
Why the Current DLT/Blockchain Designs Will Never Work Commercially.

(A Production Engineering Analysis of Current DLT/Blockchain Designs)

Paul F. Dowding, December, 2017.

© L4S Corporation 2017

 All the current, major, publicized,

DLT/Blockchain implementations can

demonstrate the ability to maintain a

distributed ledger securely. They can record

balances of value and their secure transfer

between network participants. This is both

useful and a hindrance. It is useful because it

helps with understanding and experimenting

with this new technology. It is a hindrance

because it creates the illusion that these

solutions work when they are not

commercially viable. Their lack of viability is

due to the unsolved problems of being slow

and having limited capacity throughput. This

is because the fundamental designs are

flawed.

 If a lawn mower engine was installed in a

Ferrari’s chassis, it could still drive and move

around. From its outer appearance and the

theoretical dynamics of the chassis, it would

have the potential of a supercar but it would

not be one. When considering this analogy to

the current DLT/Blockchain implementations

it is important to critically analyze the engines

that support them from a performance

standpoint.

 Why are they not producing the low latency

and high capacity that is required by the

financial services and other industries? Is

there an answer or solution to this problem?

The following is a fundamental production

engineering review of the current DLT

processes.

 If:

P = the available time for production and

TL = the Total Production Cycle Time (or

latency) to produce a product and

TC = a process cycle time

C, which is the Output Capacity throughput of

the process within P, then

C =
𝑃

𝑇𝐿

 For a single process product then

 TL = TC.

 For a multiple process product, say one that

involves six, sequential and independent steps

and a final assembly, the Process Cycle Times

for each process (TC) could be represented by

T1, T2, T3 T4, T5, T6 and a final assembly TF,

therefore:

𝐶 =
𝑃

𝑇𝐿
 =

P

(𝑇1+𝑇2+𝑇3+𝑇4+𝑇5+𝑇6+𝑇𝐹)

 If the multiple processes are completed by

one resource then, TL, the total Production

Cycle Time, defines the time to make a

product, which in this example is the process

latency as well. However, the individual

process cycles time for each TC are obviously

much shorter than the Production Time (TL).

One of the ways to increase the Capacity is to

increase the number of resources.

 There are two ways this can be achieved.

a) A resource can be assigned to each

process or

b) more resources can perform all the

processes.

Option (a)

 If a resource was assigned to each process,

then the total resources would be seven and

the capacity is defined by the slowest

(bottleneck) process cycle time Max(TC).

𝐶 =
𝑃

𝑀𝑎𝑥(𝑇𝑐)

 So, while the Product Cycle time is now

Max(TC) the product’s Total Production Time

or latency is still the same.

TL = (T1 + T2 + T3 + T4 + T5 + T6 + TF)

Why the Current DLT/Blockchain Designs Will Never Work Commercially.

(A Production Engineering Analysis of Current DLT/Blockchain Designs)

Paul F. Dowding, December, 2017.

© L4S Corporation 2017

 Note each process could be individually

improved but there would always be one that

would be the slowest i.e. 𝑀𝑎𝑥(𝑇𝑐). The other

processors can’t produce at a better rate than

the bottleneck process without creating

backlogs before the bottleneck process or

have delays waiting for the hand-off after the

bottleneck.

Option (b)

 If we created seven versions of multiple step

process it would have the same latency with

any differences being attributed to the

performance variation of each of the

processors. It would be the equivalent of:

(T1 + T2 + T3 + T4 + T5 + T6 + TF) x 7.

 The capacity would be slightly improved as

the Capacity would now be driven by the

average process cycle time rather than the

bottleneck, however unless there is a large

difference between Max(Tc) and Avg(Tc), this

difference will be negligible.

𝐶 =
𝑃

𝐴𝑣𝑔(𝑇𝑐)

 There may not be much difference in overall

process but option (a) is usually higher quality

with process expertise but less flexible. Option

(a) is also more effective when the process

cycles are very similar. Option (b) can have

quality consistency issues between the

different processors but can give more

flexibility for process adaptation.

 The best way to improve latency, if it is

logistically possible, is to run as many of the
processes in parallel. In this case, the process

would consist of:

 (T1)

 (T2)

TL = Max (T3) + TF

 (T4)

 (T5)

 (T6)

 Now the Product Cycle Time and the Total

Production Time or latency are both

 = Max(TC) + TF

 For further efficiencies, the process can use

independently created pre-assembled parts

for the process. The only process left is final

assembly. Therefore:

TL = TF

and

𝐶 =
𝑃

𝑇𝐹

 The above equation does not take into

account the cost or time for delivery of the pre-
assembled parts.

 A variation on both the pre-assembly and

parallel processing ideas is the model for high

frequency trading and algorithmic execution.

The pre-assembled processes are the

algorithms combined with the portfolio and

market data. The only processes left are order

routing and risk management, which are run

in parallel for efficiency.

 The high frequency trading and algorithmic

execution processes are shown below:

Why the Current DLT/Blockchain Designs Will Never Work Commercially.

(A Production Engineering Analysis of Current DLT/Blockchain Designs)

Paul F. Dowding, December, 2017.

© L4S Corporation 2017

Pre-Process Process Post Process

Algorithms Routed

Orders

 Order Status*

Portfolio &

Mkt Data

Risk

Mgmt

* Filled or Not Filled

This is an optimally designed process for high

capacity and low latency.

Production Analysis of Bitcoin

 If the Bitcoin Transactions are assumed to be

0.5kb in size on average.

 Then, as the Bitcoin blocks are targeted at

1Mb in size, there are usually in the range of

2000 transactions per block.

 The Bitcoin network controls the time to

produce a new block to approximately 10

minutes.

 Therefore, the maximum capacity per

second for Bitcoin is

=
2000 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

(10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑥 60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠)

=
2000 𝑇𝑥′𝑠

(600 𝑠)

= 3.33 Transactions per second.

 The above means that as well as taking 10

minutes to produce any new blocks – i.e. the

minimum latency to validate a transaction, if

there are more than 3.33 transactions per

second being created in the network there will

be an increasing backlog of transactions to put

into blocks which will never clear unless the

rate of creation of new transactions falls below

the maximum capacity of the network for a

sustained period. Note as the transactions are

agreed away from the network, and are

created through an Active-Passive role

between the Payee and the Payor, the

transaction process does not individually

affect the speed of the ledger validation.

 The only way to increase the capacity and

reduce the latency of the Bitcoin Network is to

either shorten the time to create a block or to

increase the block size. The problem is that

either of these actions will make forks in the

blockchain more likely, so while transactions

may put into blocks quicker, the resolution of

a dominant block may take longer.

 There is no viable way for the Bitcoin model

to realistically handle the high payments

volumes of a credit card processor or the total

volume and high capacities required to

support major exchanges.

Production Analysis of Consensus Driven

DLT Solutions

 Although the major implementations of DLT

solutions vary in their ledger recording

protocols and mechanisms, they all follow a

similar process due to their all using some

form of consensus algorithm to reach

agreement on the ledger.

 Transactions between two parties need an

instigator and an associate. Through a Smart

Contract, one party creates the transaction

and the second party agrees to the transaction.

The transaction is then validated by other

nodes or independent Oracles or Auditors. The

transactions are then assembled into

candidate blocks to be added to the one-

dimensional blockchain.

 Seven generic steps which are similar across

the solutions are: Instigation, Affirmation,

Validation, Block Proposal, Consensus Voting,

Consensus Block Sharing, Ledger Validation

and Update.

Note for each process there are different

parties:

Why the Current DLT/Blockchain Designs Will Never Work Commercially.

(A Production Engineering Analysis of Current DLT/Blockchain Designs)

Paul F. Dowding, December, 2017.

© L4S Corporation 2017

Process Party Process Time

Instigation: Party 1 Ti

Affirmation: Party 2 Ta

Validation Oracle/Auditor Tva

Block Notary Tp

Proposal

Consensus All Nodes Tvo

Voting

Block All Nodes Tbl

Sharing

Ledger Individual Nodes Tu

Update

 Effectively the time to produce a validated

transaction would be:

TL = (Ti + Ta + Tva + Tp + Tvo + Tbl + Tu)

 These are all sequential, dependent steps

across multiple different parties and therefore

cannot be run in parallel for an optimal

solution. The only way is to increase the

capacity throughput is to reduce the time for

each process which all have finite limits. It

worth noting that for any process to generate

a 1000 results per second, the process time

must be 0.001 seconds or 1/1000th second.

 Also, this simple model does not include any

latency between transmission and receipt at

each step across the network between nodes,

which adds to the time involved, where

dependency is present.

 Similar to Bitcoin, the capacity of the block

proposal and voting process must be greater

than the capacity at which the transactions are

generated. Otherwise there is a risk of a

backlog similar to the scenario that was

described in the Bitcoin analysis. It is also

important to realize that as the participants

and number of transactions increase the

number of transactions to be validated and

votes to be cast and tallied increase by a factor

of both numbers. Therefore, the latency of the

processes becomes greater with increased

participation and the maximum network

process capacity remains unchanged, so the

risk of a backlog being created increases.

 Realistically, if a network is generating

1,000’s of transactions per second they would

be generated by a large number of participants

of which at least 67% would have to vote on all

the transactions to gain consensus at the same

rate of transactions per second. While it is easy

to generate a lot of transactions, it is

impossible for a group to vote and create

consensus at an equivalent rate.

 The current, but ultimately, doomed

solutions are a hybrid of multiple processors

and parallel processing. Transactions can be

generated and validated by smaller

populations of so-called Lightning Networks.

They can then be constructed into a separate

distributed ledger or side-chain by other

smaller populations or “Shards” for quicker

consensus. The Shards then have to be added

to the larger main ledger at a later time.

If NL represents the number of Lightning

Networks operating in the network and NS

represents the number of Shards for

consensus, then there are two parallel

processes running in conjunction with each

other.

 The processing time for each process would

be:

TL = (Ti + Ta + Tva) for the Lightning networks

and

TL = (Tp + Tvo + Tbl + Tu) for the Consensus

Shards.

 While this has shortened the individual

process time, they are still relatively large and

involve multiple validations for the Lightning

Networks and multiple voting and tallying for

the Sharded consensus.

Why the Current DLT/Blockchain Designs Will Never Work Commercially.

(A Production Engineering Analysis of Current DLT/Blockchain Designs)

Paul F. Dowding, December, 2017.

© L4S Corporation 2017

 Within these smaller population groups, the

capacity is increased and the number of

transactions processed are reduced both by a

factor of NL for the Lightning Networks and

factor of NS for the shards. However, unless

process times are reduced overall to 1/1000th

second, these smaller populations cannot

reach a capacity of 1000’s of transactions per

second. Remembering that, whatever capacity

is reached, it only applies to the members

within the Lightning Networks or Shards.

Once a party in one group transacts with a

party in another group, the process slows

down to the capacity at which the greater

network can validate all the Lightning

Network and Shard outputs to the larger

network blockchain ledger.

 This creates competing variables. One

reduces the number of counterparties to

increase speed, which, by definition, increases

the probability of the transacting party’s

counterparty being outside smaller group and

therefore subject to a slower process.

 Mathematically, Network Transaction cycle

time decreases as an inverse to the number of

lightning networks and consensus shards:

TL = f {
1

(𝑁𝐿)
,

1

(𝑁𝑆)
 }

 Whereas the probability of transactions

(po/n) outside the lightning networks or

consensus shards increases

po/n = f { NL , NS }

 Regardless of these short cuts, assuming

each network participant creates the same

number of transactions. The total number of

transactions (TrTOTAL) created in a network

requiring validation, voting and consensus

tallying is the product of the number of

participants (PN) and the transactions they

produce (TrP).

Or:

TrTOTAL = PN x TrP

 While this demonstrates, on an average

basis, the linear relationship between the

participants and number of transactions

broadcast, with the transaction validation,

voting, vote tallying, block creation, block

broadcast and ledger validation, the data

transfer, computational demands and data

storage requirements within the network

expand exponentially with the adoption by

more participants, so transaction processing

and ledger validation must be as optimal as

possible otherwise the network’s limits can be

quickly reached. A seven step, sequential,

dependent process involving multiple parties

is not optimal.

 The above proves why current DLT

implementations do work but will always be

slow, unable to handle high volumes and still

have scalability issues with their continuously

expanding active memory requirements. The

analysis also does not include any

reconciliation processes and controls to

ensure all data from the Lightning Networks

and Consensus Shards are transferred the

main distributed ledger accurately. These

deferred control processes would further

reduce the productivity of the network, while

also creating vulnerabilities to attack.

An Optimal Design Proposal

 Similar to the high frequency trading or

algorithmic execution, an optimal model for a

distributed ledger has to have pre-assembled

transactions, which can create self-validating

entries to the shared ledger. Then, the only

capacity constraint is the broadcast and

receipt of the transactions across the network,

which is only limited by the capacity of the

network routing hardware rather than the

ledger process. If the transactions are self-

Why the Current DLT/Blockchain Designs Will Never Work Commercially.

(A Production Engineering Analysis of Current DLT/Blockchain Designs)

Paul F. Dowding, December, 2017.

© L4S Corporation 2017

validating, the any other node can receive the

transactions, and update the ledger without

having to refer to any of the other nodes. See

the representation below.

Pre-

Process

 Process Post Process

Self-

Validating

Tx

Tx

Broadcast

Tx

Receipt

Tx/Ledger

Validation

& Ledger

Update

Conclusion
The current DLT/Blockchain implementations

do resemble a Ferrari with a lawn mower

engine. No amount of tuning or adaptation is

going to make that vehicle a supercar.

DLT/Blockchain solutions operate on three

fundamental layers. The Core layer, the

Protocol layer and the Application (or “App”)

layer. Most have locked down their Core and

Protocol layers and are now focusing

predominantly on functionality at the App

layer, even though the Core and Protocol

layers can’t produce the performance

requirements required.

Similar to the Ferrari-Lawn Mower Engine

analogy where the solution is to replace the

engine of the vehicle, the current

DLT/Blockchain implementations need to

fundamentally redesign their Core and

Protocol layers and create a solution that

doesn’t rely on consensus algorithms but,

unlike Bitcoin’s non-consensus algorithm

solution, it must have the capacity throughput

and low latency capabilities to meet the

financial services’ and other industries’ needs.

L4S has designed a very different distributed

ledger core and protocol layer to make the

above optimal model and its performance

potential possible. If you are interested, then

please contact me.

