role in gaining practical hands on experience in this area. The approach is borrowed from the regulatory sandbox concept of the supervisory unit of the Bank of Lithuania. In this case a niche area of numismatics has been identified as a playground with controlled risk for the central bank and potential retail users. A digital numismatic coin under the working name LBCoin is under production and is set to be released in the first half of 2020 (Lietuvos bankas 2019b). Multiple valuable legal, technological, cybersecurity and other issues have been encountered and resolved providing invaluable steep learning curve. The project is viewed as in vitro test of multiple aspects relevant for the CBDC discussion.

4.2. Academic literature overview

4.2.1. General remarks

Academic society researches CBDC and possible implications to monetary policy, financial stability and discusses operational aspects outside of the official institutions capacity. The following are some of the considerations outlined in the academia.

Barontini and Holden (2019) survey central banks to determine the level of their interest in the topic and intentions to launch their own CBDC. They find that while a majority of centrals banks are researching the implications of CBDC, the number of those intending to issue a CBDC in the short to medium term is low. The authors also survey central banks to rank the most significant factors to consider issuing CBDC and find that payment safety and payment efficiency are regarded to be most important to central banks.

Berentsen and Schär (2018) distinguish central bank cryptocurrency. The authors define currencies based on the tri-dimensional (transaction handling, money creation, and representation) control structure. They distinguish cryptocurrencies as having a distinction of decentralized nature which allows for user anonymity and permissionless handling. While they say CBDC could bring a number of benefits, they argue that a true central bank cryptocurrency would raise too high reputational risks namely due to anonymous nature of cryptocurrency.
Barrdear and Kumhoff (2016) analyse the macroeconomic implications of CBDC adoption. One of the conclusions they arrive at is that a CBDC could “contribute to the stabilisation of the business cycle, by giving policymakers access to a second policy instrument that controls either the quantity or the price of CBDC in a countercyclical fashion” (Barrdear and Kumhoff 2016, p 3).

Bordo and Levin (2017) fear central banks risk a number of negative consequences if they view CBDC adoption too passively. These include macroeconomic instability in case cash is no longer used and there is no alternative legal tender provided; loss of monetary control as if monetary base is held only in private institutions, this may encourage a drift of market interest rate from central bank targeted interest rate; with no CBDC competition payment systems could become quasi-monopolistic; and vulnerability to severe downturns without interest-bearing CBDC providing for a policy alternative.

Dyson and Hodgson (2016) argue for digital cash carrying a number of benefits and investigate the ways central bank digital cash could be implemented and managed. They suggest that indirect access way of implementation would be the most market-driven and acceptable form of CBDC.

4.2.2. Discussion on monetary policy effects

Research on CBDC implications for monetary policy and financial stability is particularly extensive. Nonetheless, authors demonstrate a varying degree of enthusiasm for CBDC adoption. Based on the amount of merit the authors give to CBDC effect on monetary policy, they could be split into three strands: idealistic, moderately enthusiastic and sceptical. Below is an overview of some of the representatives of each strand and their principle ideas.

Such authors as Bordo and Levin (2019), Brunnermeier and Niepelt (2019), Rogoff (2016) could be considered to represent idealistic view. Their main motivations argue for CBDC adoption as they could bring the following benefits from the monetary policy and financial stability side:

- CBDC can be an efficient way to replace outdated banknotes, ensuring the central bank involvement into modern retail payment framework;
- CBDC is an inevitable response by the central banks to the digitalization trend and challenge of global stablecoins (e.g. Libra);
- if combined with the abolishment of banknotes, CBDC could overcome the effective lower bound problem;
- CBDC enriches monetary policy toolkit with additional instrument - namely interest on CBDC;
- CBDC has a potential to increase financial stability by providing a widely-accessible digital safe means of payment;
- the most extreme view are of proponents of “sovereign money” and “helicopter money”. They argue CBDC is an appropriate technical tool to nationalize money issuance (sovereign money concept) or “drop” money to the general public “from the helicopter”.

The views of Carney M. (2018; 2019); Kumhof and Noone 2018; Bindseil 2019; Fegatelli P. (2019); could be attributed to the group moderately enthusiastic ones. These authors take CBDC caveats very seriously and acknowledge that CBDC cannot be issued without appropriate solutions to them. However, at the same time, they regard the CBDC idea in general as promising and make big efforts to devise CBDC

4 Idea borrowed from Bindseil (2019a), who calls these views a bit differently: idealistic views; fearful/ conservative views; pragmatic views.
schemes with a positive net balance of benefits and costs. They work with real data of financial accounts to prepare for CBDC launch in reality. They also argue Libra initiative facilitated the central bank cooperation investigating CBDC feasibility.

Some central bank projects also are also characteristic of the moderately enthusiastic views. These examples could the e-peso project of Central Bank of Uruguay (2017-2018); the e-krona project of the Riksbank (2018).

The representatives of sceptical views argue that CBDC costs could eventually outweigh any potential benefit. The following arguments are given by Constâncio (2017; 2018); Danmarks Nationalbank (2017); Joint Report by the BIS Committee on Payments and Market Infrastructures and the Markets Committee (CPMI-MC 2018) to warn of potential risks from CBDC:

- Issuing CBDC would lead to an excessive expansion of central bank balance sheet at the expense of banks and self-regulation of financial markets and risk premiums due to heavy participation of a central bank;
- CBDC would reduce eligible collateral universe and/or quality that, if needed, is available for expansionary monetary policy;
- CBDC could undermine financial stability as it provides bank run asset and facilitates bank runs in the crisis;
- CBDC could undermine efficient credit allocation by increasing bank funding costs and reliance on wholesale funding and reducing maturity transformation;
- it is difficult to see what CBDC would be able to contribute that is not already covered by the payment solutions that exists today;
- each declared benefit of CBDC could be provided at lower cost and risk by an alternative solutions;
- since the traditional approach of money supply served the public and the financial system well, the potential barrier for changing the current monetary and financial structure is high;
- CBDC would open the door to extreme ideas of sovereign money, disruptive for market-based economy and democracy.

4.3. Overview of central bank projects on CBDC

A number of central banks have already taken a step further in CBDC research and attempted first technical experiments, pilot projects, o cross-jurisdictional research projects. Table 1 gives a brief overview of some of the projects implemented and stresses the main takeaway messages from these projects.
Table 1. An overview of projects on CBDC or underlying innovation in technical solutions undertaken by central banks globally.

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Name of the project</th>
<th>Project website or main information source</th>
<th>Key takeaways/ highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Project Jasper</td>
<td>Area in the Bank of Canada website designated for Fintech experiments and projects: https://www.bankofcanada.ca/research/digital-currencies-and-fintech/fintech-experiments-and-projects/</td>
<td>"The goal of the project is to better understand how the technology could transform the future of payments in Canada." (Payments Canada 2017, p 3) "Project Jasper is a proof of concept of a DLT-based wholesale payment system." (Chapman, Garratt, Hendry, McCormack, and McMahon 2017, p 1) "One of the main lessons from this experiment is that the versions of distributed ledger currently available may not provide an overall net benefit when compared with existing centralized systems for interbank payments.” (Chapman, Garratt, Hendry, McCormack, and McMahon 2017, p 4)</td>
</tr>
<tr>
<td>China</td>
<td>Project “DC/EP”: Digital Currency/Electronic Payments.</td>
<td>Secondary sources, primarily news sites</td>
<td>Very limited amount of details available. The goal of the project was to digitise cash; The new digital currency could provide a way for bank settlement; There is no timetable for the launch; No official statement on the technology to be used; Existing financial institutions are expected to be used for distribution; There are some speculations about privacy issues, but bank representatives say they will seek balance between anonymity and identifying illicit transactions. (Financial Times 2019)</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Dinero electronico</td>
<td>https://www.ubuntu-project.org</td>
<td>Introduced in 2015 (Prasad 2019) "Dinero electrónico is a mobile payment service in Ecuador where the central bank provides the underlying accounts to the public.” (Bech and Garratt 2017, p 62) Accessible via app with national identity number. (Bech and Garratt 2017) Transaction centers were designated for money depositing or withdrawal (Bech and Garratt 2017). "[...] it is a (rare) example of a deposited currency account scheme." (Bech and Garratt 2017, p 62) Denominated in US dollars (official Ecuador currency). (Bech and Garratt 2017) "[...] since the system failed to attract a significant number of users or volume of payments, [central bank of Ecuador] deactivated the system in April 2018.” (Prasad 2019, p 14)</td>
</tr>
<tr>
<td>Lithuania</td>
<td>LBCoin</td>
<td>LBCoin area in Bank of Lithuania website: https://www.lb.lt/en/digital-collector-coin-lbcointex-1-1</td>
<td>LBCoin is a blockchain-based digital collector coin. The project serves as a playground with controlled risk for the central bank and potential retail users. LBCoin is currently under production and is expected in the first half of 2020. The project is viewed as in vitro test of multiple aspects relevant for the CBDC discussion (Lietuvos Bankas 2019b).</td>
</tr>
<tr>
<td>Singapore</td>
<td>Project Ubin</td>
<td>Project Ubin area in the Monetary Authority’s of Singapore website: https://www appréntice.com</td>
<td>“Project Ubin is a collaborative project with the industry to explore the use of Blockchain and Distributed Ledger Technology (DLT) for clearing and settlement of payments and securities.” (Monetary Authority of Singapore 2019)</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>Name of the project</td>
<td>Project website or main information source</td>
<td>Key takeaways/ highlights</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Singapore</td>
<td>Ubin</td>
<td>https://www.mas.gov.sg/schemes-and-initiatives/Project-Ubin</td>
<td>"The project aims to help MAS and the industry better understand the technology and the potential benefits it may bring through practical experimentation. This is with the eventual goal of developing simpler to use and more efficient alternatives to today’s systems based on central bank issued digital tokens." (Monetary Authority of Singapore 2019)</td>
</tr>
<tr>
<td>Sweden</td>
<td>E-krona</td>
<td>Area in the Riksbank’s website for e-krona: https://www.riksbank.se/en-gb/payments--cash/e-krona/</td>
<td>In 2017 the Riksbank started a project "to examine the scope for the Riksbank to issue a central bank digital currency (CBDC), a so-called "e-krona" (Sveriges Riksbank 2019). "An e-krona would give the general public access to a digital complement to cash, where the state would guarantee the value of the money." (Sveriges Riksbank 2019) As of autumn 2019, the Swedish central bank is procuring a technical supplier for test solutions; looking into the impact of e-krona on Swedish legislation and tasks of Riksbank; and continues the analysis on e-krona need and potential impact on economy.(Sveriges Riksbank 2019)</td>
</tr>
<tr>
<td>Ukraine</td>
<td>E-hryvnia</td>
<td>National Bank’s of Ukraine analytical report on e-hryvnia pilot project: https://old.bank.gov.ua/news/all/e-hryvnia</td>
<td>"In essence, the e-hryvnia is digital fiat currency, which can be exchanged for cash or cashless money on a one-to-one ratio.” (National Bank of Ukraine 2019a). The National Bank of Ukraine (NBU) launched its pilot e-hryvnia in May 2016. They chose to test it using blockchain technology. (National Bank of Ukraine 2019a) "In 2018, the NBU implemented a pilot project that envisaged creation of the Electronic Hryvnia platform [...], issuance of a limited amount of the e-hryvnia and testing of e-hryvnia transactions made by the NBU personnel and companies participating in this project". (National Bank of Ukraine 2019b, p 6) "E-hryvnia may be considered as the disruptive technology, since it has the potential to change the ecosystem of Ukraine’s payment market and reassign the current roles of market participants”. (National Bank of Ukraine 2019b, p 33) “Implementation of e-hryvnia is impossible without major investment and time needed to upgrade the payment infrastructure for this instrument.” (National Bank of Ukraine 2019b, p 33) “[...] there are no fundamental advantages in using specifically the DLT technology to build a centralized e-hryvnia issuance system.” (National Bank of Ukraine 2019b, p 6)</td>
</tr>
<tr>
<td>Uruguay</td>
<td>E-peso</td>
<td>Secondary sources, e.g. IMF’s staff report for the 2018 article IV</td>
<td>“E-peso is a legal tender digital currency issued by the central bank. It is an electronic money and does not use distributed ledger technology. The pi-</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>Name of the project</td>
<td>Project website or main information source</td>
<td>Key takeaways/ highlights</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>consultation on Uruguay, Box 4:</td>
<td>https://www.imf.org/en/Publications/CR/Issues/2019/02/22/Uruguay-2018-Article-IV-Consultation-Press-Release-Staff-Report-and-Statement-by-the-46624</td>
<td>Lot program was used to test the technical aspects and run for 6 months (November 2017-April 2018), with limited bill issuance ($20 million for 10000 mobile users) and size per person ($30,000 per wallet and $200,000 for registered businesses). Epeso was mainly used for payment transactions in registered stores and businesses, and peer-to-peer transfers. The system used instantaneous settlement and run through mobile line (no internet connection was needed). Epeso was anonymous but traceable, with unique bills preventing double spending and falsification. (“IMF 2019, p 16)</td>
</tr>
<tr>
<td>Bank of Canada, Bank of England and Monetary Authority of Singapore</td>
<td>Research Project on cross-border interbank payments and settlements</td>
<td>Project report: https://www.bankofengland.co.uk/-/media/boe/files/report/2018/cross-border-interbank-payments-and-settlements.pdf?la=en&hash=48AADDE3973FCBAFE7A45A3</td>
<td>The project aimed to “examine the existing challenges and frictions that arise when undertaking cross-border payments” and explored “proposals for new and more efficient models for processing cross-border transactions”. (Bank of Canada, Bank of England, Monetary Authority of Singapore 2018, p 5) It was concluded that the ongoing industry initiatives partly address the challenges that were identified. Nonetheless, these changes were not considered incremental and it was considered that “in the longer term there may need to be a more fundamental paradigm shift to address these challenges in a more holistic way, enabled by new technology platforms.” (Bank of Canada, Bank of England, Monetary Authority of Singapore 2018, p 5)</td>
</tr>
<tr>
<td>European Central Bank and Bank of Japan</td>
<td>Project Stella</td>
<td>ECB and BoJ joint reports: https://www.ecb.europa.eu/paym/intro/new5/html/ecb.mipnews190604.en.html; https://www.boj.or.jp/en/announcements/release_2019/rel190604a.htm/</td>
<td>The third phase of Stella project was completed in June 2019; The 3rd phase investigated innovative solutions to improve cross-border payments, particularly in terms of safety.” (ECB and Bank of Japan 2019) It was concluded that “from a technical perspective, the safety of today’s cross-border payments could potentially be improved by using payment methods that synchronise payments and lock funds along the payment chain.” (ECB and Bank of Japan 2019, p 7) There was still a number of issues found that need to be solved before implementation can be considered. These issues included legal and compliance aspects, maturity of the technology, and a need for cost-benefit analysis. (ECB and Bank of Japan 2019) The first phase of Stella project in researched liquidity saving mechanisms in payment systems in a distributed ledger environment (ECB and Bank of Japan 2017). The second phase of Stella focused on securities settlement systems and researched delivery versus payment in a distributed ledger environment (ECB and Bank of Japan 2018).</td>
</tr>
<tr>
<td>Hong Kong Monetary Authority and Bank of Thailand</td>
<td>Project LionRock-Inthanon</td>
<td>HKMA-BOT Cross-Border Payments Proof-of-Concept Project Leaflet https://www.hkma.go</td>
<td>Joint project of Bank of Thailand and Hong Kong Monetary Authority, both of which have projects to address domestic transfers. (Hong Kong Monetary Authority and Bank of Thailand n.d.) “Project LionRock-Inthanon explores real-time</td>
</tr>
</tbody>
</table>
4.4. Takeaways from literature overview

Several conclusions can be drawn from the literature overview:

1. The literature on CBDC has become abundant over the recent years and various aspects and implications of CBDC adoption are discussed.

2. While different models are applied to measure potential CBDC impact, since there is no practical CBDC experience and consequently no data, it is hard to assess the real CBDC impact. Thus, the majority of research is theoretical and there is no consensus on the possible CBDC implications for the financial system, with the enthusiasm and caution varying greatly among central banks and academics.

3. Academic literature review gives an impression that the amount of consideration devoted to researching CBDC policy implications and possible technological solutions at this point exceeds the focus on finding the key issues that need to be addressed. In every jurisdiction’s case the highest priority may be different, with some first of all needing to improve financial inclusion or provide safe asset. At the same time, for those focused on CBDC primarily as a means to improve cross-border payments efficiency, the best way forward appears to be joint effort in search for the common solution (some central banks have joint projects already taking place).

4. CBDC can be implemented in a variety of different setups. While there seems to be no optimal CBDC design choice to be applicable for all cases, an individual central bank can chose the most suitable setup for it by assessing country specifics. The design of CBDC and – first of all - the assessment on whether potential benefits of CBDC can outweigh the threats of its implementation will depend on different individual country’s features, such as payment system efficiency, monetary policy regime, level of financial inclusion, credit quality, existence of credible deposit insurance mechanism, and others.

5. The majority of work seems to focus on the assessment of CBDC need and implications for a single or a particular jurisdiction. However, the assessment is much more limited for such ideas as a CBDC for several jurisdictions or multicurrency CBDC. In fact, one might argue such a currency could be a perfect solution to address in particular the issue of cross-border payment efficiency and would therefore deserve a more thorough discussion among academics and policy makers.

6. The literature is limited on the cross-jurisdictional effects of CBDC. If a credible, convenient, and available outside the jurisdiction CBDC gets issues, it would get the benefits of being the first. There are some discussions in the literature that CBDC could facilitate "digital dollarization" (e.g. Adrian 2019, Brunnermeier, James, Landau 2019). However, when assessing CBDC implications for a particular jurisdiction, the majority of research focuses on the status quo or takes into account assumptions on the abolishment of cash or a rise of
private sector stablecoins. Cross-jurisdictional effects are not given significant consideration. The little researched idea of a multicurrency CBDC deserves more consideration in this aspect. Multicurrency CBDC would help to avoid the danger of “digital dollarization” and a race among central banks.

5. CBDC IMPLICATIONS FOR FINANCIAL STABILITY

There are very different views on how CBDC may influence financial stability. Two main financial stability concerns are raised by many authors (Šiaudinis 2019, Bryant 2005, Stevens 2017, BIS 2018, Cecchetti and Schoenholtz 2017):

- Introduction of CBDC could lead to higher instability of bank funding and increased risk of systemic digital bank runs.
- CBDC would mean the larger role for central banks in financial intermediation (higher credit risk, etc.).

Section 5 discusses these concerns in more detail.

5.1. Increased risk of bank runs

Some authors (see Constâncio (2017; 2018); Danmarks Nationalbank (2017); Joint Report by the BIS Committee on Payments and Market Infrastructures and the Markets Committee (CPMI-MC 2018)) say that a concern that a widely available CBDC provides investors with a flight-to-safety instrument, the mere availability of which could be destabilizing. At their core, many financial crises were a systemic bank run. But the basic economic structure of most financial crises was the same as that of panics and runs on demand deposits. A frequently made argument against the introduction of a CBDC points to the danger of increased run risk. According to this argument, a CBDC would not foster traditional bank runs where non-banks try to withdraw deposits and convert them into cash. Instead, it would give rise to a novel form with volatile deposit withdrawals in response to swings in sentiment and shifts into a safe-haven CBDC, since such swaps would be very easy to conduct and nearly costless. (Brunnermeier and Niepelt (2019))

During a hypothetical systemic digital run, dramatic changes in the two-tiered banking sector balance sheet could occur. If commercial banks suffer a significant deposit outflow into CBDC, the central bank would be obliged to provide adequate liquidity support to maintain the functioning of the banking sector and prevent the targeted market interest rate from an uncontrolled jump.

However, there are mitigating aspects to these concerns which could mean that the extent of effect would be much lower than some might think. The mitigating aspects are the following.

1. Money market funds or treasury bills or cash possess similar risk to CBDC during a crisis as people can (try to) run to those assets too.⁵
2. Investors who already hold CBDC would not need to run anywhere. Therefore, by introducing CBDC we would trade a financial system based on a small amount of run-free government money

⁵ See Cochrane (2019) discussing potential impact of Narrow banking on financial stability. Cochrane (2019) arguments directly translate to the case of introduction of CBDC. See Cochrane (2019) discussing potential impact of Narrow banking on financial stability. Cochrane (2019) arguments directly translate to the case of introduction of CBDC. Moreover, if you are introducing an additional financial asset into the financial system, you should analyse the marginal effect of this asset (CBDC) on probability of bank runs. Systemic bank runs had happened in the past and probably will happen in the future independent of CBDC, therefore, the cost of CBDC is an additional bank runs (or additional severity of bank runs) which would not have happened if CBDC would not have been introduced. It should be noted that introduction of CBDC in Diamond and Dybvig (1983) type bank run model would not have a significant effect as it is not very different in nature from government bonds or cash. In addition, there are many ways to limit the incentives of bank run in Diamond and Dybvig (1983) type bank run models: liquidity requirement, capital requirement etc. Thus, the additional cost of CBDC could be reduced by various resilience increasing measures.
(cash) and a large amount of run-prone private money for a system with a large amount of run-free government money (CBDC) and a small amount of run-prone private money. Thus, there is a lot less run-prone shadow banking to run from in a crisis. (Cochrane (2019))

3. **Run on banks would lead to an automatic substitution of one type of bank funding.** It is frequently argued that CBDC could increase run risk, due to the low cost of withdrawing deposits and transferring them to CBDC accounts, and thereby undermine financial stability. But this neglects the fact that the very act of transferring funds from bank to central bank accounts would amount to an automatic substitution of one type of bank funding (deposits held by households and firms) by another one (central bank funding for banks). By construction, a depositor run for CBDC therefore would not reduce bank funding and undermine financial stability; it would only change the composition of bank funding. (Brunnermeier and Niepelt 2019)

4. **It is not clear why the credible commitment of central bank intervention would not be sufficient to discourage bank runs in the first place** (Andolfatto, Berentsen, Martin, 2017). The run-inducing incentives put in place by CBDC would, by their reckoning, require a heroic expansion of lending by central bank in a financial crisis.

5. According to Brunnermeier and Niepelt (2019), it is plausible that the introduction of CBDC could reduce run risk rather than increasing it. After a large swap coupled with pass-through funding, the central bank could become a large, possibly the largest, depositor at private banks. As a consequence, incentives for small depositors to run might also vanish. In addition, CBDC and pass-through funding would bestow the central bank with an informational advantage relative to conventional runs into cash, which the central bank only learns about with a delay.

5.2. Increased role of central banks in financial intermediation

If CBDC were introduced, banks could lose portion of funding, and it would have to be replaced. This could change the future development of the banking sector. One could argue that it would lead to development of alternative banks’ funding markets (ex. covered bond or ABS markets which could replace the part of deposit funding). If is this was not the case, a central bank would be forced to replace the funding gap and accept higher and less-known credit risk. This by some is perceived as an unintended consequence of CBDC. Nevertheless, it is not straightforward that such a development would become a significant issue.

Introduction of CBDC could lead to significant changes in bank financing. If people were to swap some of their bank deposits into a CBDC, the banks would lose a source of funding, but a central bank would gain funds which it would have to invest. A central bank could pass the funds through to commercial banks, effectively leaving the environment for banks completely unchanged. The important point to note is that a substitution of monies (a CBDC for deposits) only requires new sources of bank funding, not new ownership and control over real assets. (Brunnermeier and Niepelt (2019))

6 Even under the current financial system, central banks do not try to fight runs (financial crisis) by forcing investors to hold risky assets. In a crisis, central banks are on the frontlines, buying assets and issuing reserves as fast as they can. The Fed itself makes the supply of reserves elastic in a crisis. See Cochrane, J. (2019)
Figure 2. Illustration of the effects of the pass-through operation on balance sheets of banks, a central bank, and households.

Figure 2 illustrates this "pass-through" mechanism: when households expand their CBDC ("money") holdings and lower their deposit holdings (as indicated by the arrows on the asset side of the household sector's balance sheet), then the central bank's liabilities expand correspondingly (indicated by the arrows on the liabilities side of the central bank's balance sheet). In exchange for the CBDC, the central bank acquires claims vis-a-vis the banking sector (indicated by the arrows on the asset side of its balance sheet). That is, the central bank automatically provides substitute funding for banks, effectively intermediating between non-banks and banks. (Brunnermeier and Niepelt (2019))

Many fear a large flow of deposits from uninsured bank accounts to insured CBDC accounts. This fear, however, according to Andolfatto (2018) seems to be based on the questionable assumption that banks would not raise the deposit rates they offer to retain deposits. Banks may witness deposit outflows, but they can choose to stem those outflows by offering depositors better terms. The capacity to do so seems evident, at least in the US, judging by the current spread between bank lending and deposit rates. But even in the event of a large deposit outflow, an interest-targeting central bank should be willing to let banks borrow reserves.

Andolfatto (2018) argues that if today deposits are perfectly liquid and risk-free because of unconditional deposit insurance backed by government guarantees and a lender of last resort, then a CBDC combined with pass-through funding would simply make implicit government guarantees explicit. If deposits are risky, in contrast, then the newly introduced CBDC would have to be accompanied by transfers or taxes in order to exactly replicate outcomes under the contemporaneous regime. In either case, the net wealth and liquidity positions of agents would remain unchanged even if their gross positions reflected in balance sheets might change. (For further discussion see Andolfatto (2018))

A related question is whether a central bank would lose control over its balance sheet once the CBDC is introduced. A central bank that passes through funds from non-banks to banks increases its balance sheet, and if the volume of funds varies over time, so does the size of the balance sheet. There is no
reason, however, to be concerned with the size of a central bank's balance sheet per se (especially if some items on the asset and liability side net out) except for the implications on credit risk exposure. This exposure can be minimised with the appropriate collateral policy (Brunnermeier and Niepelt (2019)).

5.3. CBDC as risk free asset

According to Caballero (2010), the fundamental problem in the current global macroeconomic and financial equilibrium is shortage of risk free asset. Caballero and Farhi (2014a) argue that a steady rise in the demand for safe assets from the end of 90s was behind a wide variety of macroeconomic phenomena such as the global savings glut and raising global imbalances. The demand for these assets has expanded also as a result of the fear triggered by various crises.

Caballero and Farhi (2014b) argue that the shortage of safe assets will remain a structural drag on the economy, undermining financial stability and straining monetary policy during contractions. Caballero and Farhi (2014a), show that a safe asset is such that is expected to preserve its economic value following bad macroeconomic shocks. They provide a model which illustrates how a chronic shortage of safe assets can push the economy up against the zero lower bound and weaken the effectiveness of some of the standard market mechanisms. They refer to this situation as a ‘safety trap’, which has some similarity to conventional liquidity trap.

It could be argued that issuance of on-demand CBDC could expand the real supply of safe assets, thus, solving the problem of their shortage. This way, a central bank could convert the private sector’s assets to risk free assets (CBDC). It would mean that a central bank would need to take more credit risk; however, ultimately CBDC could be a solution for risk-free asset shortage.

6. CBDC IMPLICATIONS FOR MONETARY POLICY

The potential impact of CBDC adoption on monetary policy and its implementation get a significant part of the discussion on CBDC. Not surprisingly, one of the main obstacles to determine the actual implications of CBDC adoption on monetary policy and its implementation is the lack of practical experience to draw conclusions from. Nonetheless, at the theoretical level the discussion on CBDC implications for monetary policy is broad and there are a number of aspects that can and should be considered before any steps towards CBDC adoption are taken.

This section discusses the main arguments for issuing CBDC from the monetary policy perspective as well as the limitations that need to be addressed and describe the possible way to tackle some of the potential problems.

6.1. Main monetary policy arguments for issuing general purpose CBDC and caveats

There are a number of arguments that support CBDC adoption. However, the majority of them also have some limitations that need to be solved to reap the potential benefits from CBDC adoption from the monetary policy perspective. Table 2 outlines these arguments as well as corresponding limitations. Only the general purpose CBDC is discussed here as wholesale CBDC is of much more limited scope and; therefore, its implications for monetary policy and financial stability would also be limited.
Table 2. Monetary policy arguments for issuing general purpose CBDC and related requirements or other factors.

<table>
<thead>
<tr>
<th>Main arguments</th>
<th>Related requirements or caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcoming the zero (or effective) lower bound constraint.</td>
<td>Requires discontinuation of banknotes (or at least of larger denominations). Questions of side effects on financial stability and politically acceptable level of the effective lower bound would be still in place. There is no consensus if negative policy rates should be applied and to what extent. Can be delivered by alternative non-standard measures at likely lower costs.</td>
</tr>
<tr>
<td>Potential strengthening of the pass-through of the policy rate to the markets:</td>
<td>CBDC should be interest-bearing. CBDC would likely reduce bank lending capacities: less stable deposit base and higher reliance on wholesale funding; reduced maturity transformation; increased funding costs and lending rates. Asset price channel and exchange rate channel could become less certain. CBDC could lead to large cross-border and domestic capital movements and related exchange rate and other asset price effects.</td>
</tr>
<tr>
<td>- interest rates on CBDC with direct impact on deposit rates;</td>
<td>Risk of central bank excessive participation in bond markets and distortion of risk premiums. May require an expansion of eligible collateral universe by including lower-quality assets. Risk of political pressure on the central bank to continue high participation in government bond market beyond monetary policy considerations.</td>
</tr>
<tr>
<td>- hard floor for money market rates due to CBDC accessibility by non-financial sector;</td>
<td></td>
</tr>
<tr>
<td>- higher demand for the central bank liquidity-providing operations.</td>
<td></td>
</tr>
<tr>
<td>Permanent expansion of central bank balance sheet by bond purchases would permanently lower bond yields.</td>
<td></td>
</tr>
<tr>
<td>Monetary transmission could strengthen if CBDC spurs greater financial inclusion.</td>
<td>At most, relevant to emerging markets.</td>
</tr>
</tbody>
</table>

6.2. Two key caveats and counter-arguments against CBDC

Key arguments against CBDC have significant implications for monetary policy. If the structural disintermediation of banks were to materialize, monetary policy could be affected via; firstly, impacting bank funding costs; and secondly, reducing the universe and quality of eligible collateral available if monetary policy is needed. (Bindseil 2019; Kumhof and Noone 2018; Šiaudinis 2019)

It is argued that CBDC would facilitate bank runs in crisis situations by providing digital bank run asset. From monetary policy perspective, this would mean that bank runs and emergency liquidity assistance would shake money market and, therefore, distort monetary policy transmission; at least for a while.

Annex 1 elaborates further on the possible effects of CBDC adoption to monetary policy by illustrating CBDC-induced hypothetical changes in balance sheets of central bank and commercial bank.

6.3. CBDC schemes to deal with two key caveats of CBDC

While the potential side effects to monetary policy are a cause for worry, CBDC design can be adjusted to mitigate the potential negative implications. Research attempts are focused on control of CBDC quantity both in normal and crisis times. Although the distribution of restricted CBDC amounts is a common practice in the pilot tests, the market-based CBDC concept is widely assumed to be out of direct administrative control.

Bindseil (2019), Kumhof and Noone (2018), Juks (2018) suggest a central bank could take proactive measures to mitigate the risks from CBDC to monetary policy. These could include 1)
2) active pricing; 3) issuing of CBDC against eligible bonds. Although proposed schemes may reduce CBDC-related risks, the authors acknowledge significant residual risks still remain.

Quantity limits of CBDC under unstable demand would lead to a volatile deviation from parity in the exchange rate or differential in interest rates between CBDC and other types of money. This would negate one of the crucial achievements of central banking – a high homogeneity of money supply – with likely negative implications for financial stability and monetary policy.

Under active pricing, the central bank would apply time-varying interest rates on CBDC, cooling demand if necessary. One could assume, however, that sooner or later it would not be able to avoid a divergence from the main conventional monetary policy instrument, i.e. steering of interest rates. It might be politically unacceptable to impose technically unjustified costs of owing CBDC on the general public, even if central banks communicate the necessity to link CBDC costs to those of physical cash, to preserve financial stability, or to eliminate effective lower bound constraint. Moreover, Kumhof and Noone (2018, p. 34) pointed out that public may want “to convert deposits to CBDC at (almost) any price, perhaps because it is concerned about the solvency of banks”. During a period of stress, an intentional hike of CBDC costs by the central bank to prevent a bank run would definitely provoke a negative reaction from the public, coupled with disappointment with the economic and financial development.

Bindseil’s (2019b) attempt to improve pricing scheme, proposed by Kumhof and Noone (2019), led to a disappointing conclusion: in order to contain CBDC risks, quote-based CBDC volume should prevail. Bindseil (2019b) proposes two-tier CBDC remuneration, applying principles already used by the ECB for monetary policy purposes in remuneration of bank required and excess reserve as well as Government balance at a central bank. Here, CBDC Tier 1 is quote-based to provide basic payment service, substituting banknotes; CBDC Tier 2 is issued on demand and contained by active and less attractive pricing. Hypothetical fluctuations of CBDC remuneration rates, proposed by Bindseil (Ibid.), seem to be too synchronised and narrow to be true, at least during the banking crisis of 2008. Bindseil finally acknowledges that the aim is “to be confident that CBDC volumes will not significantly exceed the total tier one CBDC allowance” (p. 27). Therefore, CBDC Tier 1 appears to be an illusory option for the public, and the bulk of CBDC issuance should be based on predetermined quotes-per-capita, eliminating possibility to use CBDC as monetary policy tool to provide a policy rate and a flexible demand-driven channel of a safe means of payment.

Issuing CBDC directly to the public against eligible assets may have some advantages, but the overall effect appears to be disappointing. There is a prevailing assumption that CBDC can be issued only in exchange for already-issued banknotes and deposits. Researchers have suggested an alternative supply mechanism to issue CBDC directly to the broad public against good collateral, such as Treasury bonds (Kumhof and Noone 2018, and Juks 2018). Advantage of this scheme should not affect the total amount of deposits in commercial banks, the level of reserves, and the availability of collateral held by banks. Initially, potential investors of CBDC would buy eligible assets in the market, paying with their deposits remaining in banks. Next, investors would sell these assets to the central bank in exchange for newly created CBDC. One can assume, however, that typical bond traders are the wholesale financial institutions, while many CBDC investors would be retail depositors, implying a shift in the deposit structure towards less stability. Digital runs would consequently still be possible and would create in asset markets extreme pressure, bubble pricing, and even a physical shortage, compromising the whole CBDC scheme. As pointed by Kumhof and Noon (2018, p.
considered originators of CBDC issuance against eligible assets – “the risk is that the market could run out of eligible assets to convert into CBDC, even with the current high levels of government debt and other potentially eligible debt securities in many developed economies”.

6.4. CBDC and the effective lower bound

CBDC proponents suppose that, in a cashless society, a negative policy rate on CBDC would promote banks to transmit negative interest rates to remaining deposits and lending rates (IMF 2018). However, there is no consensus on whether negative policy rates should be applied at all to provide an additional monetary accommodation.

There are significant considerations that argue against transmitting negative interest rates to the non-financial sector. The legal restrictions that some countries have on the application of negative rates to depositors are one of the obstacles currently in place to apply such policy. However, more broadly, the experience of negative policy rates in the 2010s suggests that central banks primarily target investment activity (including bank lending and borrowing by non-financial corporations) rather than stimulating demand by penalizing retail savings. In fact, the potential outcome of targeting retail savings by a negative interest rate policy is unclear and could have a negative effect on consumption. In a crisis situation such policy could be even more harmful - a cashless society’s disappointment with economic development coupled with negative (penalized) rates on CBDC and deposits would likely be considered as unfair wealth tax, with destructive consequences for the credibility of banking sector and authorities.

6.5. Synthetic CBDC

The synthetic CBDC has some advantages, but it does not prevent the central bank from a massive unconditional liquidity provision to banks on demand. An option to exchange conventional deposits into reserve-backed deposits is expected to reduce the risk of bank run related to bank liquidity concerns. On the other hand, demand for synthetic CBDC could suddenly spike during periods of financial tensions, and the central bank would be forced to provide an equivalent amount of bank to affected banks (Fegatelli 2019; Šiaudinis 2019).

The synthetic CBDC has some other notable advantages relative to the fully-fledged version of explicit CBDC (Adrian 2019). This kind of CBDC outsources several steps to the private sector: technology choices, customer management, customer screening and monitoring including for “Know Your Customer” and AML/CFT (Anti-Money Laundering and Combating the Financing of Terrorism) purposes, regulatory compliance, and data management – all sources of substantial costs and risks. The central bank merely remains responsible for unrestricted provision of bank reserves, regulation and close supervision.

Figure 3 further explains the mechanics of synthetic CBDC by illustrating the effects of a hypothetical case of synthetic CBDC adoption on the balance sheets of central bank and commercial banks.
Figure 3. Synthetic CBDC-induced hypothetical changes in balance sheets of central bank and commercial banks.

<table>
<thead>
<tr>
<th>Central bank</th>
<th>Commercial banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>Loans to banks</td>
<td>Bank reserves</td>
</tr>
<tr>
<td>Bonds</td>
<td>Cash</td>
</tr>
<tr>
<td>CB loans on demand</td>
<td>Encumbered reserves</td>
</tr>
<tr>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>Bank reserves</td>
<td>CB loans</td>
</tr>
<tr>
<td>Loans to economy</td>
<td>Deposits</td>
</tr>
<tr>
<td>Encumbered reserves</td>
<td>CB loans on demand</td>
</tr>
<tr>
<td>Reserve-backed deposits</td>
<td></td>
</tr>
</tbody>
</table>

7. CONCLUSIONS

Wide of range of CBDC variants are being considered - from the universally accessible central bank accounts or digital tokens to less extreme suggestions of only partly broadening central bank access by providing CBDC for wholesale consumers or getting private sector to mediate in the process by providing synthetic CBDC.

There are benefits that CBDC introduction could bring. While hopes that CBDC could be a perfect solution to some of the hard to solve monetary policy issues - like tackling the effective lower bound constraint or strengthening the monetary policy transmission – seem to be overly optimistic; the benefits of having a widely accessible risk-free medium of payment are more straightforward.

CBDC design choices can contain key negative policy implications. Key negative implications for policy from CBDC introduction are thought to be that an introduction of CBDC could lead to higher instability of bank funding and increased risk of systemic digital bank runs; and CBDC could mean a larger role for central banks in financial intermediation. However, design choices can help to contain these risks. For example, a central bank could limit the risk of deposit runs by setting limits on individual CBDC holdings. During episodes of runs, a central bank could lend the funds it collects from deposits back to banks.

So far there is no empirical data to draw conclusions on the possible CBDC cost and benefit balance from. Such assessment may be easier on an individual jurisdiction level, as the possible value from CBDC introduction depends on country specifics, such as payment system efficiency, monetary policy regime, level of financial inclusion, credit quality, existence of credible deposit insurance mechanism, etc.

In a modern day world, single-jurisdictional level initiatives are not capable of meeting a global citizens’ need for safe, trustworthy, and cost-efficient instrument for cross-border payments.
Therefore, joint effort is needed to find a global solution. The modern day technology seems to be able to address this need. Although political aspects are at the core to solve the interoperability among CBDCs, the issue, including the idea of multicurrency CBDC deserves deep joint analysis.
REFERENCES

ANNEX 1. CBDC-INDUCED HYPOTHETICAL CHANGES IN BALANCE SHEETS OF CENTRAL BANK AND COMMERCIAL BANKS

Panel A. Before CBDC

Central bank

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans to banks</td>
<td>Bank reserves</td>
</tr>
<tr>
<td>Bonds</td>
<td>Cash</td>
</tr>
</tbody>
</table>

Commercial banks

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank reserves</td>
<td></td>
</tr>
<tr>
<td>Loans to economy</td>
<td></td>
</tr>
<tr>
<td>Deposits</td>
<td></td>
</tr>
</tbody>
</table>

Panel B. Launch of CBDC: some parts of cash and deposits are exchanged to CBDC

Central bank

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans to banks</td>
<td>Bank reserves</td>
</tr>
<tr>
<td>Bonds</td>
<td>Cash</td>
</tr>
</tbody>
</table>

Commercial banks

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank reserves</td>
<td></td>
</tr>
<tr>
<td>CB loans</td>
<td></td>
</tr>
<tr>
<td>Depots</td>
<td></td>
</tr>
</tbody>
</table>

Cash \rightarrow CBDC

Deposits \rightarrow CBDC

Loans to economy

Deposits \rightarrow CBDC
Panel C. Exchange of deposits to CBDC creates a necessity of CB extra-lending to banks

Central bank

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans to banks</td>
<td>Bank reserves</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
</tr>
<tr>
<td>Bonds</td>
<td>Cash → CBDC</td>
</tr>
<tr>
<td></td>
<td>Deposits → CBDC</td>
</tr>
</tbody>
</table>

Commercial banks

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bank reserves</td>
</tr>
<tr>
<td></td>
<td>CB loans</td>
</tr>
<tr>
<td>Loans to economy</td>
<td>Deposits</td>
</tr>
</tbody>
</table>

Panel D. CB extra-lending to banks due to CBDC

Central bank

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans to banks</td>
<td>Bank reserves</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
</tr>
<tr>
<td>Bonds</td>
<td>Cash → CBDC</td>
</tr>
<tr>
<td>+ loans to banks</td>
<td>Deposits → CBDC</td>
</tr>
</tbody>
</table>

Commercial banks

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bank reserves</td>
</tr>
<tr>
<td></td>
<td>+CB loans</td>
</tr>
<tr>
<td>Loans to economy</td>
<td>Deposits</td>
</tr>
</tbody>
</table>