
Bitcoin Programming

Konstantinos Karasavvas

v0.4

Copyright © 2020 Konstantinos Karasavvas

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

LATEX template based on Typesetters (https://www.typesetters.se/latex-textbook-template/)

Contents

0.1 Preface 7

1 How Bitcoin Works . 8

1.1 The Story of a Transaction 8

1.2 From Transactions to Blocks 9

1.3 Mining: basics 10

1.4 Mining: a bit more technical 12

1.5 The story of a Block 15

1.6 Nakamoto Consensus and Trust 16

1.7 Basic interaction with a node 19

1.8 Exercises 24

2 P2P Networking in a nutshell . 26

2.1 Introduction 26

2.2 Peer Discovery 27

2.3 Handshaking and synchronisation 27

2.4 Block Propagation and Relay Networks 27

3 Forking in a nutshell . 29

3.1 Software Development Forks 29

3.2 Blockchain Forks 29

3.3 Soft-forks 30

3

3.4 Hard-forks 32

3.5 Upgrading Bitcoin 34

4 Technical Fundamentals . 36

4.1 Bytes, Hex, Endianness and Encodings 36

4.2 Cryptographic Hash Functions 38

4.3 Asymmetric Cryptography 39

5 Keys and Addresses . 41

5.1 Private Keys 41

5.2 Public Keys 43

5.3 Addresses 45

5.4 Wallets 49

5.5 More examples 50

5.6 Exercises 51

6 Scripting 1 . 52

6.1 Transactions 52

6.2 Creating P2PKH Transactions 55

6.3 Signatures 61

6.4 Pay to script hash (P2SH) 62

6.5 Segregated Witness (SegWit) 66

6.6 Pay To Multi-signature (P2MS) 73

6.7 Storing Data (OP_RETURN) 73

6.8 Exercises 76

7 Scripting 2 . 78

7.1 Timelocks 78

7.2 RBF & CPFP 85

7.3 Hash Time-Locked Contracts 86

7.4 Atomic Swaps 88

7.5 Payment Channels 90

7.6 Exercises 90

8 Advanced Topics . 92

8.1 Lightning Network 92

8.2 Sidechains 92

0.1 Preface

I started teaching Bitcoin programming in 2016. Every year I was trying to improve and
update my material to keep it as relevant as possible. Luckily, Bitcoin progresses at a steady
pace while always keeping backwards compatibility. This is convenient because existing
material will always be valid even though better alternatives might be introduced in the
future.

To understand the material better myself and to improve the material in my courses
I started an open source Python library, called bitcoin-utils1. The library was created for
educational purposes and not for computational efficiency and that might be evident in
certain parts of the implementation. Before starting this library I had investigated several
other well-known Python libraries but I did not find an appropriate one for teaching. Some
were too low-level with limited documentation while others where abstracting concepts that
I deemed where important for students to understand. The book contains a lot of examples
using this library for demonstration.

Throughout the years I have prepared a lot of material based on my early code exper-
iments, the bitcoin-utils library and several online resources, especially the Bitcoin Stack
Exchange2 and the Bitcoin Book3 by A. Antonopoulos. While I try to always credit the ini-
tial sources that I have consulted over the years it is possible that I have missed some. Please
let me know and I will update accordingly.

This book is not about introducting what Bitcoin4 is. The readers are expected to have
some programming knowledge, be comfortable with their own operating system as well as
have some basic understanding of what Bitcoin is, its utility, what addresses and private
keys are as well as have some experience using wallets and sending bitcoins5. However, the
first chapters do give a quick summary of Bitcoin and how it works to make sure that the
fundamentals are covered.

This book is about teaching Bitcoin programming; to help people delve deeper and in
particular learn how to talk to the Bitcoin network programmatically. The Bitcoin library is
relatively easy to navigate through so, if interested, you can go even deeper when required.
There is an emphasis on providing practical examples which, I believe, helps understanding.

I have been using a Linux-based machine and thus most command-line examples are
from bash shell. However, people comfortable with other Operating Systems should have
no issues to adjust as needed.

1https://github.com/karask/python-bitcoin-utils
2https://bitcoin.stackexchange.com/
3https://github.com/bitcoinbook/bitcoinbook
4https://github.com/karask/satoshi-paper
5When we refer to the coins we will use bitcoin(s) (lowercase ‘b’) and when we refer to the protocol or the

network we will use Bitcoin (uppercase ‘B’)

1. How Bitcoin Works

1.1 The Story of a Transaction 8

1.2 From Transactions to Blocks 9

1.3 Mining: basics 10

1.4 Mining: a bit more technical 12

1.5 The story of a Block 15

1.6 Nakamoto Consensus and Trust 16

1.7 Basic interaction with a node 19

1.8 Exercises 24

This chapter provides a high-level introduction of how Bitcoin works. It aims to be a summary
of the prerequisite knowledge required by the reader before moving into the following chapters.
The operation of the Bitcoin network is demonstrated with a walkthrough of a transaction and
its journey from its creation up until its final destination, the Bitcoin blockchain.

1.1 The Story of a Transaction

Transactions specify the transfer of bitcoin ownership. Assume we have three actors; Zed,
Alice and Bob. Zed has sent 1.5 bitcoins to Alice with TXx and Alice wants to send 1 bitcoin
to Bob. The transaction history will already have an entry of how Alice got her bitcoins (e.g.
from Zed).

Internally, the Bitcoin protocol operates with satoshis: 1 satoshi = 0.00000001 BTC.
Thus, when we want to transfer 1 BTC we actually transfer 100000000 satoshis.

To send 1 bitcoin (or BTC) Alice needs to create a transaction TXy that sends 1 BTC to
Bob. We know that Alice has at least 1.5 BTC from TXx.

TXx: 1Zed transfers 1.5 BTC to 1Alice

TXy: 1Alice transfers 1 BTC to 1Bob

The names 1Zed, 1Alice and 1Bob are short for the actual bitcoin addresses of Zed, Alice
and Bob respectively. So Alice will send 1 BTC from her 1Alice bitcoin address to Bob to his
1Bob address.

Alice has to prove that she is indeed the owner of the address 1Alice when she creates
the TXy . Bob does not need to do anything to receive the bitcoins.

8

Chapter 1. How Bitcoin Works 9

A transaction can consist of several inputs (addresses to get bitcoins from1) and several
outputs (addresses to send bitcoins to). When an input is used it is completely consumed; i.e.
all the bitcoins that the TX contains as inputs need to be spent.

Figure 1.1: Typical one input two outputs transaction.

The amount of all the inputs needs to be greater or equal to the amounts of outputs. If
greater (recommended) the difference is an implied transaction fee that goes to the miners
(see figure 1.1). A typical transaction transfers some bitcoins to another user and returns the
remaining bitcoins as change to the originating address or another address that the sender
controls.

For privacy reasons it is recommended to send the change to a different address than
the originating. Most bitcoin wallets already do this behind the scenes.

Any number of inputs and outputs is possible as long as a transaction fee is included; the
larger the transaction the larger the transaction fee. The unspent outputs are called Unspent
Transaction Outputs (UTXOs) and the set of UTXOs is essentially all the available bitcoins in
the network.

Once a transaction is created it needs to be sent to a Bitcoin node. After the node receives
the transaction it checks if it is valid, e.g. the output amounts should be less or equal to the
input amounts, the signature proving ownership should be valid, etc. If it is valid the node
will propagate it to all its peers2, i.e. the other nodes that it is aware of. In turn, the other
nodes will check if the transaction is valid and so on and so forth until all nodes receive the
transaction (see figure 1.2).

1.2 From Transactions to Blocks

From a Bitcoin’s node perspective, the node receives transactions and places all valid ones
into its memory pool, or mempool. It keeps receiving new ones until it decides that it will
group some of those transactions into a block (see figure 1.3).

1This is an oversimplification. In reality unspent outputs or UTXOs are used as inputs which are associated
with an address.

2To be more precise they will notify their peers of the transaction by its transaction identifier (txid) and the
peers can choose to request it or not. More details will be provided in the Peer-to-Peer chapter.

10 1.3. Mining: basics

Figure 1.2: Example of transaction propagation through the network.

Figure 1.3: A node receives transactions into its mempool and can attempt to create new
blocks for the network.

We are describing what mining nodes typically do. The majority of nodes are not
mining nodes and thus do not attempt to create new blocks, rather they validate and
propagate valid transactions and blocks when they are aware of them.

Every block contains a coinbase transaction that is added by the miner (see next section)
and it sends a deterministically calculated reward to an address of the miner’s choosing.
Finally a header is added to the block containing important information that links this block
to its parent and other information that we will examine in the next section.

1.3 Mining: basics

After a node creates a block it will attempt to make it final by propagating it to all other
nodes in the network. Multiple nodes will receive the same transactions and will create
blocks; nodes choose which TXs to include (see figure 1.4). They can create and propagate a
block at any time.

Chapter 1. How Bitcoin Works 11

But how do we select which blocks will be part of the blockchain? Since, miners
include a reward for themselves everyone wants their block to be the next block in
the blockchain. In other words, how do we avoid spam and Denial of Service (DoS)
attacks?

For a block to be considered valid a miner has to prove that he has done some intensive
computational work. Thus, miners have to spend resources before they create a block. This
mechanism of proving computational work is called Proof-of-Work (PoW) and it involves
solving a problem or puzzle. PoW puzzles have the fundamental property of being difficult
to solve but trivial to validate their correctness.

Bitcoin mining is the process of solving the PoW puzzle and selecting the next valid
block in a way that is undisputed and thus achieve consensus on the current blockchain
state. Bitcoin uses the Hashcash PoW algorithm [1] for its mining.

Figure 1.4: All nodes will eventually receive all transactions but they are free to include
them into a block as they see fit.

The Proof-of-Work puzzle is to compute a cryptographic hash of the new block that we
want to create which should be less than a given number. The target number that the hash
needs to be less than can be deterministically calculated by all nodes and is such that it
would take around 10 minutes to calculate with the current network processing power, also
called hashing power. Since a hash is random it will take several attempts to find a proper
hash but other nodes will verify with only one attempt.

A cryptographic hash function is a hash function that takes an arbitrary block of data
and returns a fixed-size bit string, the cryptographic hash value, such that any (acci-
dental or intentional) change to the data will also change the hash value significantly.

As more miners join the blocks will be created faster so the puzzle’s difficulty automat-
ically adjusts (increases) so that it again requires approximately 10 minutes to solve. This
difficulty adjustment is happening every 2016 blocks, which is approximately 2 weeks if each
block takes 10 minutes to mine.

The hash algorithm used is SHA256 and it is applied twice to the block header. As we
will see later the header uniquely represents the whole block including all the transaction
and thus hashing the header is effectively the same as hashing the whole block but with the
added benefit of efficiency since the header is much smaller.

12 1.4. Mining: a bit more technical

SHA256(SHA256(block_header))

The miner that successfully creates a valid block first will get the bitcoin reward that they
have set themselves in the coinbase transaction as well as the fees from all the transactions
in the block.

The block reward can be deterministally calculated according to the current block height.
The reward started at 50 bitcoins and is halved every 210000 blocks (approximately 4 years
for 10 minute blocks). So, after block 630000 the reward will be 6.25 bitcoins. The mining
reward can be claimed by the miner only after 100 confirmations, i.e. after 100 blocks have
been confirmed as part of the blockchain since.

1.4 Mining: a bit more technical

The structure of the block header is as follows:

Field Description Size (bytes)
version Block version number 4
hashPrevBlock 256-bit hash of the previous block 32
hashMerkleRoot 256-bit hash representing all the TXs in the block 32
timestamp Seconds since 1970-01-01T00:00 UTC 4
target (bits) The target that the hash should be less than 4
nonce 32-bit number 4

Block version and timestamp are self explanatory but we will briefly go through the
remaining fields.

hashMerkleRoot

A block has two parts, the header and the transactions. Since we only hash the block header
to link blocks together, a header needs to represent the whole block, including all its trans-
actions (coinbase and normal). The transactions are indirectly hashed via using a merkle
root and being included in the block by hashMerkleRoot.

A merkle tree3 is constructed by concatenating all the transaction hashes, in pairs. The
resulting hashes are again concatenated and hashed until only a single hash remains, the
merkle root.

An important property of a merkle tree is that you can efficiently prove that a hash (and
thus transaction) is part of the merkle root. A merkle proof consists of the hashes and their
position in order to reach from a leaf TX hash to the merkle root, thus proving that that TX
hash is indeed part of the merkle tree. For example to prove that tx1 is part of the merkle
root we would need to provide the hash of cb and its positioning (i.e. left) as well as the
parent hash of tx2 and tx3 (cc3f1) and its positioning (i.e. right).

3https://en.wikipedia.org/wiki/Merkle_tree

Chapter 1. How Bitcoin Works 13

Figure 1.5: Simple merkle root calculation of coinbase and three transactions.

hashPrevBlock

This is the hash of the previous block in the blockchain. It designates the parent of the
current block and it is effectively what chains the blocks together. For example, if someone
changes a transaction in the previous block then the hashPrevBlock will change. This is of
particular importance as we will see in more detail in section 1.5.

target

Target bits or just bits is represented as an 8 hex-digit number. The first 2 digits are the
exponent and the rest the coefficient. Target bits can be used to calculate the actual target
with the following formula:

target = coef f icient ∗ 2(8∗(exponent˘3))

The highest possible target (the easiest target) is defined as 0x1d00ffff and gives a 32-
byte target of expressed as a 64 hexadecimal number) of:

0x00000000ffff00

If hashing the block header produces a hash that begins with 0x00000000e (or less) then
we have found a solution. That would require, statistically 232 (4,294,967,296) attempts on
average. The smaller the target the more difficult the solution, the more attempts on average.

Another representation of target, easier for humans to understand, is difficulty which
represents the ratio between the highest target and the current target:

Dif f iculty =
highest_target

current_target

14 1.4. Mining: a bit more technical

When Bitcoin started it started with the highest target (0x1d00fff) and thus it had diffi-
culty 1. Difficulty 1 requires 232 attempts on average to find a solution. Difficulty 10 requires
232 ∗ 10 attempts on average, etc.

nonce

The nonce is just a number used to differentiate the hash while trying to reach the target.
Given that it is only 4 bytes it can only handle 4.2 billion combinations, while we need
quintillion nowadays4.

When the limit was reached miners started modifying the timestamp (e.g. -1 sec) to
allow for an additional of 4.2 billion combinations. However, there is a limit of seconds that
a node can deviate from the rest of the network so that did not suffice either.

Finally, miners started to use the unused space of coinbase transaction inputs as an extra
nonce allowing an immense amount of extra nonces to be used. and thus it had difficulty 1.
Difficulty 1 requires 232 attempts on average to find a solution. Difficulty 10 requires 232 ∗10
attempts on average, etc. and thus it had difficulty 1. Difficulty 1 requires 232 attempts on
average to find a solution. Difficulty 10 requires 232 ∗ 10 attempts on average, etc.

Difficulty Adjustment

We already mentioned that we want the difficulty to find the proper hash is expected to
take approximately 10 minutes. However, Bitcoin is an open system and anyone can join (or
leave) the network as a miner. Thus, the network’s hashrate can increase (or decrease) with
time.

With more hashing power blocks will be issued faster than 10 minutes and thus the
network has to adjust the difficulty of the problem accordingly.

Specifically, Bitcoin nodes, check every 2016 blocks (2 weeks) the timestamps between
consecutive blocks and sums them to find out how much time t it took. We want t to take
two weeks and thus the new difficulty will be:

old_dif f iculty ∗ (2_weeks
t)

Mining Process in a nutshell

Here we describe a mining node’s actions for mining in a simplified step by step process:

1. Gather valid TXs into blocks

2. Get the longest chain’s top block hash and add it in hashPrevBlock

3. Add timestamp, nonce and extra nonce in the first TX (coinbase)

4. Calculate the merkle root of valid TXs and add it to hashMerkleRoot

5. Hash the header to find a solution smaller than the specified target

4As of August 2020.

Chapter 1. How Bitcoin Works 15

• modify timestamp, nonce or extra nonce as appropriate

• rehash until a solution is found or the longest chain changed

During the above process:

• If more TXs are included in the block or the extra nonce is modified

– recalculate merkle root and update it

• If the longest chain changed we want to build on that chain from now on

– update the valid TX set

– ecalculate the merkle root

– use the new block as hashPrevBlock

1.5 The story of a Block

Once a node finds a solution to the PoW problem it will propagate it to its peers. They will
check if the block (and every transaction) is valid and if it is they will propagate it to all their
peers5. In turn, the peers will check again for the solution as well as the block validity and
they will propagate again and so on and so forth until all nodes receive the new block (see
figure 1.6).

Figure 1.6: Example of block propagation through the network.

The new block is being added on top of the existing blocks (every 10 minutes). This
occurs on every single node on the network thus the blocks are the same in all nodes. Blocks
are linked with cryptographic hashes forming a chain of blocks, called Blockchain.

When Block B1 is accepted by the network we say that a transaction on that block has
one confirmation. When B3 is accepted we say that our transaction has 3 confirmations (see
figure 1.7. The more confirmations the more final and secure a transaction is.

5To be more precise they will notify their peers of the block and the peers can choose to request the actual
block or not. More details will be provided in the Peer-to-Peer chapter.

16 1.6. Nakamoto Consensus and Trust

Figure 1.7: A node receives blocks and links them to form the blockchain.

1.6 Nakamoto Consensus and Trust

Each node receives blocks and builds its own blockchain in isolation. A fundamental inno-
vation that bitcoin introduced is the Nakamoto consensus, i.e. how do different nodes come
to agreement on what is the current state of the blockchain.

If two miners find a block (almost) at the same time then network peers will get a differ-
ent block first. They will then start building the next block based on the one they received
first. That means that the network at that time has two possible states.

In Nakamoto consensus the basic rule is that miners should follow the longer chain (the
one with the most computation). Thus, when one of the miners finds the next block all
miners will choose the longer chain and consensus is achieved. For an example see the
different steps in figure 1.8.

(i) Initially our example network has only two blocks and all nodes are in sync.

(ii) Then node I finds the next block, which is disseminated to all other nodes and again
everyone is in sync.

(iii) Next, let’s suppose that two nodes find a solution at about the same time. These blocks
will typically be very similar, including almost the same transactions, but will be dif-
ferent.

(iv) The nodes will propagate their blocks and some peers will get one of the blocks and
some the other. The nodes are aware of both blocks but they will use the block that
they received first as the next block and will start mining the next block on top of that
block. At this stage we do not have consensus since some of the nodes have a blockchain
with the orange block at the top and some the green block.

(v) However, after a while a new block will be found. In our example, this is node F and it
will propagate it throughout the network.

(vi) Finally, when the block is propagated to the nodes with the green block on top they will
realise that there is a longer chain than the one that they are working on. According
to nakamoto consensus the nodes will accept the longer chain as the valid chain and
ignore the green block. The green block is typically called an orphan block6. And now
all nodes are in sync again.

6Precise terminology is more complicated as discussed in https://bitcoin.stackexchange.com/questions/5859/what-
are-orphaned-and-stale-blocks

Chapter 1. How Bitcoin Works 17

Figure 1.8: Nakamoto Consensus example.

If there are transactions in the orphaned block that are not in the orange or the blue
block they are moved to the mempool ready to be included in one of the following
blocks.

Of course it would be possible that at step (v) 2 new solutions could again be found one
from a node with an orange block on top and another from a green block on top. Similarly,
consenus would be achieved with the following block and two blocks would be orphaned.
In such a case, we would say that a 2-block reorg occurred.

Nakamoto consensus is a natural and expected reorg event that currently occurs about
once per week7 for 1-block reorgs. The chance of a reorg is proportional with the number of
blocks and thus larger reorgs are exceedingly rare.

Establishing Trust

As we have seen, blocks are linked together by including the hash of the previous block on
the new block. For example, in figure 1.9 the hash of B1 is included in the header of B2.

In our example a transaction in B1 (represented with the cyan box) has 3 confirmations.
If an attacker wishes to attempt a double spend attack8 they will need to create and new B1’

block with the modified transaction. However, there are two more blocks on top of B1 and

7https://bitcoinchain.com/block_explorer/orphaned
8https://en.wikipedia.org/wiki/Double-spending

18 1.6. Nakamoto Consensus and Trust

Figure 1.9: Linked blocks and Trust.

thus the attackers block will be ignored since B1’ will not be the longer chain. The attacker
also needs to create B2’, B3’ and B4’ to succeed in a double spend.

To achieve that, the attacker will need to have the majority of the network’s hash rate,
which is what is typically called the 51% attack9.

Achieving this kind of hash rate and sustaining it would require extravagant amounts of
funds to accommodate for the mining hardware and operational costs and thus it would not
be easily feasible.

This is even more evident when one considers what is possible with such an attack: po-
tential censorship and double spends. Even with such an attack the funds on all the Bitcoin
addresses are safe as is the historical records of the transactions; the former are secured by
strong cryptography while the latter would require much more hash rate to modify them.

Bitcoin security model is based on game theory principles and proper incentives. Eco-
nomically speaking only a very irrational entity would make such an attack since setting up
the environment for the attack would position the attacker in a very economically advanta-
geous position, i.e. they will be earning a lot of money with the mined bitcoins.

Even though Bitcoin and Nakamoto Consensus provide us with some of the strongest
probabilistic guarantees it is theoretically possible to be influenced by malevolent ac-
tors.

Until now the network had been extremely resilient to any kind of attack and has proven
its robustness and stability securing hundreds of billions worth of value. The Bitcoin blockchain
is considered by many as the most immutable structure constructed by humans.

9Certain attacks, like selfish mining, could be successful with a smaller percentage.

Chapter 1. How Bitcoin Works 19

1.7 Basic interaction with a node

After installing the Bitcoin software10 we can notice that it includes several executables, one
providing the core functionality and the other for interaction and extra utility:

bitcoind: The daemon server that implements the Bitcoin protocol and networking func-
tionality. It also includes a wallet. It provides a JSON-RPC API to talk to the node
(ports: mainnet: 8332, testnet: 18332).

bitcoin-cli Provides a command-line interface to talk to the daemon server.

bitcoin-qt Provides a graphical user interface to the Bitcoin peer and wallet (subset of the
API as part of GUI but also provides a console for all calls).

bitcoin-tx Allows to create, parse or modify transactions.

bitcoin-wallet Allows to create, parse or modify transactions.

Bitcoin software configuration and development environments

The configuration file is bitcoin.conf and its default location depends on the operating sys-
tem used (e.g. in linux system it is located at /.bitcoin/bitcoin.conf). Some important op-
tions for development and testing11 your application include:

deamon=1 Runs the Bitcoin node in the background.

server=1 Allows JSON-RPC commands but only from localhost.

testnet=1 The Bitcoin node uses the testnet network for development (i.e. fake funds). If
the option is missing or if it is ‘0’ then mainnet (the real network) is used.

regtest=1 This is a local test environment. The blockchain starts at height 0 (genesis block)
and we can trivially mine new blocks with the generatetoaddress command. This
allows developers to also control the block creation and get fake funds immediately.
Regtest uses testnet’s network parameters (e.g. address prefixes, etc).

signet=1 New test network for development that adds an additional signature requirement
for block validation. Signet is similar in nature to testnet, but more reliable and cen-
trally controlled. Anyone can run their own unique signet for their testing purposes.
Available from Bitcoin Core v0.21.0.

addnode=12.34.56.78 Also connect to specific peer (multiple addnode’s can be used). If no
network is specified it will only apply to mainnet.

connect=12.34.56.78 Only connect to specific node (multiple connect’s can be used). If no
network is specified it will only apply to mainnet.

rpcallowip=12.34.56.78 Allows JSON-RPC connections from this IP (default is localhost).

10You can find several online resources on how to install Bitcoin specifically for your operating system. Such
tutorial is outside the scope of this book.

11https://developer.bitcoin.org/examples/testing.html

20 1.7. Basic interaction with a node

prune=1000 Only keep more recent blocks that fit in 1000 MiB. Pruning is not compatible
with txindex and rescan.

mempoolsize=100 Only keep transactions that fit in 100 MiB. Transactions are ordered by
fee rate and if there is not enough space the ones with the lowest fee rate are removed.

We can also include sections like main, test and regtest to provide specific options de-
pending on the network used. Usually, when optioins are not specified under a section they
apply to all sections with the exception of addnode, connect, port, bind, rpcport, rpcbind
and wallet.

A typical minimalistic config for development is:

daemon=1

testnet=1

#regtest=1

server=1

rpcuser=kostas

rpcpassword=toodifficulttoguess

[main]

mempoolsize=300

[test]

mempoolsize=100

[regtest]

mempoolsize=20

Examples of Calls using bitcoin-cli

To get help of all available commands and how to get further help:

$ bitcoin-cli help

To get the current block height:

$ bitcoin-cli getblockcount

1806981

To get the current balance of all addresses:

Chapter 1. How Bitcoin Works 21

$ bitcoin-cli getbalance

1.51815479

To get a new legacy12 address:

$ bitcoin-cli getnewaddress "" legacy

mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS

By default Bitcoin v0.20+ use bech32 (or native segwit) addresses. The example above over-
rides the default. We will examine the different kind of Bitcoin addresses in Chapter 5.

To encrypt the wallet with a passphrase:

$ bitcoin-cli walletencrypt PaSsPhRaSe

wallet encrypted; Bitcoin server stopping, restart to run with encrypted

wallet. The keypool has been flushed and a new HD seed was generated (if

you are using HD). You need to make a new backup.

To unlock an encrypted wallet for 2 minutes to spend funds:

$ bitcoin-cli walletpassphrase PaSsPhRaSe 120

To create a wallet backup:

$ bitcoin-cli backupwallet wallet.backup

To import a backed up wallet:

$ bitcoin-cli importwallet wallet.backup

12The typical P2PKH Addresses starting with 1 on mainnet and m or n on testnet.

22 1.7. Basic interaction with a node

To get the node’s networking info:

$ bitcoin-cli getnetworkinfo

{

"version": 200000,

"subversion": "/Satoshi:0.20.0/",

"protocolversion": 70015,

"localservices": "0000000000000409",

"localservicesnames": [

"NETWORK",

"WITNESS",

"NETWORK_LIMITED"

],

...

}

To get the node’s blockchain info:

$ bitcoin-cli getblockchaininfo

{

"chain": "test",

"blocks": 1887283,

"headers": 1887283,

"Bestblockhash": "0000000000074e...9d44e05b4",

"difficulty": 1420477.254893854,

"mediantime": 1604662239,

"verificationprogress": 0.9999999194957088,

"initialblockdownload": false,

"chainwork": "000000000000...a2762e8",

"size_on_disk": 28640545955,

"pruned": false,

...

}

To get the node’s mining info:

$ bitcoin-cli getmininginfo

{

"blocks": 1887283,

"difficulty": 1420477.254893854,

"networkhashps": 131251268159888.9,

"pooledtx": 9,

"chain": "test",

"warnings": "Warning: unknown new rules activated (versionbit 28)"

}

Chapter 1. How Bitcoin Works 23

To get the node’s wallet info:

$ bitcoin-cli getwalletinfo

{

"walletname": "",

"walletversion": 130000,

"balance": 3.22457944,

"unconfirmed_balance": 0.00000000,

"immature_balance": 0.00000000,

"txcount": 353,

"keypoololdest": 1597237767,

"keypoolsize": 999,

"hdseedid": "df71b88eac9079d73b3e9b3aa088952e487b9ae5",

"unlocked_until": 0,

"paytxfee": 0.00000000,

"private_keys_enabled": true,

"avoid_reuse": false,

"scanning": false

}

To send 0.01 BTC to address mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS without specify-
ing which UTXOs to use13:

$ bitcoin-cli sendtoaddress mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS 0.01

ff8322626c21c5bdfa1d27f75a55a1cb1d3b764bb34063f64b38f0803c370c08

To display all UTXOs with at least 2 confirmations:

$ bitcoin-cli listunspent 2

[

{

"txid": "30d98980c56a139438f0c969ca30d4be2c7f865d098b905362263c5daca2afa7",

"vout": 0,

"address": "mgs9DLttzvWFkZ46YLSNKSZbgSNiMNUsdJ",

"amount": 1.01452015,

"confirmations": 20183,

...

}

...

]

13You can check the transaction online using a Bitcoin testnet block explorer:
https://blockstream.info/testnet/tx/ff8322626c21c5bdfa1d27f75a55a1cb1d3b764bb34063f64b38f0803c370c08

24 1.8. Exercises

To check all the available address labels:

$ bitcoin-cli listlabels

{

"": 1.01483854,

...

}

To check all addresses with a particular label:

$ bitcoin-cli getaddressesbylabel

{

"mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS": {

"purpose": "receive"

},

...

}

To get more information for the status of your node you can use commands like: get-

blockchaininfo, getmempoolinfo, gettxoutsetinfo, getmemoryinfo, getrpcinfo, getmining-

info, getnetworkinfo, getpeerinfo, getdescriptorinfo, getaddressinfo, getwalletinfo.

1.8 Exercises

Exercise 1.1 Prepare a bitcoin environment by installing a Bitcoin node configured
for testnet.

Exercise 1.2 Using bitcoin-cli create a new legacy address.

Exercise 1.3 Use a Bitcoin testnet faucet to get some testnet bitcoins (tBTC) to one of
your addresses.

Exercise 1.4 Ask your classmates or friends for their testnet address and send them
some tBTC using bitcoin-cli.

Exercise 1.5 Use a block explorer to see the status of the transaction that you created
in the previous exercise.

Exercise 1.6 Encrypt your wallet and back it up.

Chapter 1. How Bitcoin Works 25

Exercise 1.7 Go through the rest of the API and get familiar with more commands.

Exercise 1.8 Search for historical data on Bitcoin’s difficulty adjustments and make
sure you understand what you see.

2. P2P Networking in a nutshell

2.1 Introduction 26

2.2 Peer Discovery 27

2.3 Handshaking and synchronisation 27

2.4 Block Propagation and Relay Networks 27

This chapter aims to introduce the very basics of the Bitcoin Peer-to-Peer networking dis-
cussing peer (or node) discovery, blockchain synchronisation and others.

2.1 Introduction

A Bitcoin full node serves several functions to the network.

• Routing Node; propagates transactions and blocks

• Full blockchain; also called archival node

• Wallet

• Miner

By default most nodes will have a wallet (irrespectively of its use1) and will be able to
propagate information through the network. By default they are also archival nodes, i.e. they
keep the complete list of all blocks from genesis. However, lately, some nodes opt to prune
the size of the blockchain for storage purposes2. Finally, only a few of those will provide
mining services.

In September 2020 there were around 10170 nodes in the network of which 24% were
using the Tor network3. With regard to mining there were 12 known mining pools4 and
more unknown ones corresponding to the mining nodes using Tor.

1Wallet functionality can be disabled with disablewallet=1 in bitcoin.conf
2This is accomplished by specifying prone=1000 in bitcoin.conf to keep only the latest 1000 MiB of blocks
3https://www.torproject.org/
4https://www.blockchain.com/charts/pools

26

Chapter 2. P2P Networking in a nutshell 27

2.2 Peer Discovery

When a node is run for the first time it needs to discover other peers so that it joins the P2P
network. This is accomplished with several methods:

DNS seeds : A list of (hardcoded) DNS servers that return a random subset of bitcoin node
addresses. It sends a getaddr network message to those peers to get more bitcoin ad-
dresses and so forth. The peers reply with an addr message that contains the addresses.
The node can be configured to use a specific DNS seed overriding the defaults by using
the -dnsseed command-line option.

Seed nodes : A list of (hardcoded) node IP addresses from peers that are believed to be
stable and trustworthy. This is a fallback to DNS seeds. A specific node can be specified
by using the -seednode command-line option.

Node addresses are stored internally so the above discovery methods are only required
at first run. From then on the stored addresses can be used to remain up-to-date with active
nodes in the network.

A list of the connected peers can be acquired with the getpeerinfo command and a node
can connect to specific (trusted) peers with the connect option.

2.3 Handshaking and synchronisation

When a node connects to a new peer it initiates a handshake by sending a version network
message to establish the compatibility between peers. If the receiving peer is compatible it
will send a verack message followed by its own version message.

As previously discussed a getaddr message is send next expecting several addr messages
in return.

Initially, a node that starts for the first time only contains the genesis block and will at-
tempt to synchronise the blockchain from its peers. This initial synchronisation is called
Initial Block Download or IBD. It sends a getblocks message which contain its current best
block as a parameter. The receiving peers reply with an inv (inventory) message that con-
tains a maximum of 500 block hashes after the initiator’s best block. The initiator can then
getdata to request the blocks themselves. The receiver will reply with several block mes-
sages each containing a single block.

2.4 Block Propagation and Relay Networks

The faster a miner receives a new block the faster they can start working on the next block.
Network latency is extremely important and since the P2P network takes some time (at least
for the needs of miner) there are specialized networks to help with block propagation, for
example the Fast Internet Bitcoin Relay Engine (FIBRE)5.

FIBRE does not only help less-connected miners to compete with the bigger mining farms
but more importantly reduces the chance that a solution will be propagated before another
node finds a second solution, thus reducing forks and orphan/stale block rates.

5http://bitcoinfibre.org

28 2.4. Block Propagation and Relay Networks

Note that the sole purpose of a relay network is to help propagate blocks fast between
interested parties (like merchants, miners). They do not replace the P2P network rather
provide additional connectivity between some nodes.

3. Forking in a nutshell

3.1 Software Development Forks 29

3.2 Blockchain Forks 29

3.3 Soft-forks 30

3.4 Hard-forks 32

3.5 Upgrading Bitcoin 34

This chapter will look into the process of upgrading the network. It explains what forking the
blockchain means and what are the consequences.

3.1 Software Development Forks

A software project fork occurs when some developers take a copy of the project and develop
it independently of the original. This is not just another development branch, this is a diver-

gence of direction; effectively we now have two separate projects and the community splits
accordingly.

Project forking is an important aspect of open source development allowing different
opinions and roadmaps to become a reality. Some notable examples are:

• Linux Mint from Ubuntu (and Ubuntu from Debian)

• MariaDB from MySQL

• PostgreSQL fron Ingres

• OpenSSH from OSSH

• Inkscape from Sodipodi (and Sodipodi from Gill)

• Plex from XBMC

• And many many more.

3.2 Blockchain Forks

A blockchain fork occurs when different peers on the network run code that implements in-
compatible rules. This can happen because of a software project fork when some developers
take a copy of a blockchain project and develop it independently of the original but it could
also happen due to a bug in a simple upgrade.

29

30 3.3. Soft-forks

If the rules implemented change to a degree that the messages are not compatible with
the original rules then some peers will start rejecting some of the messages with the possi-
bility that the peer to peer network is effectively split into two networks, depending on the
kind of change that occurred; i.e. the blockchain will fork and different peers will add blocks
to different blockchains.

Since running new code might result in a network (aka chain) fork the only way to update
Bitcoin software to change protocol features is by forking.

Temporary branching on the blockchain is relatively common and it is part of the
Nakamoto consensus. Forking refers to compatibility breaking changes between peers.

Forks can occur when nodes on the network run different versions of the software. This is
the case when the Bitcoin software is being upgraded, e.g. from core v0.11.2 to core v0.12.0.
This is a scheduled fork and if all peers agree on the change and upgrade the software in a
timely manner there will be no issues.

Alternatively, competing versions might run, e.g. core v0.12.0 and classic v0.12.0. The
two groups will have different roadmaps on where they wish Bitcoin to go and can compete
to gain the majority of the hashing power in order for their blockchain to prevail1.

We can have intentional forks due to software upgrades or alternative implementations
and unintentional forks due to incompatibilities caused by bugs.

There are two different types of blockchain forking:

Soft-forks ; blocks that would be valid (to old nodes) are now invalid

Hard-forks ; blocks that would be invalid (to old nodes) are now valid

3.3 Soft-forks

Blocks that would be valid are now invalid; thus new blocks created are a subset of the
possible blocks that the old rule-set would allow. Both old and new nodes will accept new
blocks. However, blocks created by old nodes will be accepted only by old nodes.

In theory, even 51% of the hashrate would be enough for the new chain since it will
consistently (over a period) have the longer chain. Since the longer chain consists of new
blocks which are valid by both old and new nodes, the old nodes will switch to the chain
consisting new node blocks; thus the blockchain itself remains compatible between all the
nodes.

Soft-forks are forward compatible; valid inputs of the new version are also valid by the
old version. They do not force old nodes to upgrade or else consider them out of consensus.

For a step by step example of a soft-fork and how new blocks are added on top see fig-
ure 3.1.

(i) Initially our example network has only two blocks and all nodes are in sync.

(ii) Then, a soft-fork upgrade occurs where 67% of the network uses the new rules and one
of the new nodes finds a new block. That block is accepted by everyone since new rules
are a subset of the old rules. All the nodes are still in sync.

1Prevail in terms of hashing power. Other than that both networks can co-exist.

Chapter 3. Forking in a nutshell 31

Figure 3.1: A soft-fork example.

(iii) Next, a block with the old ruleset is created. It is only accepted by old nodes and thus
we now have a temporary split.

(iv) Next another block with the new rules is found. It is accepted only by the new rules
since the chains’ tips are different. Note that the chains are now of equal size.

(v) Then yet another block with the new rules is found (67% chance!). Again, it is added
on top of the chain with an orange block on top. However, the chain with the new rules
is now the longest chain!

(vi) The old nodes are forced to follow the longest chain and thus the network is in sync
again.

The actual blockchain will always sync to the longest chain and the above mentioned
percentages have to do with the hashing rate and thus the miners. However, to other stake-
holders like users and merchants a prolonged soft-fork could prove very disruptive.

Specifically, if a merchant is using the old chain for its transactions it is possible that
their transactions are ignored when the node switches to the new nodes’ (longest) chain. In
between, that would lead to fake confirmations and potential double spends.

Typically, if hashrate is obviously leaning to one side the rest of the network nodes will
follow; miners to stop losing rewards and merchants/users to have move consistent transac-
tions.

Note that if the new nodes have 49% or less they will not be able to sustain the longest
chain and two incompatible chains will be created that cannot re-sync, leading to a temporary

32 3.4. Hard-forks

hard-fork.

Whenever a longer alternative chain appears nodes have to accept it and substitute
their latest blocks up until a common parent is found with the new chain. When that
happers we say that a re-organization or reorg occured.

3.4 Hard-forks

Blocks that would be invalid are now valid; thus new blocks created are a superset of the
possible blocks that the old rule-set would allow. Neither old or new nodes will accept
blocks created from the others.

Irrespective of the hashing rate this will result in a chain split that will not be able to be
resolved unless one of the sides changes software.

For a step by step example of a hard-fork and how new blocks are added on top see
figure 3.2.

Figure 3.2: A hard-fork example.

(i) Initially our example network has only two blocks and all nodes are in sync.

(ii) Then, a soft-fork upgrade occurs where 67% of the network uses the new rules and one
of the new nodes finds a new block. The new block is accepted only by the nodes with
the new rules and thus we have a split.

(iii) Next a block is found based on the old rules which is accepted only by the nodes run-
ning the old rules.

(iv) Finally, another block is found by the nodes running the new rules which goes on the
respective chain. The old nodes will never accept the incompatible blocks even from a
longer chain. The split is permanent.

Chapter 3. Forking in a nutshell 33

If a hard-fork occurs the network is effectively split in two. The mining hashrate is split
in two as well as the merchants and users. If one side does not change their software a hard-
fork can permanently split the community in two, effectively having two separate coins from
that point onwards.

The same amount of bitcoins will exist in both chains and users will be able to access
both. Miners, users and merchants have to choose which side to support and in some cases
merchants/users can choose to support both; one of the coins will probably termed an altcoin
and supported as such.

All transactions after the split are in danger of being rolled back (e.g. allow some users
to double-spend) if the fork resolves.

A chain fork also has potential replay attacks; signed transaction in one chain to be re-
layed on the other chain. For example, a merchant that gets some bitcoins for a product
replays the transaction on the other chain to get the coins of the other chain as well.

Hard-fork first example

In June 2010 Bitcoin core v0.2.10 introduced a change to the protocol that was not forward
compatible. The version messages exchanged by nodes at connection time have changed
format and included checksum values.

Since this would lead to a hard-fork ample time was given for all miners, users and
merchants to upgrade before the activation of the new feature.

The new feature was activated in February 2012 and it happened without any incident.

Hard-fork second example

In March 2013, Bitcoin core v0.8 switched its database for storing information about blocks
and transactions from BerkeleyDB to LevelDB because it was more efficient. However, with
the upgrade came an unexpected bug that caused incompatibility between nodes running
BerkeleyDB and the new ones running LevelDB.

The bug was that BerkeleyDB had a limit on effectively how many changes it can make to
the database while LevelDB did not. The limit was reached and old nodes rejected the block
that caused it while new nodes accepted it; blocks that would be invalid where now valid.

The fork was detected quickly by IRC users reporting conflicting block heights on their
nodes. The new chain had the majority of the hash rate and thus the old nodes were left
behind with a possibility of finding and notifying them being slim.

Major miners were easier to find however and it was quickly agreed that they switch back
to v0.7 so that the majority of the hashrate was that of the old nodes. This way thousands of
users being on old nodes would not need to upgrade their clients and that would minimize
disruption.

Indeed, since it was communicated to most miners that a bug caused a split and, more
importantly, since the majority of the hashrate was in the old chain the rest of the miners
had strong incentive to revert to the old version as well to be part of the valid chain (and
thus get rewards).

There was no political, economic or other incentive to continue with the new chain and
thus it died away. Some miners lost their rewards as well as a merchant via a successful
double spend but other than that the incident was painless.

34 3.5. Upgrading Bitcoin

3.5 Upgrading Bitcoin

During the first years of its existence upgrading Bitcoin involved notifying node owners
to upgrade via forums and mailing lists. The community was smaller and more in-line
regarding the future of Bitcoin.

As the network grew however coordinating via forums could not scale well so new mech-
anisms were added to improve the process.

New proposals came up on how miners can signal agreement for particular upgrades.
If there was enough consensus the upgrade would be activated. Two such proposals were
BIP-342 (now obsolete) and BIP-93 that is currently used.

BIP-34

The block version was traditionally 1. The BIP suggested that when miners want to support
a proposal they would increase the block version to signal that to others and specify in the
coinbase input the block height when the upgrade will be activated given it has enough
support. The (convention) rules were as follows:

To add a new feature a block version number (e.g. 2) would be associated with it as well
as a block height for activation.

• If 750 out 1000 blocks4 have block version of 2 then reject invalid v2 blocks (if no block
height included)

• If 950 out of 1000 blocks5 have block version of 2 then reject all block version 1 blocks

The BIPs activated with this signaling process were, BIP-32 (v2), BIP-65 (v3) and BIP-66
(v4).

BIP-9

BIP-34 allowed only one upgrade at a time and no easy way to reject a proposal to replace it
with another. BIP-9 solves these issues with the following (convention) rules:

• The remaining 29 bits of the block version field can be used to signal for 29 proposals,
potentially in parallel

• A structure is defined with:

– name

– bit, the block version bit used to signal for this change

– starttime, time (Median Time-Past, BIP-1136) when signalling can begin

– timeout, time (MTP) when change is considered rejected if not activated by then

• Threshold for activation is 95%
2https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
3https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
4510 out of 1000 for testnet
5750 out of 1000 for testnet
6https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki

Chapter 3. Forking in a nutshell 35

• Signalling is based on the whole 2016 blocks of a re-target interval

• If threshold is passed activation occurs one re-target interval later

BIP-9 was used to activate proposal “csv” that contained BIPs 66, 112 and 113 and pro-
posal “segwit” that included BIPs 141, 143 and 147. There is a list7 of all BIP-9 deployments
(both past and current ones).

The Bitcoin community opted to do only soft-fork upgrades to minimize potential dis-
uption to the network. To that end extra precautions and effort is required in the
upgrade design and implementation. A notable example is the Segregated Witness or
segwit upgrade. The latter would be easier to implement as a hard-fork but since those
are contentious they had to come up with a design that allowed the upgrade to happen
as a soft-fork.

The segwit upgrade was quite contentious and there was a lot of political agendas and
drama involved. A good walkthrough was published in Bitcoin Magazine8 and several other
online resources.

7BIP-9 was used to activate proposal “csv” that contained BIPs 66, 112 and 113. There is a list of all BIP-9
deployments (both past and current ones).

8https://bitcoinmagazine.com/articles/long-road-segwit-how-bitcoins-biggest-protocol-upgrade-became-
reality

4. Technical Fundamentals

4.1 Bytes, Hex, Endianness and Encodings 36

4.2 Cryptographic Hash Functions 38

4.3 Asymmetric Cryptography 39

This chapter aims to provide some basic technical computer science background required for
later material. It is of particular importance if you want to delve deeper and read the code
of the Python bitcoin-utils library1. It aims to concisely explain some fundamental concepts
by providing examples.

4.1 Bytes, Hex, Endianness and Encodings

Computers internally use the binary numeral system that consists of only two symbols: 0
and 1. A binary digit, or bit, is the basic unit of binary. Eventually, everything is represented
in bits.

For ease of processing, bits are aggregated into bytes. Each byte consists of 8 bits. Thus,
01000001 represents a single byte. It is difficult (and much longer) to use/type binary,
thus we typically use the hexadecimal numeral system or hex to represent bytes in a more
human-friendly way. Hex has 16 possible symbols from 0 to F (0-9 and A-F). To represent 16
symbols we need exactly 4 bits (0 is 0000, 1 is 0001, . . . , F is 1111) and thus each byte can be
represented by two hex digits. For example, 01000001 is equivalent to 41 in hexadecimal
(0100 is hex number 4 and 0001 is hex number 1). You can experiment with conversions
between binary, hexadecimal and decimal using various online tools2.

1 >>> format(0, ’04b’) # converts decimal 0 to binary with 0 padding for 4 bits

2 ’0000’

3 >>> format(15, ’04b’) # same for decimal 15

4 ’1111’

5 >>> format(15, ’X’) # convert decimal 15 to hex string

6 ’F’

7 >>> format(0x41, ’08b’) # converts hex number 41 to binary with 0 padding for

8 # 8 bits

9 ’01000001’

10 >>> 0x41 # converts hex number 41 to decimal

11 65

1https://github.com/karask/python-bitcoin-utils
2https://www.rapidtables.com/convert/number/binary-to-hex.html

36

Chapter 4. Technical Fundamentals 37

12 >>> 0x41 == ’41’ # compares hex number 41 with string 41

13 False

14 >>> b’41’ == ’41’ # compares byte literal 41 with string 41

15 False

Listing 4.1: Python examples

One byte can represent up to 28 = 256 numbers (0-255). Several bytes are needed to
represent larger numbers. For example, decimal number 1000 is 1111101000 in binary
which requires 10 bits. Computers operate at the byte level and thus 2 bytes (or 16 bits) will
be required to represent this number; binary: 0000001111101000 and hex: 03E8. Note
that the byte ordering is important and it is called endianness3. The above example uses big-
endian ordering, where the most significant byte comes first and the least significant byte
comes last. This is the same way we order numbers in languages (in left-to-right scripts4).
In little-endian the same number would be represented as 1110100000000011 and E803.

1 >>> import binascii

2 >>> format(0x03E8, ’016b’) # convert hex number 03E8 to binary digits

3 # with 0 padding for 16 bits

4 ’0000001111101000’

5 >>> format(int(’03E8’, 16), ’016b’) # convert hex string ’03E8’ to binary digits

6 # as above

7 ’0000001111101000’

8 >>> binascii.unhexlify(’03E8’) # convert hex string 03E8 to binary

9 b’\x03\xe8’

10 >>> b’\x03\xe8’[::-1] # reverse bytes to change endianness

11 b’\xe8\x03’

Listing 4.2: Python examples

Internally Bitcoin uses little-endian byte order as it improves speed (most comput-
ers use little-endian byte ordering internally). Most hash function libraries (see next
section) create hashes using big-endian and Bitcoin transmits those in that ordering.
However, when hashes are displayed Bitcoin uses little-endian order! The latter might
be because it treats them as integers to compare them faster.

As we already mentioned computers only know about binary. To display these numbers
for human consumption we need to convert them into characters (i.e. text). In order to
accomplish that we need character encodings that provide mappings between bit sequences
and characters. Examples of such encodings are ASCII and UTF-8. UTF-8 is widely used
nowadays and it provides an 8-bit mapping between (binary) numbers and characters. For
example, character A is mapped to 01000001. You can experiment with such encodings
with online tools5.

1 >>> import binasci

2 >>> ’A’ == b’A’ # A character is not a byte

3https://en.wikipedia.org/wiki/Endianness
4https://en.wikipedia.org/wiki/Writing_system#Directionality
5https://www.rapidtables.com/convert/number/ascii-to-binary.html

38 4.2. Cryptographic Hash Functions

3 False

4 >>> b’41’ == ’41’.encode(’utf-8’) # Unicode string literals are stored internally

5 # in binary for efficiency

6 True

7 >>> ’ε’.encode() # UTF-8 (the default) is a variable lenth

8 # encoding - ’ε’ is stored as two bytes

9 b’\xce\xb5’

10 >>> ’41’.encode() # converts UTF-8 string literal 41 to binary -

11 # ’4’ and ’1’ occupy 1 byte each

12 b’41’

13 >>> binascii.unhexlify(’41’) # converts string hex value 41 to binary -

14 # the UTF-8 value for ’A’ is 0x41

15 b’A’

16 >>> b’A’ == b’\x41’ # the bytes from 0x01 to 0x7f are confusingly

17 # specified with UTF-8 characters

18 True

19 >>> b’41’ == b’\x34\x31’ # similarly for binary characters b’4’ and

20 # b’1’ or b’41’

21 True

22 >>> b’A’.decode(’utf-8’) # convert binary to characters for displaying

23 # according to UTF-8 encoding

24 ’A’

25 >>> binascii.hexlify(b’A’) # convert binary value to hex value (expressed

26 # in binary)

27 b’41’

28 >>> b’41’.decode() # decode to get as string (UTF-8 is the default)

29 ’41’

30 >>> b’\xce\xb5’.decode() # convert from bytes to UTF-8 characters (0xce

31 # 0xb5 maps to ’ε’)

32 ’ε’

Listing 4.3: Python examples

4.2 Cryptographic Hash Functions

A cryptographic hash function is a hash function that is suitable for cryptography. It is an
one-way function that takes an arbitrary block of data and returns a fixed-size bit array, that
is called the hash value or digest or digital fingerprint or just hash. It has the following
properties:

• it is deterministic, i.e. the same block of data always returns the same hash

• it is quick to compute

• it is an one-way function; given the hash one cannot derive the original value unless
they brute-force all possible values (which is close to impossible for large data sets)

• even a trivial change to the original data will change the resulting hash completely (it
will appear uncorrelated to the previous hash)

• it is collision resistant; it is computational infeasible to find two different blocks of data
with the same hash value

Chapter 4. Technical Fundamentals 39

1 >>> import hashlib

2 >>> import binascii

3 >>> b1 = ’Bitcoin’.encode(’utf-8’) # convert string to bytes according to UTF-8

4 # encoding

5 >>> b1

6 b’Bitcoin’

7 >>> h1 = hashlib.sha256(b1).digest() # calculate the hash (or digest) of b1

8 >>> h1

9 b’\xb4\x05m\xf6i\x1f\x8d\xc7.V0-\xda\xd3E\xd6_\xea\xd3\xea\xd9)\x96\t\xa8&\xe24N’ \

10 b’\xb6:\xa4’

11 >>> binascii.hexlify(h1).decode() # converts bytes to hex (expressed in binary)

12 # and then to string to display

13 ’b4056df6691f8dc72e56302ddad345d65fead3ead9299609a826e2344eb63aa4’

14 >>> b2 = ’bitcoin’.encode(’utf-8’) # convert string to bytes according to UTF-8

15 #encoding

16 >>> b2

17 b’bitcoin’

18 >>> h2 = hashlib.sha256(b2).digest() # calculate the hash (or digest) of b2

19 >>> h2

20 b’k\x88\xc0\x87$z\xa2\xf0~\xe1\xc5\x95k\x8e\x1a\x9fL\x7f\x89*p\xe3$\xf1\xbb=\x16’ \

21 b’\x1e\x05\xca\x10{’

22 >>> binascii.hexlify(h2).decode() # converts bytes to hex (expressed in binary)

23 # and then to string to display

24 ’6b88c087247aa2f07ee1c5956b8e1a9f4c7f892a70e324f1bb3d161e05ca107b’

Listing 4.4: Python examples

Cryptographic hash functions are very important in information security systems. They
are used in digital signatures, message authentication codes and as ordinary (but more se-
cure) hash functions to index data in hash tables, to uniquely identify files (bittorrent, IPFS),
as checksums to detect accidental (or not) corruption of data, etc.

Bitcoin is using two hashing functions: SHA-256 and RIPEMD-160 which create a hash
value of 256 and 160 bits respectively (or 32 and 20 bytes or 64 and 40 hex characters).

4.3 Asymmetric Cryptography

Asymmetric cryptography or public key cryptography6 is a cryptographic system that uses
pairs of keys with a specific mathematical relation. In each pair there is a private key that
should remain private and a public key that can be freely shared. Between two participants
this allows:

• Encryption: Alice can encrypt a message with Bob’s public key and send it to Bob.
Only the owner of the corresponding private key can decrypt and view the message.

• Authentication / Digital Signatures: Alice can sign a message using her private key
and send it to Bob. Anyone can view the contents and verify the signature using Alice’s
public key, thus ensuring that it was indeed Alice that send the message.

6https://en.wikipedia.org/wiki/Public-key_cryptography

40 4.3. Asymmetric Cryptography

• Integrity: While anyone can view the contents of a signed message no one can modify
it since the signature will be invalidated.

• Non-Repudiation: Signing or encrypting a message cannot be refuted by the author
once the message has been sent, assuming the private key is secure.

Bitcoin does not use encryption at all. Digital signatures are used to sign transactions
in order to authenticate that you are the owner of the coins you wish to transfer. In-
tegrity and non-repudiation apply as well to transaction signing.

There are several different algorithms for asymmetric cryptography, like RSA and ECDSA.
ECDSA, which Bitcoin uses, has the property that a private key can be used to calculate the
corresponding public key.

5. Keys and Addresses

5.1 Private Keys 41

5.2 Public Keys 43

5.3 Addresses 45

5.4 Wallets 49

5.5 More examples 50

5.6 Exercises 51

In this chapter we introduce Bitcoin’s keys and addresses and describe how they are created
and the rationale behind that process. We then go through different wallet types and how
these keys can be used in practive.

5.1 Private Keys

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA)1 to create its private-
public key pairs. The exact elliptic curve parameters used in Bitcoin are defined by secp256k12.

n ECDSA a private key can be used to calculate the corresponding public key, and since
a Bitcoin address is calculated from the public key, if you hold a private key securely
you effectively have everything.

The ECDSA private key in Bitcoin is just a very large random number consisting of 256
bits or 32 bytes or 64 hexadecimal digits. Nearly all 256-bit numbers can be valid private
keys as specified in secp256k1.

To display a private key (the bytes) we need to format it appropriately. It could be dis-
played in hex but the most common format used to display a private key is Wallet Import For-
mat (WIF) or a WIF-compressed (WIFC); both are a Base58Check3 encoding of the ECDSA
key; Base584 with version prefix to specify the network and a 32-bit checksum.

A WIF-compressed adds an extra byte (0x01) at the end of the ECDSA key before the
Base58Check encoding. It specifies whether the public key (and by extension addresses)
will be compressed or not. By default most wallets use WIFC format in order to reduce the
size of the blockchain5.

1https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
2https://en.bitcoin.it/wiki/Secp256k1
3https://en.bitcoin.it/wiki/Base58Check_encoding
4https://en.wikipedia.org/wiki/Base58
5Note that the segregated witness upgrade allows only compressed public keys.

41

42 5.1. Private Keys

The WIFC will be 33 bytes long. The compression is happening when creating the
public key which will be 33 bytes instead of 65 bytes.

The following is pseudocode of the process that converts the private key to WIF.

key_bytes = (32 bytes number) [+ 0x01 i f compressed]
network_prefix = (1 byte vers ion number)
data = network_prefix + key_bytes
data_hash = SHA−256(SHA−256(data))
checksum = (f i r s t 4 bytes of data_hash)
wif = Base58CheckEncode (data + checksum)

Note that all the above functions operate on big-endian bytes. The network prefix spec-
ifies the Bitcoin network that this private key would be used6. The Base58 WIF prefix de-
pends on the network prefix and whether it is compressed or not, as shown in table 5.1.

Mainnet Testnet
ECDSA HEX 64 digits number 64 digits number
ECDSA HEX-C Above number + “01” Above number + “01”

Network Prefix Base58 Prefix Network Prefix Base58 Prefix
WIF 128 | 0x80 5 239 | 0xef 9
WIF-C 128 | 0x80 K or L 239 | 0xef c

Table 5.1: Private keys network prefixes

As an example let us use the following hexadecimal number7:

0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b

You can now consult table 5.2 for its compressed version and the corresponding WIF and
WIF-C.

HEX 0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b
HEX-C 0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b01
WIF 91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p
WIF-C cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo

Table 5.2: Private key network prefix examples

6The same private key can be of course used in both mainnet and testnet or even other compatible cryptocur-
rencies by using the appropriate prefix when generatig the WIF.

7In decimal: 6273083586486421860511804118443655246000698298582245067579657211. It is important
to understand that a random number with enough entropy is required for your private key to be secure. A
number representing your date of birth or your name’s characters, etc. will be found immediately by software
and you will lose your funds.

Chapter 5. Keys and Addresses 43

Let’s use the bitcoin-utils library to construct the WIF and WIFC.

1 >>> from bitcoinutils.setup import setup

2 >>> from bitcoinutils.keys import PrivateKey

3 >>> setup(’testnet’) # use testnet parameters

4 ’testnet’

5 >>> secret_exponent = 0x0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b

6 >>> priv = PrivateKey(secret_exponent = secret_exponent)

7 >>> priv.to_wif(compressed=False)

8 ’91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p’

9 >>> priv.to_wif(compressed=True) # the default

10 ’cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo’

Listing 5.1: Example of creating WIF and WIFC using Python

The actual Python implementation of the functionality demonstrated above can be found
at to_wif()8 on github. You can also check how we can get to the private key bytes from
WIF in _from_wif()9. Feel free to consult the rest of the code and/or the examples in the
repository.

Another tool that you can use from the command line is BX10. It has extensive capabilities
including creating WIFs.

$./bx base58check-encode --version 239 \\

0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b

91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p

$./bx base58check-encode --version 239 \\

0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b01

cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo

5.2 Public Keys

In ECDSA a public key is generated from the private key. Elliptic curves operate over finite
fields11 and thus all points on the curve are limited to integer coordinates; a finite field is
typically accomplished by applying modulo p, where p is a prime number. The specific
curve that Bitcoin uses (secp256k1) is y2 = x3 + 7 (see figure 5.112). Then the public key
P is generated by multiplying, using elliptic curve multiplication, the private key k with a
special constant G called the generator point13: P = k ∗G. Elliptic curve multiplication of an
integer with a point results in another point in the curve, which is the public key.

8https://github.com/karask/python-bitcoin-utils/blob/42875a3fa90d267f2e5e17e017cb28fc8a90c5a8/
bitcoinutils/keys.py\#L169-L193

9https://github.com/karask/python-bitcoin-utils/blob/42875a3fa90d267f2e5e17e017cb28fc8a90c5a8/
bitcoinutils/keys.py\#L129-L166

10https://github.com/libbitcoin/libbitcoin-explorer/wiki/Download-BX
11https://en.wikipedia.org/wiki/Finite_field
12From https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
13This is a special point in the elliptic curve that is pre-defined in secp256k1.

44 5.2. Public Keys

Figure 5.1: The secp256k1 ECDSA curve.

The public key is a point P in the elliptic curve. P = (x,y), where both x and y are 32-byte
integers. Thus a public key can be expressed with 64 bytes. In Bitcoin, we encode a public
key by a prefix that specifies some extra information.

Remember that we can represent a public key in two forms, compressed and uncom-
pressed. This is where we can reduce the size of the blockchain by using the com-
pressed form.

An encoded uncompressed public key is 65 bytes long since it has the two points (32
bytes each) concatenated and a prefix of 0x04 to specify an uncompressed public key.

Since the curve is mirrored in the x axis the y coordinate can only take 2 values (posi-
tive/negative) for a specific x. Thus, an encoded compressed public key is only 33 bytes long
and has only the x coordinate with a prefix of 0x02 (when y is positive/even) or 0x03 (when
y is negative/odd).

Let’s use the bitcoin-utils library to construct a private key object from a WIF and use
that to create a public key object to show its two forms.

1 >>> from bitcoinutils.setup import setup

2 >>> from bitcoinutils.keys import PrivateKey, PublicKey

3 >>> setup(’testnet’)

4 ’testnet’

5 >>> priv = PrivateKey.from_wif(’91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p’)

6 >>> pub = priv.get_public_key()

7 >>> pub.to_hex() # default is compressed form

8 ’02c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7’

9 >>> pub.to_hex(compressed=False)

10 ’04c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7\\

Chapter 5. Keys and Addresses 45

11 addc4cbba6656a4be4bc6933a6af712b897a543a09c4b899e5f7b943d38108a8’

Listing 5.2: Example of getting compressed and uncompressed public keys using Python

You can see in lines 10-11 in listing 5.2 that the uncompressed public key has the same x
coordinate as the compressed one plus the y coordinate.

To create the PublicKey from the PrivateKey object we make use14 of the python ecdsa
library as can be seen in get_public_key() on github15. The PublicKey object holds the x
and y coordinates and can convert accordingly. It checks if y is even or odd and prefixes it
with 0x02 and 0x03 respectively. You can check the code of to_hex() on github16.

We can get the public keys from the private keys using BX again.

$./bx wif-to-public 91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p

04c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7\\

addc4cbba6656a4be4bc6933a6af712b897a543a09c4b899e5f7b943d38108a8

$./bx wif-to-public cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo

02c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7

5.3 Addresses

Addresses can be shared to anyone who wants to sent you money. They are typically gener-
ated from the public key, consist of a sequence of characters and digits and start with 1 for
the mainnet and with m or n for testnet17.

An address typically represents the owner of a private/public pair but it can also repre-
sent a more complex script as we will see in a future chapter.

Notice that we do not share the public key as one would expect in public key cryptogra-
phy but rather the address, which derives from the public key. Some benefits are:

• shorter addresses

• quantum computer resistance

Until one spends from an address the public key will never appear on the blockchain
and thus to potential attackers and since the address is hashed from the public key not
even quantum computers could, arguably, brute force to get the public key and then
the private key. Note, however, that even if that is the case the majority of addresses
would be hacked thus destroying trust in (and the value of) the network anyway!

14It is always recommended to reuse well-tested cryptography libraries than implementing your own.
15https://github.com/karask/python-bitcoin-utils/blob/fb0849f81117943563b17f1870a9607d48ca9653/

bitcoinutils/keys.py\#L351-L355
16https://github.com/karask/python-bitcoin-utils/blob/fb0849f81117943563b17f1870a9607d48ca9653/

bitcoinutils/keys.py\#L453-L469
17Or for segwit addresses bc1 and tb1 for mainnet and testnet respectively.

46 5.3. Addresses

Legacy Addresses

An address is really just the hash of the public key, called public key hash (or PKH). That
is how it is represented on the blockchain. The way we format addresses to display them
(starting with 1, m/n, etc.) are just for our convenience. The format that we use is the
Base58Check encoding of the public key hash; Base58 with version prefix to specify the
network and a 32-bit checksum.

The following is pseudocode of the process that converts the public key to public key
hash and then address:

network_prefix = (1 byte vers ion number)
keyHash = RIPEMD−160(SHA−256(publicKey))
data = network_prefix + keyHash
dataHash = SHA−256(SHA−256(data))
checksum = (f i r s t 4 bytes of dataHash)
address = Base58CheckEncode (data + checksum)

Note that all the above functions operate on big-endian bytes. The network prefix speci-
fies the Bitcoin network that this private key would be used. The Base58 WIF prefix depends
on the network prefix and whether it is compressed or not, as shown in table 5.3.

Mainnet Testnet
Network Prefix Base58 Prefix Network Prefix Base58 Prefix

P2PKH 0 | 0x00 1 111 | 0x6f m or n
P2SH 5 | 0x05 3 196 | 0xc4 2

Table 5.3: Addresses network prefixes

P2PKH stands for Pay to Public Key Hash and is the typical legacy address. P2SH stands
for Pay to Script Hash and is the typical legacy script hash address.

Let’s use the bitcoin-utils library to construct some addresses; compressed and uncom-
pressed.

1 >>> from bitcoinutils.setup import setup

2 >>> from bitcoinutils.keys import PrivateKey, PublicKey, P2pkhAddress

3 >>> setup(’testnet’)

4 ’testnet’

5 >>> priv = PrivateKey.from_wif(’91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p’)

6 >>> pub = priv.get_public_key()

7 >>> addr1 = pub.get_address()

8 >>> addr2 = pub.get_address(compressed=False)

9 >>> addr1.to_string()

10 ’n42m3hGC52QTChUbXq3QAPVU6nWkG9xuWj’

11 >>> addr2.to_string()

12 ’n2JjAgC6UqFf8DvsZXhWcyNzm8w8YKj7MQ’

Listing 5.3: Example of displaying the addresses of compressed and uncompressed public
keys using Python

Chapter 5. Keys and Addresses 47

Since the hash of a compressed public key would be different from the hash of an
uncompressed public key we have two distinct legacy addresses.

The actual python implepmentation of converting a public key hash (the application of
SHA256 and then RIPEMD160, also called HASH160) can be found at _to_hash160() on
github18. For code to convert from public key hash to address consult to_string()19. Feel
free to consult the rest of the code and/or the examples in the repository for segwit address
creation, etc.

Native Segregated Witness Addresses

Segregated Witness (segwit) is a consensus change that was activated in August 2017 and
introduces an update on how transactions are constructed. It introduces two new trans-
action types, Pay-to-Witness-Public-Key-Hash (P2WPKH) and Pay-to-Witness-Script-Hash
(P2WSH). These new transaction types are going to be explained in section 6.5.

Native segwit addresses use a different format to display the public key hash called
Bech32 encoding20 (instead of Base58check). For code implementation look at the python
reference implementation21 by Pieter Wuille.

The network prefix specifies the Bitcoin network that this address would be used. Specif-
ically, mainnet addresses start with bc1, testnet with tb1 and regtest22 with bcrt1. The size
of the address differentiates between public key hashes and script hashes; P2WPKH are 20
bytes long and P2WSH are 32 bytes long.

Let’s use the bitcoin-utils library to construct a segwit address.

1 >>> from bitcoinutils.setup import setup

2 >>> from bitcoinutils.keys import PrivateKey, PublicKey, P2wpkhAddress

3 >>> setup(’testnet’)

4 ’testnet’

5 >>> priv = PrivateKey.from_wif(’91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p’)

6 >>> pub = priv.get_public_key()

7 >>> addr = pub.get_segwit_address()

8 >>> addr.to_string()

9 ’tb1q7m6ak6k050sxzxjjekhey73k0f3rqnxsqa08k2’

Listing 5.4: Example of displaying a segwit address from a public key using Python

Nested Segregated Witness Addresses

When segwit was introduced a lot of wallets did not support the new bech32 addresses so
users could not use those to send funds to segwit addresses. To remedy that, nested segwit
addresses could be used.

18https://github.com/karask/python-bitcoin-utils/blob/52b7d906f2db8ec4ed4945a04b7e4da2d1db369c/
bitcoinutils/keys.py\#L589-L597

19https://github.com/karask/python-bitcoin-utils/blob/52b7d906f2db8ec4ed4945a04b7e4da2d1db369c/
bitcoinutils/keys.py\#L802-L824

20https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
21https://github.com/karask/python-bitcoin-utils/blob/52b7d906f2db8ec4ed4945a04b7e4da2d1db369c/

bitcoinutils/bech32.py
22Legacy addresses use the same prefix as testnet.

48 5.3. Addresses

Effectively you could nest or wrap a segwit address into a P2SH address. As already
mentioned P2SH addresses can be created from arbitrary scripts and thus could also include
a witness script. Again, P2SH and segwit are outside our scope for now and will be explained
in more detail in section 6.5.

After the segwit upgrade one needs to choose the type of address to create (e.g. with
getnewaddress. The supported types where legacy, p2sh-segwit and bech32. The
default, starting from version 0.16.0, is nested addresses (p2sh-segwit).

Vanity Addresses

These are normal addresses that contain a specific string. They are calculated randomly by
creating random private keys and then check if the corresponding address starts with that
string, e.g. 1KK.

1 import random

2 from bitcoinutils.setup import setup

3 from bitcoinutils.keys import PrivateKey

4
5 setup(’mainnet’)

6
7 vanity_string = ’1KK’

8 found = False

9 attempts = 0

10
11 while(not found):

12 p = PrivateKey(secret_exponent = random.getrandbits(256))

13 a = p.get_public_key().get_address()

14 print(’.’, end=’’, flush=True)

15 attempts += 1

16 if(a.to_string().startswith(vanity_string)):

17 found = True

18
19 print("\nAttempts: {}".format(attempts))

20 print("Address: {}".format(a.to_string()))

21 print("Secret Key: {}".format(p.to_wif()))

Listing 5.5: Example of creating a vanity address using Python

You will notice that it takes some time even for a short string. Legacy addresses always
start with 1 so we can disregard that. Since addresses use base58 each character will take an
average of 58 attempts to be found. The next character an addition 58 attempts (thus 58∗58).
We can generalize with 58n where n is the number of characters the vanity address should
start with.

There are efficient implementations for calculating vanity addresses in C, Go, Rust or
other compiled system languages that will calculate much faster than our simple example
above, but still to create a vanity address that starts with 1Kostas will require 38,068,692,544
attempts (586). That will take considerable time regardless of the efficiency of the program
or the hardware used.

In practice, these large vanity addresses are created via vanity address pools. Such pools
have specialized hardware (i.e. mining hardware) that can create vanity addresses fast, albeit

Chapter 5. Keys and Addresses 49

for a fee. However, how can they send you your private key that corresponds to the vanity
address without them knowing it?

Vanity Address Pools

Vanity address pools take advantage of an elliptic curve arithmetics property in which the
public key of the sum of two public keys corresponds to the private key of the sum of the
corresponding public keys. For example consider Alice having the key pair a-A and Bob the
key pair b-B, then:

A+B will produce the public key of the a+b private key.

Consider that Alice wants to use a pool operated by Bob to get a vanity address. Figure 5.2
illustrates the process to securely get to the private key that corresponds to the vanity ad-
dress.

Figure 5.2: Example of how a vanity address pool securely shares the private key to a user.

• First Alice creates a key pair and sends the public key A to Bob.

• Bob creates a key pair and adds the new public key B1 to Alice’s key. Then uses the
resulting public key to generate an address. If this address does not match the vanity
string required by Alice, it repeats the process by creating another key pair, and so on.
When a match is found the respective private key, e.g. b9, is send to Alice.

• Now Alice, and only Alice, can construct a private key that corresponds to the vanity
address by adding it to her private key.

5.4 Wallets

A wallet is software that allows us to manage the private and public keys as well as our
Bitcoin addresses. They usually have functionality to send bitcoins, check balances, create
contact lists and other. Usually a key (i.e. address) is used only once. Depending on how the
private keys are handled there are two types of wallets:

50 5.5. More examples

Non-deterministic All the private keys on the wallet are just randomly generated. Several
private keys are pre-generated and new keys are created if needed. If you backup your
wallet and then create new keys, you will need to backup your wallet again.

Deterministic A seed is used to create a master private key, which can be used to create all
other private keys (thus public keys and addresses as well). If you backup your seed
you are safe no matter how many keys you use since all can be generated from the seed.

Nowadays, most wallets are Hierarchical Deterministic (HD) since they offer more flexi-
bility, easier backups and enchanced security in certain use cases. HD wallets are described
in detail in Bitcoin Improvement Proposals (BIPs) 3223, 4324 and 4425.

5.5 More examples

This section will provide more examples of how to create and use keys and addresses using
the bitcoin-utils Python library.

Create a P2SH-P2WPKH address

In this example we will create and display a P2SH address that wraps a P2WPKH script. For
more details on what P2SH and P2WPKH are please refer to sections 6.4 and 6.5 respectively.

1 >>> from bitcoinutils.setup import setup

2 >>> from bitcoinutils.keys import PrivateKey, P2shAddress

3 >>> setup(’testnet’)

4 ’testnet’

5 >>> native_p2wpkh = PrivateKey.from_wif(’cTmyBsxMQ3vyh4J3jCKYn2A’\

6 ... ’u7AhTKvqeYuxxkinsg6Rz3BBPrYKK’).get_public_key().get_segwit_address()

7 >>> print("P2WPKH:", native_p2wpkh.to_string())

8 P2WPKH: tb1qsd4ax84vhem5hxgxus2u232nw9ylgftkz0szf2

9 >>> nested_p2wpkh = P2shAddress.from_script(native_p2wpkh.to_script_pub_key())

10 >>> print("P2SH(P2WPKH):", nested_p2wpkh.to_string())

11 P2SH(P2WPKH): 2N8Z5t3GyPW1hSAEJZqQ1GUkZ9ofoGhgKPf

Sign message with private key and verify

We can use a private key to sign a message. In asymmetric cryptography, the recipient can
then use the corresponding public key to verify that the message was not tampered with.

1 >>> from bitcoinutils.setup import setup

2 >>> from bitcoinutils.keys import P2pkhAddress, PrivateKey, PublicKey

3 >>> setup(’testnet’)

4 ’testnet’

5 >>> priv = PrivateKey.from_wif(’91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p’)

6 >>> address = priv.get_public_key().get_address()

7 >>> message = "The test!"

8 >>> signature = priv.sign_message(message)

23https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
24https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki
25https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Chapter 5. Keys and Addresses 51

9 >>> print("The signature is:", signature)

10 The signature is: INzSwXNYNUkPFImslSFDzvqoib3ZdODcaBSZHvx5e4z1wc64cF1dVMZbDFtZxYBlD\\

11 L/dsjK2iBD5qAf7VcmSdQo=

12 >>> if PublicKey.verify_message(address.to_string(), signature, message):

13 ... print("The signature is valid!")

14 ... else:

15 ... print("The signature is NOT valid!")

16 ...

17 The signature is valid!

Listing 5.6: Use public key to sign a message and them verify

We verify using the address instead of the public key. In ECDSA cryptography the
public key can be reconstructed given the signature and the public key hash (or ad-
dress).

5.6 Exercises

Exercise 5.1 Describe possible outcomes of mistyping a Bitcoin address when trying
to send some bitcoins.

Exercise 5.2 Use a vanity generator, like https://github.com/samr7/vanitygen, to cre-
ate some addresses.

Exercise 5.3 Use Python and the bitcoin-utils library to create a simple vanity gener-
ator.

Exercise 5.4 Write a function that creates a Bitcoin address given a public key. The
only Python libraries that you are allowed to use are hashlib for the hashing algo-
rithms and binascii to convert between hexadecimal and bytes.

Exercise 5.5 Create and display a P2SH address than contain a P2PK script using any
random private key.

6. Scripting 1

6.1 Transactions 52

6.2 Creating P2PKH Transactions 55

6.3 Signatures 61

6.4 Pay to script hash (P2SH) 62

6.5 Segregated Witness (SegWit) 66

6.6 Pay To Multi-signature (P2MS) 73

6.7 Storing Data (OP_RETURN) 73

6.8 Exercises 76

This chapter goes deeper into what constitutes a transaction and how scripting is used to lock
bitcoins and later unlock them to spend them. Several examples are provided on how to create
transactions by calling a node’s API or programmatically.

6.1 Transactions

A transaction sends bitcoins from one address to another and it consists of 1+ inputs and 1+
outputs. The inputs of a transaction consist of outputs of previous transactions. When an
output is spend it can never be used again1. All the bitcoins are transferred elsewhere (to a
recipient, back to yourself as change, etc.). Outputs that are available to be spend are called
Unspent Transaction Outputs (UTXOs) and Bitcoin nodes keep track of the complete UTXO
set.

Each time funds are sent to an address a new output (UTXO) is created. Thus, the
balance of an address depends on all the UTXOs that correspond to it. Bitcoin wal-
lets hide UTXOs to make the whole experience friendlier but some wallets allow you
to specify which UTXOs you want to spend if needed. When we create transactions
programmatically we will deal primarily with UTXOs.

When an output (UTXO) is created we also specify the conditions under which this out-
put can be spend. When you specify an input (the UTXO of a previous transaction) to spend
from you have to prove that you satisfy the conditions set by the UTXO.

The spending conditions and the proof that authorizes transfer are not fixed. A scripting
language is used to define them. When a new output is created a script is placed in the
UTXO called scriptPubKey or more informally locking script.

1Think of cash. If you give a 20 euro note you can never reuse it. You might be given change but it will be
different notes or coins.

52

Chapter 6. Scripting 1 53

When we want to spend that UTXO we create a new transaction with an input that refer-
ences the UTXO that we wish to spend together with an unlocking script or more formally a
scriptSig.

The standard transaction output types supported by the Bitcoin protocol are:

• P2PK (Pay to Public Key - not used anymore)

• P2PKH (Pay to Public Key Hash)

• P2SH (Pay to Script Hash)

• P2WPKH (Pay to Witness Public Key Hash)

• P2WSH (Pay to Witness Script Hash)

• OP_RETURN (allows for storing up to 80 bytes in an output)

• Multisignature (legacy multisignature transactions; now P2SH/P2WSH is used instead)

• Non-standard2 (any other transaction)

The most common transaction output type offering a standard way of transferring bit-
coins around is P2PKH (and P2WPKH), which is effectively “pay to a Bitcoin address”. It
is also possible, and used in the past, to pay directly to a public key with P2PK but that is
not used anymore. Another very important transaction output type is P2SH (and P2WSH)
which allows locking scripts of arbitrary complexity to be used.

To define a locking and unlocking script we make use of a scripting language, simply
called Script3. This relatively simple language consists of several operations each of them
identified by an opcode in hexadecimal. It is a simple stack-based language that uses re-
verse polish notation (e.g. 2 3 +) and does not contain potentially dangerous programming
constructs, like loops; it is a domain-specific language.

P2PKH

Let’s examine the standard transaction of spending a Pay to Public Key Hash. The locking
script (scriptPubKey) that secures the funds in a P2PKH address is the following:

OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY OP_CHECKSIG

As we have seen in section 5.3 the public key hash (PKHash) can be derived from the
Bitcoin address and vice versa. Thus, the above script locks the funds that have been sent in
the address that corresponds to that PKHash.

To spend the funds the owner of the private key that corresponds to that address/PKHash
needs to provide an unlocking script that if we prepend to the locking script the whole script
will evaluate to true. An unlocking script for a P2PKH will look like this:

2Valid Non-standard transactions (containing scripts other than those defined by the standard transaction
output type scripts) are rejected and not relayed by nodes. However, they can be mined if it is arranged with a
miner.

3https://en.bitcoin.it/wiki/Script

54 6.1. Transactions

<Signature> <PublicKey>

Using the private key we provide an ECDSA signature of part of the transaction that
we create (see section 6.3 for more details). We also provide the public key4 for additional
verification.

The validation to spend a UTXO consists of running the script of scriptSig plus script-

PubKey. Both scripts are added in the stack and executed as one script.

Validation of P2PKH Spending

The validation process is described in below in a step by step explanation during script
execution. In each step the script element evaluated will be highlighted (left column) and
the current stack (right column) will also be displayed.

Step 0: Execution starts. Stack is empty.
<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

Step 1: First element is evaluated. It consists of data so it goes into the stack.
<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

<Signature>

Step 2: Second element is also data and goes into the stack.
<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

<Signature> <PublicKey>

Step 3: Next element is an operator that duplicates the top element of the stack.
<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

<Signature> <PublicKey> <PublicKey>

Step 4: Next element is an operator that calcuates the HASH160 of the top stack element.
HASH160 is equivalent to RIPEMD160(SHA256(element)) which is what is needed to
calculate the PKH from a public key.
<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

<Signature> <PublicKey> <PKHash>

Step 5: Next element is data and it is pushed into the stack.
<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

<Signature> <PublicKey> <PKHash>
<PKHash>

Step 6: Next element is an operator that checks if the top two elements of the stack are equal
and fails the script if they are not. Effectively this validates that the public key provided is
indeed the one that corresponds to the PKH (or address) that we are trying to spend.

4As we have already discussed in section 5.3 the public key only appears in the blockchain after we spend
from an address. This is where it appears!

Chapter 6. Scripting 1 55

<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

<Signature> <PublicKey>

Step 7: Next element is an operator that expects two elements from the stack; a signature
and a public key that corresponds to that signature. If the signature is valid it returns true,
otherwise false.
<Signature> <PublicKey> OP_DUP
OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

OP_TRUE

Since the script finished and the only element in the stack is now OP_TRUE5 the node
validated ownership of the UTXO and it is allowed to be spent. Success!

To help clarify how addresses, locking scripts and UTXOs relate please see figure 6.1.
Addresses 1Zed, 1Alice and 1Bob are short for the actual bitcoin addresses of Zed, Alice and
Bob respectively. The diagram emphasises what happens when funds are sent to an address.

Figure 6.1: UTXOs, PKHashes and Addresses relationships.

This section explained how funds residing in UTXOs are locked/unlocked and how scripts
are evaluated for validation. In the next section we will go through several examples of how
we can create simple transactions programmatically.

6.2 Creating P2PKH Transactions

In the previous section we went through transactions, their inputs and outputs and how the
funds are locked. In this post we will go through different ways of creating a simple payment
transaction from the command line and then programmatically.

5Or OP_1, i.e. true. All the operators, or opcodes, and their explanations can be found at
https://en.bitcoin.it/wiki/Script

56 6.2. Creating P2PKH Transactions

Automatically Create a Transaction

We can use Bitcoin’s build-in command sendtoaddress to send bitcoins to an address.

$./bitcoin-cli sendtoaddress mnB6gSoVfUAPu6MhKkAfgsjPfBWmEEmFr3 0.1

18f23a2c3bea97d30e0e09376222b6888943e7dc86df43ff5dfa1ff59c10d8ec

In this example we use the node to send 0.1 bitcoins to a testnet address. Notice that
we do not specify any details on which UTXOs to spend from. The node wallet will decide
which UTXOs it will spend and in which address the change (there is almost always change)
will go; i.e. we do not have any control when sending funds this way.

Notice that the result is the transaction identifier (txid) of this transaction.

Creating a Transaction using a Node

In this example we want to select the inputs explicitly. We need to know the txids and the
output indexes (vout). As an example, we can get those with:

$./bitcoin-cli listunspent 0

[

{

"txid": "b3b7464d3472a9e83da4d5c179620b71724a62eac8bc14ac4543190227183940",

"vout": 0,

"address": "n1jnMQCyt9DHR3BYKzdbmXWM8M5UvH9nMW",

"account": "",

"scriptPubKey": "76a914ddcf9faf5625d6a96790710bbcef98af9a8719e388ac",

"amount": 1.30000000,

"confirmations": 0,

"spendable": true,

"solvable": true

}

...

]

The above command lists all UTXOs (even those with 0 confirmations; i.e. in the mem-
pool). Now we can create a transaction specifying the UTXO that we want to spend.

$./bitcoin-cli createrawtransaction ’’’

> [

> {

> "txid": "b3b7464d3472a9e83da4d5c179620b71724a62eac8bc14ac4543190227183940",

> "vout": 0

> }

>]

Chapter 6. Scripting 1 57

> ’’’ ’’’

> {

> "mqazutWCSnuYqEpLBznke2ooGimyCtwCh8": 0.2

> }’’’

0100000001403918...efbe09488ac00000000

The result is the serialized raw transaction in hexadecimal. Note that this is not signed
yet. To see the details of the raw transaction we can use:

$./bitcoin-cli decoderawtransaction 0100000001403918...efbe09488ac00000000

{

"txid": "a7b54334096108e8f69ecfa19263cfbf2f12210165ef5fc2e98ef8e4e466392e",

"hash": "a7b54334096108e8f69ecfa19263cfbf2f12210165ef5fc2e98ef8e4e466392e",

"size": 85,

"vsize": 85,

"version": 1,

"locktime": 0,

"vin": [

{

"txid": "b3b7464d3472a9e83da4d5c179620b71724a62eac8bc14ac4543190227183940",

"vout": 0,

"scriptSig": {

"asm": "",

"hex": ""

},

"sequence": 4294967295

}

],

"vout": [

{

"value": 0.20000000,

"n": 0,

"scriptPubKey": {

"asm": "OP_DUP OP_HASH160 6e751b60fcb566418c6b9f68bfa51438aefbe094\\

OP_EQUALVERIFY OP_CHECKSIG",

"hex": "76a9146e751b60fcb566418c6b9f68bfa51438aefbe09488ac",

"reqSigs": 1,

"type": "pubkeyhash",

"addresses": [

"mqazutWCSnuYqEpLBznke2ooGimyCtwCh8"

]

}

}

]

}

We can confirm that this is unsigned because the unlocking script or scriptSig is empty.
We now need to sign this transaction before it becames a valid transaction.

58 6.2. Creating P2PKH Transactions

$./bitcoin-cli signrawtransactionwithwallet 01000000014039...be09488ac00000000

{

"hex": "0100000001403918270...38aefbe09488ac00000000",

"complete": true

}

Now we have the final signed raw transaction (in attribute hex). If we use decoderaw-

transaction now you will see the unlocking script is properly set. We can test if this is a
valid transaction before sending it to the node for broadcasting with the mempoolaccept

command. Finally, we need to send it to the node for broadcasting.

$./bitcoin-cli sendrawtransaction 0100000001403918270...38aefbe09488ac00000000

error code: -26, error message:, 256: absurdly-high-fee

In this instance we get an error saying that the transaction has an exceptionally high fee.
We have not specified any output for change so 1.1 bitcoins would be given to miners (1.3-
0.2). Most wallets have similar protection mechanisms to help safeguard from user errors.

Using HTTP JSON-RPC

JSON-RPC is a simple protocol that specifies how to communicate with remote procedure
calls using JSON as the format. It can be used with several transport protocols but most
typically it is used over HTTP.

A user name and password has to be provided in bitcoin.conf. By default only local
connections are allowed, but other connections can be allowed for trusted IPs with the rp-

callowip configuration option.

rpcuser=kostas
rpcpassword=too_long_to_guess

Then we could use a tool like curl to make the JSON-RPC request:

$ curl --user kostas --data-binary ’{"jsonrpc": "1.0", "id":"curltest", \\

"method": "getblockcount", "params": [] }’ -H ’content-type: text/plain;’\\

http://127.0.0.1:18332/

Enter host password for user ’kostas’:

{

"result": 1746817,

"error": null,

"id": "curltest"

}

Chapter 6. Scripting 1 59

Thus, we can also send the commands seen before to construct transactions via JSON-
RPC.

Calling Node Commands Programmatically

A Python library that wraps Bitcoin’s API calls is python-bitcoinrpc. Install with pip and
try it out.

1 from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException

2
3 # user and pw are rpcuser and rpcpassword respectively

4 user = "kostas"

5 pw = "too_long_to_guess" # bad practice - do not hardcode!

6
7 rpc_connection = AuthServiceProxy("http://%s:%s@127.0.0.1:18332"%(user, pw))

8
9 block_count = rpc_connection.getblockcount()

10 print(block_count)

All API calls can be used, including the ones to create a transaction with either send-

toaddress or createrawtransaction + signrawtransaction + sendrawtransaction.

Creating Transactions Programmatically

The Bitcoin node allows the creation of the basic transactions. It does not support arbitrary
scripts. We can create those programmatically by explicitly specifying the locking/unlock-
ing conditions. We will use the python-bitcoin-utils library that can be installed easily with
pip install bitcoin-utils in your working python environment.

There are several examples included in the library that you can consult, like the most
common transaction, a P2PKH payment6 with one input and two outputs (the second output
being the change).

1 # Copyright (C) 2018-2020 The python-bitcoin-utils developers

2 #

3 # This file is part of python-bitcoin-utils

4 #

5 # It is subject to the license terms in the LICENSE file found in the top-level

6 # directory of this distribution.

7 #

8 # No part of python-bitcoin-utils, including this file, may be copied,

9 # modified, propagated, or distributed except according to the terms contained

10 # in the LICENSE file.

11
12 from bitcoinutils.setup import setup

13 from bitcoinutils.utils import to_satoshis

14 from bitcoinutils.transactions import Transaction, TxInput, TxOutput

15 from bitcoinutils.keys import P2pkhAddress, PrivateKey

16 from bitcoinutils.script import Script

17
18 def main():

19 # always remember to setup the network

6https://github.com/karask/python-bitcoin-utils/blob/b31c82e7005e06db7f780688cfcd9332d479f39d/
examples/p2pkh_transaction.py

60 6.2. Creating P2PKH Transactions

20 setup(’testnet’)

21
22 # create transaction input from tx id of UTXO (contained 0.4 tBTC)

23 txin = TxInput(’fb48f4e23bf6ddf606714141ac78c3e921c8c0bebeb7c8abb2c799e9ff96ce6c’, 0)

24
25 # create transaction output using P2PKH scriptPubKey (locking script)

26 addr = P2pkhAddress(’n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR’)

27 txout = TxOutput(to_satoshis(0.1), Script([’OP_DUP’, ’OP_HASH160’, addr.to_hash160(),

28 ’OP_EQUALVERIFY’, ’OP_CHECKSIG’]))

29
30 # create another output to get the change - remaining 0.01 is tx fees

31 # note that this time we used to_script_pub_key() to create the P2PKH

32 # script

33 change_addr = P2pkhAddress(’mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w’)

34 change_txout = TxOutput(to_satoshis(0.29), change_addr.to_script_pub_key())

35 #change_txout = TxOutput(to_satoshis(0.29), Script([’OP_DUP’, ’OP_HASH160’,

36 # change_addr.to_hash160(),

37 # ’OP_EQUALVERIFY’, ’OP_CHECKSIG’]))

38
39 # create transaction from inputs/outputs -- default locktime is used

40 tx = Transaction([txin], [txout, change_txout])

41
42 # print raw transaction

43 print("\nRaw unsigned transaction:\n" + tx.serialize())

44
45 # use the private key corresponding to the address that contains the

46 # UTXO we are trying to spend to sign the input

47 sk = PrivateKey(’cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9’)

48
49 # note that we pass the scriptPubkey as one of the inputs of sign_input

50 # because it is used to replace the scriptSig of the UTXO we are trying to

51 # spend when creating the transaction digest

52 from_addr = P2pkhAddress(’myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e’)

53 sig = sk.sign_input(tx, 0, Script([’OP_DUP’, ’OP_HASH160’,

54 from_addr.to_hash160(), ’OP_EQUALVERIFY’,

55 ’OP_CHECKSIG’]))

56
57 # get public key as hex

58 pk = sk.get_public_key().to_hex()

59
60 # set the scriptSig (unlocking script)

61 txin.script_sig = Script([sig, pk])

62 signed_tx = tx.serialize()

63
64 # print raw signed transaction ready to be broadcasted

65 print("\nRaw signed transaction:\n" + signed_tx)

66
67
68 if __name__ == "__main__":

69 main()

This produces the serialized raw transaction in hexadecimal. We can then use sendraw-

transaction to send this to the Bitcoin network. Notice that bitcoin-utils wraps the python-

bitcoinrpc library in a proxy object so that we can send commands to a node directly from
our Python program7.

7For an example see https://github.com/karask/python-bitcoin-utils/blob/

b31c82e7005e06db7f780688cfcd9332d479f39d/examples/node_proxy.py

Chapter 6. Scripting 1 61

6.3 Signatures

In this section we will explain how and what needs to be signed to prove ownership of funds
residing in specific addresses.

When we create a new transaction we need to provide a signature for each UTXO that we
want to spent. For a P2PKH UTXO the signature proves:

• that the signer is the owner of the private key

• the proof of authorization is undeniable

• the parts of the tx that were signed cannot be modified after it has been signed

The digital signature algorithm used is ECDSA and each signature is serialized using
DER. There are different ways to sign inputs of a transaction so as to provide different com-
mitments. For example: “I agree to spend this input and sign it as long as no one can change
the outputs I specified”. To specify these commitments, i.e. which parts of the transaction
will be signed, we add a special 1 byte flag called SIGHASH at the end of the DER signature.

Each transaction input needs to be signed separately from others. Parts of the new trans-
action will be hashed to create a digest and the digest is what is signed and included in the
unlocking script. To determine which parts are hashed the following rules are followed:

• all other inputs’ unlocking scripts (scriptSigs) should be empty

• the input’s unlocking script (scriptSig), the one that we sign, should be set to the lock-
ing script (scriptPubKey) of the UTXO that we are trying to spend

• follow additional rules according to the SIGHASH flag

The possible SIGHASH flags, values and meaning are:

ALL (0x01) Signs all the inputs and outputs, protecting everything except the signature
scripts against modification. This transaction is final and no one can modify it without
invalidating this signature.

NONE (0x02) Signs all of the inputs but none of the outputs, allowing anyone to change
where the satoshis are going. A miner will always be able to send the funds to his
address. This flag is useful in combination with another inputs’ signatures using, say,
ALL to secure the outputs. It can be used as a blank check.

SINGLE (0x03) Sign all the inputs and only one output, the one corresponding to this input
(the output with the same output index number as this input), ensuring nobody can
change your part of the transaction but allowing other signers to change their part
of the transaction. The corresponding output must exist. It can be used if someone
creates a transaction with some inputs that they cannot spend and specific outputs
and then send to the other participants to sign (with ALL or SINGLE), if they agree.

ALL|ANYONECANPAY (0x81) Signs only this one input and all the outputs. It allows anyone
to add or remove inputs, so anyone can contribute additional satoshis but they cannot
change how many satoshis are sent not where they go. It can be used to implement
kickstarter-style crowdfunding.

62 6.4. Pay to script hash (P2SH)

NONE|ANYONECANPAY (0x82) Signs only this one input and allows anyone to add or re-
move other inputs or outputs, so anyone who gets a copy of this input can spend it
however they’d like. This input can be spend even in another transaction!

SINGLE|ANYONECANPAY (0x83) Signs this one input and its corresponding output. Al-
lows anyone to add or remove other inputs. A potential use would be as a means to
exchange colored coin8 tokens with satoshis. For example, one can create a transaction
that has an input which holds 10 of their tokens and an output of 10 million satoshis
to an address that they own. This transaction would be invalid since the inputs do
not provide the 10 million satoshis but it can be shared with others. If someone wants
to claim the 10 tokens they can add an input with at least 10 million satoshis and an
output that sends the 10 tokens to them. This would complete the transaction which
can then be broadcasted.

Figure 6.2: Example transaction with two inputs and two outputs.

For an example of SINGLE, consider creating the transaction shown above. Alice needs to
pay 1.5 bitcoins to Zed and they agreed with Bob that he will contribute 0.5 of that amount.
Then Alice creates a transaction with two inputs, UTXO1 that she owns (with 1 BTC) and
UTXO2 that Bob owns (with 1 BTC) and a single output that sends 1.5 bitcoins to Zed. She
signed UTXO1 with SIGHASH SINGLE and sends the incomplete transaction to Bob. Bob
cannot choose a UTXO other than UTXO2 since it will invalidate Alice’s signature of UTXO1.
However, he is free to add other outputs so he creates an output that sends the remaining
bitcoins (he agreed to pay only 0.5) to one of his addresses. He can then sign UTXO2 with
SIGHASH ALL which will effectively finalize the transaction9. Note that:

• The sequence numbers of other inputs are not included in the signature, and can be
updated.

• As already demonstrated above, with multiple inputs, each signature hash type can
sign different parts of the transaction. If a 2-input transaction has one input signed
with NONE and the other with ALL, the ALL signer can choose where to spend the
funds without consulting the NONE signer.

6.4 Pay to script hash (P2SH)

This section explains the rationale behind Pay to Script Hash (P2SH) type of addresses and
demonstrates with code.

8https://en.bitcoin.it/wiki/Colored_Coins
9No more input or output changes are allowed without invalidating this signature.

Chapter 6. Scripting 1 63

Multi-signature transaction output type

To demonstrate the advantages of P2SH we will first go through a simple use case using first
the Multisignature standard transaction output type and then implement the same script
with the P2SH standard transaction output type.

Consider the scenario where we accept funds in an address that is not controlled by one
person. For example it is typical for companies to allow spending from corporate accounts
only if, say, 2 people agree. These are called multi-signature accounts. A multi-signature
account requires M-of-N signatures in order to spend the funds. An address’ locking script
could enforce that. For example a 2-of-3 multi-signature locking script would look like:

2 <Director’s Public Key> <CFO’s Public Key> <COO’s Public Key>

3 CHECKMULTISIG

Indeed, this is the locking script of the multisignature standard transaction output type.
If someone needs to send money (lock funds) to that output script then they need to know
it! The company would need to send this script to all their customers that wish to pay them.

This is not practical since the whole script is recorded on the blockchain for every trans-
action and more importantly has privacy issues; the company is revealing the public keys
that control the funds.

If you think about it the precise locking/unlocking script of the funds should not concern
the customers at all. Only the company should know how to spend them.

Pay to script hash (P2SH)

P2SH is a type of transaction output (BIP-1610) that moves the responsibility for supplying
the conditions to redeem a transaction (locking script) from the sender of the funds to the
redeemer (receiver).

The locking script of such a transaction is quite simple:

OP_HASH160 [20-byte-hash-value] OP_EQUAL

The 20-byte hash value is the hash of the redeem script:

RIPEMD -160(SHA-256(2 <Director’s Public Key> <CFO’s Public Key>

<COO’s Public Key> 3 CHECKMULTISIG))

Using this hash we create a Bitcoin address (same process but instead of OP_HASH160(pubkey)

10https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki

64 6.4. Pay to script hash (P2SH)

we use OP_HASH160(redeem script)) using the version prefix of 0x05 that creates ad-
dresses that start with 3. Consult this code for the details.

We then only need to disseminate this address to the company’s customers. The can send
funds oblivious to how these funds are locked. The company knows how they are unlocked
so they can prepare the appropriate unlocking script.

As an example, to spend the funds, the company can create the following script:

<Director’s signature> <CFO’s signature>

<2 <Director’s Public Key> <CFO’s Public Key> <COO’s Public Key>

3 CHECKMULTISIG>

It has two parts, the redeem script’s unlocking conditions (which in this case are two of
the signatures) plus the redeem script. Notice how the redeem script is revealed only when
the company spends the funds; and it only reveals the two signatures, not all three.

Validation occurs in 2 steps. First we confirm that the redeem script equals the hash in
the locking script. Thus we take the second part of the unlocking script and prepend it to
the unlocking script as is typically done:

<2 <Director’s Public Key> <CFO’s Public Key> <COO’s Public Key>

3 CHECKMULTISIG> OP_HASH160 [20-byte-hash-value] OP_EQUAL

If the hashed redeem script is equal to the 20-byte hash value the above script will result
OP_TRUE and it validates that the correct redeem script was passed. We can now proceed
in validating the actual redeem script using the first part of the unlocking script:

<Director’s signature> <CFO’s signature> 2

<Director’s Public Key> <CFO’s Public Key> <COO’s Public Key>

3 CHECKMULTISIG

If that also results to OP_TRUE then the funds can be spend.

Summary / Advantages

P2SH moves the responsibility for supplying the conditions to redeem a transaction (locking
script) from the sender of the funds to the redeemer (receiver).

• P2SH allows us to create arbitrary redeem scripts; we can thus create quite complex
scripts and not be limited to the few standard transaction output types.

• Reduces the size of the funding transactions typically resulting in saving blockchain
sace.

Chapter 6. Scripting 1 65

• Increases privacy by hiding the locking conditions.

Example: create a P2SH address based on a P2PK script

As we have seen P2SH allows us to wrap arbitrary scripts hiding the script itself until it is
spend. To demonstrate we will wrap a simple P2PK script and display the P2SH address
that corresponds to that script.

1 from bitcoinutils.setup import setup

2 from bitcoinutils.keys import P2shAddress, PrivateKey

3 from bitcoinutils.script import Script

4
5
6 def main():

7 # always remember to setup the network

8 setup(’testnet’)

9
10 #

11 # This script creates a P2SH address containing a P2PK locking script

12 #

13
14 # secret key corresponding to the pubkey needed for the P2PK locking

15 p2pk_sk = PrivateKey(’cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9’)

16
17 # get the public key

18 p2pk_pk = p2pk_sk.get_public_key()

19
20 # get the address (from the public key)

21 p2pk_addr = p2pk_pk.get_address()

22
23 # create the redeem script

24 redeem_script = Script([p2pk_pk.to_hex(), ’OP_CHECKSIG’])

25
26 # create a P2SH address from a redeem script

27 addr = P2shAddress.from_script(redeem_script)

28 print(addr.to_string())

29
30 if __name__ == "__main__":

31 main()

The result is address 2MvzN3FntupGqY66FuGzoK9HFXqPFyMxfVU which can be shared
to anyone that wishes to send us some funds.

Example: spend funds from a P2SH address

Assuming that someone has sent funds to the P2SH address we just created let us spend it
programmatically. In this example we will hardcode UTXOs for simplicity.

1 from bitcoinutils.setup import setup

2 from bitcoinutils.utils import to_satoshis

3 from bitcoinutils.transactions import Transaction, TxInput, TxOutput

4 from bitcoinutils.keys import P2pkhAddress, P2shAddress, PrivateKey

5 from bitcoinutils.script import Script

6
7 def main():

66 6.5. Segregated Witness (SegWit)

8 # always remember to setup the network

9 setup(’testnet’)

10
11 #

12 # This script spends from a P2SH address containing a P2PK script

13 #

14
15 # create transaction input from tx id of UTXO (contained 0.1 tBTC)

16 txin = TxInput(’7db363d5a7fabb64ccce154e906588f1936f34481223ea8c1f2c935b0a0c945b’, 0)

17
18 # secret key needed to spend P2PK that is wrapped by P2SH

19 p2pk_sk = PrivateKey(’cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9’)

20 p2pk_pk = p2pk_sk.get_public_key().to_hex()

21 # create the redeem script - needed to sign the transaction

22 redeem_script = Script([p2pk_pk, ’OP_CHECKSIG’])

23
24 to_addr = P2pkhAddress(’n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR’)

25 txout = TxOutput(to_satoshis(0.09), to_addr.to_script_pub_key())

26
27 # no change address - the remaining 0.01 tBTC will go to miners)

28
29 # create transaction from inputs/outputs -- default locktime is used

30 tx = Transaction([txin], [txout])

31
32 # print raw transaction

33 print("\nRaw unsigned transaction:\n" + tx.serialize())

34
35 # use the private key corresponding to the address that contains the

36 # UTXO we are trying to spend to create the signature for the txin -

37 # note that the redeem script is passed to replace the scriptSig

38 sig = p2pk_sk.sign_input(tx, 0, redeem_script)

39
40 # set the scriptSig (unlocking script)

41 txin.script_sig = Script([sig, redeem_script.to_hex()])

42 signed_tx = tx.serialize()

43
44 # print raw signed transaction ready to be broadcasted

45 print("\nRaw signed transaction:\n" + signed_tx)

46 print("\nTxId:", tx.get_txid())

47
48
49 if __name__ == "__main__":

50 main()

As already mentioned, the first time we spend from the address, i.e. broadcasting this
transaction, reveals the redeem script to everyone.

6.5 Segregated Witness (SegWit)

In this section we will briefly explain what Segregated Witness is, what it changes and how
scripts can be created programmatically.

Segregated Witness is a consensus change that introduces an update on how transactions

Chapter 6. Scripting 1 67

are constructed. In particular it separates (segregates) the unlocking script (witness) from
the rest of the input; a transaction input does not contain an unlocking script anymore and
the latter is found in another structure that goes alongside the transaction.

To illustrate see figure 6.3 (i) for the original transaction that we used as an example in
chapter 1. We can see that the unlocking script is part of the input that we are spending.
In (ii) we can see the segwit equivalent transaction where the unlocking script (scriptSig) is
empty and it is moved outside the transaction.

Figure 6.3: Example transaction with (i) a non-segwit input and (ii) a segwit input.

The segwit upgrade is described in detail in BIPs11 141, 143, 144 and 145 and it provides
several benefits12. We will examine two of them here: transaction malleability and effective
block size increase.

Transaction malleability

Each transaction is uniquely identified by its transaction identifier or txid. The txid is con-
structed by hashing13 the serialized transaction (the blue part of figure 6.3).

It is possible to slightly change the unlocking script, e.g. my a miner, so as the resulting
transaction is semantically identical to the original, thus still valid. This can be accom-
plished, for example, by slightly changing the encoding format of the signature.

That is a problem because given how the txid is created even the slightest modification
will change the txid. While the transaction is identical, i.e. funds will be moved exactly
as intended, our ability to monitor this transaction is problematic given that we will be
checking for confirmations in a txid that is not valid anymore.

With segwit inputs, however, the unlocking script (the green part of figure 6.3 (ii)) is not
part of the txid construction and thus it is impossible to modify it. A non-malleable txid is
more reliable and allows for more advanced scripts/solutions like the lightning network.

11Bitcoin Improvement Proposals
12https://bitcoincore.org/en/2016/01/26/segwit-benefits/
13The SHA-256 hashing algorithm is applied twice.

68 6.5. Segregated Witness (SegWit)

Effective block size increase

The actual block size remains the same, at 1MB. However, the unlocking scripts are now not
part of the block and thus more transactions can fit into the 1MB limit.

Segwit introduces the concept of block weight, a new metric for the size of blocks. A block
can have a maximum weight of 4MBs. The non-witness part bytes of a transaction are now
multiplied by 4 to get its weight while the witness part bytes are multiplied by 1, a discount
of 75%. This allows for an effective block size increase of 1.8x.

The virtual size, or vsize of a transaction is the size in bytes of a transaction including
the segwit discount. For non-segwit transactions14 size and vsize are identical.

Segwit transaction output types

Segwit introduces two new transaction types, Pay-to-Witness-Public-Key-Hash (P2WPKH)
and Pay-to-Witness-Script-Hash (P2WSH), which are the segwit equivalent of P2PKH and
P2SH respectively. They are sometimes called native segwit to differentiate from nested seg-
wit.

The locking script (scriptPubKey) of these new types consists of two elements, a version

byte and the witness program. The version byte introduces versioning in the witness pro-
gram of the script. That is another benefit of segwit, since it allows for easy updates based
on a new version.

Remember, that when signing to spend any output we need to provide the locking script,
which is used to substitute the scriptPubKey before we calculate the transaction digest and
sign it. For segwit transaction types each witness program corresponds to a predefined tem-
plate script that is called scriptCode.

P2WPKH

In segwit version 0, a P2WPKH witness program is just the 20-byte public key hash. The un-
locking script (scriptSig) should be empty and the witness structure contains the unlocking
script.

scriptPubKey: 0 6b85f9a17492c691c1d861cc1c722ff683b27f5a

scriptSig:

witness: <signature> <pubkey>

The validation is executed as follows:

1. The ‘0’ in scriptPubKey specifies that the following is a version 0 witness program.

2. The length of the witness program (20-bytes) indicates that it is a P2WPKH type.

3. The witness program must consist of exactly two items.

4. The HASH160 of the <pubkey> must match the 20-bytes witness program.

5. Finally, the signature is verified by: <signature> <pubkey> CHECKSIG.

14I.e. transaction with no segwit inputs.

Chapter 6. Scripting 1 69

The scriptCode for P2WPKH is identical to P2PKH.

P2WSH

In segwit version 0, a P2WSH witness program is just the 32-byte script hash. The unlocking
script (scriptSig) should be empty and the witness structure contains the unlocking script
as well as the witness script15.

scriptPubKey: 0 3b892c61cc15f9a17 <32 bytes>c1c722ff683b27f5a

scriptSig:

witness: 0 <signature1> <1 <pubkey1> <pubkey2> 2 CHECKMULTISIG>

The validation is executed as follows:

1. The ‘0’ in scriptPubKey specifies that the following is a version 0 witness program.

2. The length of the witness program (32-bytes) indicates that it is a P2WSH type.

3. The witness program must consist of the unlocking script followed by the witness
script)

4. The SHA256 of the witness script must match the 32-bytes witness program

5. Finally, the witness script is deserialized and executed after the remaining witness
stack: 0 <signature1> 1 <pubkey1> <pubkey2> 2 CHECKMULTISIG .

The scriptCode for P2WSH is the witness script.

Nested Segwit transaction output types

It is possible for a non-segwit aware wallet to pay to a segwit address by embedding P2WPKH
or P2WSH into a P2SH. The recipient will provide a P2SH address to the sender who can
send funds as usual. The recipient can then use the redeem script which is actually the
witness script to spend the funds.

P2SH(P2WPKH)

Get the hash of the P2WPKH scriptPubKey and use it in P2SH as usual:

HASH160 (0 6b85f9a17492c691c1d861cc1c722ff683b27f5a)

And thus:

15To clarify, witness script for a P2WSH is exactly what redeem script is for a P2SH.

70 6.5. Segregated Witness (SegWit)

scriptPubKey: <HASH160 <20-byte-script-hash> EQUAL

scriptSig: <0 <20-byte-key-hash>>

witness: <signature> <pubkey>

Note that scriptSig contains the redeem script as a single element and without any extra
unlocking data before it since those are in witness (check section 6.4 for how P2SH works).

For validation the scriptSig is hashed with HASH160 and compared to the <20-byte-

script-hash> in scriptPubKey. If they are equal we can then verify the public key and
signature as a native P2WPKH.

P2SH(P2WSH)

Get the hash of the P2WSH scriptPubKey and use it in P2SH as usual:

HASH160 (0 3b892c61cc15f9a17 <32 bytes>c1c722ff683b27f5a)

And thus:

scriptPubKey: <HASH160 <20-byte-script-hash> EQUAL

scriptSig: <0 <32-byte-witness-script-hash>>

witness: 0 <signature1> <1 <pubkey1> <pubkey2> 2 CHECKMULTISIG>

Note that scriptSig contains the witness script as a single element and without any extra
unlocking data before it since those are in witness (check section 6.4 for how P2SH works).

For validation the scriptSig is hashed with HASH160 and compared to the <20-byte-

script-hash> in scriptPubKey. If they are equal we can then verify the witness script as a
native P2WSH.

Implemented as a soft-fork

Changing the transaction format is normally a hard-fork. The new transactions would not
be accepted by the nodes running the old software. To go around that and implement the
new functionality as a soft-fork additional effort was required. Without going into too much
details:

• The original transaction format was not changed. The scriptSig would just be empty
and the witnesses would go in a new structure.

• The header should represent the whole block and thus a witness merkle root is calcu-
lated (from all transactions’ witness scripts) and included in an OP_RETURN output
(explained in detail in a later section) of the coinbase transaction. Being in the coinbase

Chapter 6. Scripting 1 71

means that the witnesses are represented in the header via the hashMerkleRoot (see
section 1.4 for a reminder).

• Witness data are provided only when nodes ask for them and thus old nodes will get
blocks without the witness data, i.e. new nodes will remove witness data before relay-
ing the blocks to old nodes. To old nodes, segwit blocks would look like blocks that
contain some non-standard transactions.

• Old nodes trying to spend a segwit output would violate the clean stack rule; OP_0
<bytes in hex> will remain in the stack.

Example: spend a native segwit output type

Assuming that a P2WPKH address have some funds (UTXOs) we can use the following code
to send some funds to a legacy address. As usual, we hardcode the UTXOs for simplicity.

1 from bitcoinutils.setup import setup

2 from bitcoinutils.utils import to_satoshis

3 from bitcoinutils.transactions import Transaction, TxInput, TxOutput

4 from bitcoinutils.keys import P2pkhAddress, PrivateKey

5 from bitcoinutils.script import Script

6
7 def main():

8 # always remember to setup the network

9 setup(’testnet’)

10
11 # the key that corresponds to the P2WPKH address

12 priv = PrivateKey("cVdte9ei2xsVjmZSPtyucG43YZgNkmKTqhwiUA8M4Fc3LdPJxPmZ")

13
14 pub = priv.get_public_key()

15
16 fromAddress = pub.get_segwit_address()

17 print(fromAddress.to_string())

18
19 # amount is needed to sign the segwit input

20 fromAddressAmount = to_satoshis(0.01)

21
22 # UTXO of fromAddress

23 txid = ’13d2d30eca974e8fa5da11b9608fa36905a22215e8df895e767fc903889367ff’

24 vout = 0

25
26 toAddress = P2pkhAddress(’mrrKUpJnAjvQntPgz2Z4kkyr1gbtHmQv28’)

27
28 # create transaction input from tx id of UTXO

29 txin = TxInput(txid, vout)

30
31 # the script code required for signing for p2wpkh is the same as p2pkh

32 script_code = Script([’OP_DUP’, ’OP_HASH160’, pub.to_hash160(),

33 ’OP_EQUALVERIFY’, ’OP_CHECKSIG’])

34
35 # create transaction output

36 txOut = TxOutput(to_satoshis(0.009), toAddress.to_script_pub_key())

37
38 # create transaction without change output - if at least a single input is

39 # segwit we need to set has_segwit=True

40 tx = Transaction([txin], [txOut], has_segwit=True)

72 6.5. Segregated Witness (SegWit)

41
42 print("\nRaw transaction:\n" + tx.serialize())

43
44 sig = priv.sign_segwit_input(tx, 0, script_code, fromAddressAmount)

45 tx.witnesses.append(Script([sig, pub.to_hex()]))

46
47 # print raw signed transaction ready to be broadcasted

48 print("\nRaw signed transaction:\n" + tx.serialize())

49 print("\nTxId:", tx.get_txid())

50
51
52 if __name__ == "__main__":

53 main()

Example: spend a nested segwit output type

As described above we can also nest the new segwit address output types in a P2SH so
that old non-segwit clients can send funds to new segwit-supporting clients. This example
spends such a UTXO demonstrating a couple of additional details that need to be taken into
consideration.

1 from bitcoinutils.setup import setup

2 from bitcoinutils.utils import to_satoshis

3 from bitcoinutils.keys import PrivateKey, P2pkhAddress, P2shAddress

4 from bitcoinutils.transactions import Transaction, TxInput, TxOutput

5 from bitcoinutils.script import Script

6
7 def main():

8 # always remember to setup the network

9 setup(’testnet’)

10
11 # the key that corresponds to the P2WPKH address

12 priv = PrivateKey(’cNho8fw3bPfLKT4jPzpANTsxTsP8aTdVBD6cXksBEXt4KhBN7uVk’)

13 pub = priv.get_public_key()

14
15 # the p2sh script and the corresponding address

16 redeem_script = pub.get_segwit_address().to_script_pub_key()

17 p2sh_addr = P2shAddress.from_script(redeem_script)

18
19 # the UTXO of the P2SH-P2WPKH that we are trying to spend

20 inp = TxInput(’95c5cac558a8b47436a3306ba300c8d7af4cd1d1523d35da3874153c66d99b09’, 0)

21
22 # exact amount of UTXO we try to spent

23 amount = 0.0014

24
25 # the address to send funds to

26 to_addr = P2pkhAddress(’mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS’)

27
28 # the output sending 0.001 -- 0.0004 goes to miners as fee -- no change

29 out = TxOutput(to_satoshis(0.001), to_addr.to_script_pub_key())

30
31 # create a tx with at least one segwit input

32 tx = Transaction([inp], [out], has_segwit=True)

33
34 # script code is the script that is evaluated for a witness program type; each

35 # witness program type has a specific template for the script code

Chapter 6. Scripting 1 73

36 # script code that corresponds to P2WPKH (it is the classic P2PKH)

37 script_code = pub.get_address().to_script_pub_key()

38
39 # calculate signature using the appropriate script code

40 # remember to include the original amount of the UTXO

41 sig = priv.sign_segwit_input(tx, 0, script_code, to_satoshis(amount))

42
43 # script_sig is the redeem script passed as a single element

44 inp.script_sig = Script([redeem_script.to_hex()])

45
46 # finally, the unlocking script is added as a witness

47 tx.witnesses.append(Script([sig, pub.to_hex()]))

48
49 # print raw signed transaction ready to be broadcasted

50 print("\nRaw signed transaction:\n" + tx.serialize())

51
52 if __name__ == "__main__":

53 main()

6.6 Pay To Multi-signature (P2MS)

Pay to multi-signature or Pay-to-Multisig is a standard output type that was introduced be-
fore P2SH. Its aim was to provide a way for bitcoins to be locked by several public keys
which could belong to different people. Typically, only a subset of signatures would be re-
quired. For example for a 2-of-3 multisig would require at least 2 signatures from 2 of the
corresponding private keys.

In section 6.4 we have seen an example of an 2-of-3 multisig wrapped in P2SH. This is
the typical way to use multisig after P2SH was created because P2MS has several drawbacks:

• It is limited to 3 public keys while P2SH allows up to 15.

• It has no address format. To send funds to a P2MS the sender needs to know the
multisig script.

• The public keys are visible even before an output is spent.

To construct and lock funds in a P2MS output we use the exact script that we described
in section 6.4 and send the funds there directly.

The CHECKMULTISIG opcode has a bug where it pops an extra element from the stack.
For backward compatibility the bug cannot be fixed and thus to avoid the issue we add
an additional dummy value at the beginning of the unlocking script. Typically, OP_0

is used as a dummy but anything is valid.

6.7 Storing Data (OP_RETURN)

The blockchain ensures that all existing entries are tamper-proof resistant; modifications and
deletions are not allowed. This makes it quite useful for permanently storing data that will

74 6.7. Storing Data (OP_RETURN)

stand the test of time, which is ideal for certain applications like notary services, certificate
ownership and others.

Indirectly

However, Bitcoin’s blockchain was not designed for storage in general and data could only
be stored indirectly. Examples include adding data to coinbase transactions, to transaction
outputs and to multi-signature addresses.

Let’s go through one of the above examples, and explain how it would be possible to store
data in the outputs of fake addresses. Remember that the output address is represented as
the public key hash or 20 bytes (40 hex characters). Those can be faked to represent the data
that we need to store. For example16, to store “3Nelson-Mandela.jpg?” (20 characters) we
would need to convert it to hexadecimal which is “334E656C736F6E2D4D616E64656C612
E6A70673F” and would correspond to address “15gHNr4TCKmhHDEG31L2XFNvpnEcnPS

Qvd”. Amazingly, the following outputs, if added together, contained an actual image of
Nelson Mandela!

The satoshis sent to such a fake address will be lost forever since there is no (known)
private key that corresponds to it. In the past, when the value of bitcoin was small it was
easy to afford to store this way, but even if it wasn’t such methods are not encouraged to say
the least.

Storing data this way creates an overhead for the UTXO set in every node in the net-
work. These addresses will never be used (i.e. the satoshis there are lost) but the
system is not aware so they need to keep track of them as unspent outputs!

Directly

Storing data on the blockchain with the above methods was frowned upon the community
because of the overhead it was placing on the running nodes. Others argued that as long
as the transaction fee is paid there is no reason why it should be considered spam. The
compromise was the introduction of an operator, called OP_RETURN specifically dealing
with storing small amount of data on the blockchain.

The OP_RETURN opcode was followed by a maximum of 80 bytes of data. No satoshis
were required to be sent (other than the transaction fees) and more importantly, OP_RETURN

was not bloating the UTXO set.
Since 80 bytes is a very small amount of data it is usually used to store a hash (or digest or

digital fingerprint) of some data ensuring the integrity of the data rather than the immutable
existence of the data itself. Alternatively, it can be used to encode meta-protocol information,
such as used by Counterparty17, the OMNI protocol18 and verifiable PDFs19.

An example script would be:

16Borrowed from Ken Shirriff’s excellent blog post: https://www.righto.com/2014/02/

ascii-bernanke-wikileaks-photographs.html
17https://counterparty.io/
18https://www.omnilayer.org/
19https://verifiable-pdfs.org/

Chapter 6. Scripting 1 75

OP_RETURN 4f1edef24e9e2a169f56e1b0ae936d32232652dc51be1860ecd714

Example: Create a transaction with an OP_RETURN output

Creating an OP_RETURN output is quite straightforward. Remember that you will be spend-
ing bitcoins for the transaction fees and that there would most probably be a change output.

1 from bitcoinutils.setup import setup

2 from bitcoinutils.utils import to_satoshis

3 from bitcoinutils.transactions import Transaction, TxInput, TxOutput

4 from bitcoinutils.keys import P2pkhAddress, PrivateKey

5 from bitcoinutils.script import Script

6
7 def main():

8 # always remember to setup the network

9 setup(’testnet’)

10
11 # create transaction input from tx id of UTXO (contained 0.01 tBTC)

12 txin = TxInput(’ab48f4e23bf6ddf606714141ac87c3e921c8c0bebeb7c8abb2c799e9ff96ce6f’, 0)

13
14 # create the OP_RETURN transaction output that contains "Hello!"

15 txout = TxOutput(to_satoshis(0), Script([’OP_RETURN’, ’48656c6f21’]))

16
17 # create another output to get the change - note that we have hard-coded

18 # the fee; you should not :)

19 change_addr = P2pkhAddress(’mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w’)

20 change_txout = TxOutput(to_satoshis(0.008), change_addr.to_script_pub_key())

21
22 # create transaction from inputs/outputs -- default locktime is used

23 tx = Transaction([txin], [txout, change_txout])

24
25 # print raw transaction

26 print("\nRaw unsigned transaction:\n" + tx.serialize())

27
28 # use the private key corresponding to the address that contains the

29 # UTXO we are trying to spend to sign the input

30 sk = PrivateKey(’cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9’)

31
32 # note that we pass the scriptPubkey as one of the inputs of sign_input

33 # because it is used to replace the scriptSig of the UTXO we are trying to

34 # spend when creating the transaction digest

35 from_addr = P2pkhAddress(’myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e’)

36 sig = sk.sign_input(tx, 0, from_addr.to_script_pub_key())

37
38 # get public key as hex

39 pk = sk.get_public_key().to_hex()

40
41 # set the scriptSig (unlocking script)

42 txin.script_sig = Script([sig, pk])

43 signed_tx = tx.serialize()

44
45 # print raw signed transaction ready to be broadcasted

46 print("\nRaw signed transaction:\n" + signed_tx)

76 6.8. Exercises

47
48
49 if __name__ == "__main__":

50 main()

6.8 Exercises

Exercise 6.1 Write a program that spends a UTXO. The user will provide a P2PKH
address as a parameter and he will then be prompted to choose between the available
UTXOs of that address.

Exercise 6.2 In mainnet, how can we estimate what is an appropriate fee to include
to a transaction?

Exercise 6.3 Write a scriptPubKey script that requires both a key and password to
unlock.

Exercise 6.4 Create a P2SH address that corresponds to a 2-of-2 multisignature
scheme. Display the address.

Exercise 6.5 Create a script that spends funds from the P2SH address created in the
previous exercise.

Exercise 6.6 Write a Python function that goes through a serialized transaction and
calculates what percentage of its size are the scriptSigs.

Exercise 6.7 Write a script that goes through a block and prints the percentage of all
the scriptSigs relative to the size of the block.

Exercise 6.8 How can we calculate what the maximum effective block size limit is with
segwit?

Exercise 6.9 Create a P2WSH address that contains a P2PK locking script. Then
display the address.

Exercise 6.10 Create a transaction that spends UTXOs from a P2WSH address that
contains a P2PK locking script.

Exercise 6.11 Create a P2SH(P2WSH) address that contains a P2PK locking script.
Then display the address.

Chapter 6. Scripting 1 77

Exercise 6.12 Create a transaction that spends UTXOs from a P2SH(P2WSH) address
that contains a P2PK locking script.

Exercise 6.13 Create a transaction that sends some bitcoins to a 2-of-2 P2MS standard
output type.

Exercise 6.14 Create a transaction that spends some bitcoins from the 2-of-2 P2MS
created above. Remember the CHECKMULTISIG bug.

Exercise 6.15 Create a 2-of-3 multisig (wrapped in P2SH) and display the address.

Exercise 6.16 Create a transaction that spends funds from the 2-of-3 multisig created
above. Remember the CHECKMULTISIG bug.

Exercise 6.17 The Bitcoin white paper (PDF) is stored on the blockchain. The
transaction id is:

54e48e5f5c656b26c3bca14a8c95aa583d07ebe84dde3b7dd4a78f4e4186e713

Can you extract the data from this transaction and reconstruct the PDF?

7. Scripting 2

7.1 Timelocks 78

7.2 RBF & CPFP 85

7.3 Hash Time-Locked Contracts 86

7.4 Atomic Swaps 88

7.5 Payment Channels 90

7.6 Exercises 90

This chapter is build upon the previous one and continues to explore more advanced scripts
and techniques for locking and unlocking funds in the Bitcoin network. Several examples are
provided.

7.1 Timelocks

Timelocks is a mechanism for postdating transactions or to lock funds for specific periods of
time. It applies only to version 2 transactions. There are two different types of locking, one
for absolute and one for relative time. In each one we can specify timelocks at transaction
level or at script level.

Absolute at transaction level

This feature was part of the initial Bitcoin implementation. Every transaction can include a
timelock (nLocktime) to specify the earliest time that a transaction may be added to a block.
Wallets were setting this value to 0 meaning that the transaction is valid anytime. Later on,
a soft-fork allowed to specify the time in terms of the block height. Possible values:

0 Transaction is always valid.

< 500 million
Specifies the earliest block height that this transactions can
be added.

>= 500 million
Specifies the block header time (Unix Epoch) after which the
transaction can be added to a block.

Absolute nLocktime is used in some wallets to prevent fee sniping. Fee sniping is a
theoretical attack that involves large miners/pools mining two (or possibly more) blocks in
an attempt to reorganize past blocks. The miner can then add the highest-fee transactions
from the previously valid blocks plus any high-fee transactions in the mempool.

The Bitcoin Core wallet (from 0.11.0) creates transactions that include an nLocktime of
the current best height plus one. Thus, the transaction is valid for the next block as normal

78

Chapter 7. Scripting 2 79

but in the case of a reorg a miner cannot add this transaction in a previous block. This means
that, if all transactions use this mechanism, the miner will not be able to gain any new fees
by including new transactions to older blocks. This will be more important as the miners’
reward is reduced further making transaction fees the major source of income for miners.

This can be achieved by setting nLocktime and nSequence appropriately.

nLocktime = current_best_height + 1

nSequence = 0xFFFFFFFE

The original idea behind nSequence was that a transaction in the mempool would be
replaced by using the same input with a higher sequence value. This assumes that min-
ers would prefer higher sequence number transactions instead of more profitable ones (i.e.
higher fee) which would never work.

For this reason the nSequence input field was repurposed to specify additional transac-
tion semantics like timelocks. Typical transactions have an nSequence of 0xFFFFFFFF.

For example, as we can see in figure 7.1, if we want to spent a UTXO of transaction TXx

in block Y (a block in the future, say 700000) we need to create a transaction that spends
it but also set nLocktime to Y . Then this new transaction TXx+1 will be invalid until that
block height.

Figure 7.1: Example: absolute timelock.

Note that nLocktime creates a transaction that cannot be included in the blockchain until
the specified block/time. This means that the person who created the transaction could
create another transaction to spend the funds, invalidating the nLocktime transaction. This
is problematic in several use cases and thus absolute timelocks at script level were created.

Absolute at script level

Absolute locktime is achieved at the script level using the CHECKLOCKTIMEVERIFY or CLTV
opcode. In late 2015 the BIP-651 soft-fork redefined OP_NOP22 as OP_CHECKLOCKTIMEVERIFY

allowing timelocks to be specified per transaction output. To spent the output, the signature
and public key are required as usual but the nLocktime field of the spending transaction

1https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
2A no-operator operator does nothing and is reserved to add future functionality.

80 7.1. Timelocks

also needs to be set to an equal or greater value of CLTV’s timelock value. If not the script
will fail immediately.

A scriptPubKey example that locks an output until an expiry_time and a P2PKH equiv-
alent would look like:

<expiry_time> OP_CHECKLOCKTIMEVERIFY OP_DROP

OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY OP_CHECKSIG

To spend a transaction output with a timelock we need to specify the future block in
nLocktime and activate the nSequence of the particular input that we want to spend to
0xFFFFFFFE.

Since a script with CHECKLOCKTIMEVERIFY becomes part of the blockchain it cannot
be invalidated as described above with the transaction-level equivalent.

For example, as we can see in figure 7.2 we can create a locking script with CLTV on
block Y (a block in the future, say 700000) and send some funds to it (and keep sending). If
we want to spend it we need to create a transaction that spends it but also sets nLocktime to
at least 700000. Then this new transaction TXx+1 will be invalid until that block height.

Figure 7.2: Example: script-level absolute timelock.

Relative at transaction input level

Relative timelocks where introduced in mid-2016 with BIPs 683 and 1134 as a soft-fork that
made use of the nSequence field of an input.

nSequence was repurposed for relative timelocks. If the most significant bit of the nSe-

quence 32-bit field was 0 (i.e. 0x7FFFFFFF) then it was interpreted as a relative timelock.
Then, for timelocks bit 23 would specify the type (block height or Unix Epoch time) and the
last 16 bits the value.

For example, as shown in figure 7.3, if we want to spent a UTXO of transaction TXx after
10 blocks we need to create a transaction that spends it but also set nSequence to 10. Then
this new transaction TXx+1 will be invalid until TXx gets 10 confirmations.

3https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
4https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki

Chapter 7. Scripting 2 81

Type (bit 23) Meaning of last (least significant) 16 bits

0
The number of blocks that need to pass based on the height
of the UTXO which the input spends.

1
The number of 512 seconds intervals that need to pass based
on the timestamp of the UTXO which the input spends.

Figure 7.3: Example: relative timelock.

Relative at script level

The script-level equivalent of relative timelocks is using CHECKSEQUENCEVERIFY or CSV
defined in BIP-1125. It replaces OP_NOP3 with OP_CHECKSEQUENCEVERIFY. When we
create a transaction that spends a UTXO that contains a CSV, that input requires to have
nSequence set with an equal or greater value to the CSV parameter value. Otherwise it will
fail immediately.

Expiry date can be expressed in either block height or timestamp (as previously dis-
cussed) but it has to be the same type as the one used in the nSequence field. Note that in
the script only the block height or timestamp is included6 and not the whole nSequence

field.

For example, we can create a locking script with CSV with a value of 10 blocks and send
some funds to it (and keep sending). If we want to spend it we need to create a transaction
that spends it but also set the nSequence of the input that spends it to 10. Then, this new
transaction TXx+1 will be invalid until TXx gets 10 confirmations.

5https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
6If timestamp the 23rd bit has to exist and be set. Also note that integers in the script should be serialized as

signed integers in little-endian. Fortunately, programming libraries hide these details from the developers.

82 7.1. Timelocks

Figure 7.4: Example: script-level relative timelock.

Timelock types summary

Type Location
Time

specifica-
tion

In
blockchain

Example

nLocktime Transaction Absolute No

Similar to a will. Your heirs could
get the funds in 2040 but you
could spend them (changle will) in
between.

nLocktime
+ CLTV

Script Absolute Yes

Lock funds as part of a deal that
allows no one access until
1-Jan-2020. Used in CLTV-based
payment channels.

nSequence Input Relative No

Lock funds as part of a deal that
prohibits the other party to spend
funds until 3 months have passed
but you can.

nSequence
+ CSV

Script Relative Yes

Lock funds as part of a deal that
allows no one access until 3
months have passed. Used in
payment channels and Lightning
network

Example: create a P2SH address with a relative timelock

Since the script we are going to create is not standard we need to wrap it using a P2SH
output. Any funds send to that address will be locked for 20 blocks as well as with an
P2PKH-equivalent script. The example is borrowed from python-bitcoin-utils7.

1 from bitcoinutils.setup import setup

2 from bitcoinutils.transactions import Transaction, TxInput, TxOutput, Sequence

3 from bitcoinutils.keys import P2pkhAddress, P2shAddress, PrivateKey

4 from bitcoinutils.script import Script

5 from bitcoinutils.constants import TYPE_RELATIVE_TIMELOCK

7https://github.com/karask/python-bitcoin-utils/blob/master/examples/create_p2sh_csv_p2pkh_address.py

Chapter 7. Scripting 2 83

6
7 def main():

8 # always remember to setup the network

9 setup(’testnet’)

10
11 # This script creates a P2SH address containing a CHECKSEQUENCEVERIFY plus

12 # a P2PKH; locking funds with a key as well as for 20 blocks

13
14 # set values

15 relative_blocks = 20

16
17 seq = Sequence(TYPE_RELATIVE_TIMELOCK , relative_blocks)

18
19 # secret key corresponding to the pubkey needed for the P2SH (P2PKH) transaction

20 p2pkh_sk = PrivateKey(’cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9’)

21
22 # get the address (from the public key)

23 p2pkh_addr = p2pkh_sk.get_public_key().get_address()

24
25 # create the redeem script

26 redeem_script = Script([seq.for_script(), ’OP_CHECKSEQUENCEVERIFY’, ’OP_DROP’,

27 ’OP_DUP’, ’OP_HASH160’, p2pkh_addr.to_hash160(),

28 ’OP_EQUALVERIFY’, ’OP_CHECKSIG’])

29
30 # create a P2SH address from a redeem script

31 addr = P2shAddress.from_script(redeem_script)

32 print(addr.to_string())

33
34 if __name__ == "__main__":

35 main()

Example: spend funds from a P2SH timelocked address

Assuming that someone has sent funds to the P2SH address that we created above we can
use this program to spend it. As usual and for simplicity, values are hard-coded and no
change outputs are specified. The example is borrowed from python-bitcoin-utils8.

1 from bitcoinutils.setup import setup

2 from bitcoinutils.utils import to_satoshis

3 from bitcoinutils.transactions import Transaction, TxInput, TxOutput, Sequence

4 from bitcoinutils.keys import P2pkhAddress, P2shAddress, PrivateKey

5 from bitcoinutils.script import Script

6 from bitcoinutils.constants import TYPE_RELATIVE_TIMELOCK

7
8 def main():

9 # always remember to setup the network

10 setup(’testnet’)

11
12 # We assume that some 11.1 tBTC have been send to that address and that we know

13 # the txid and the specific UTXO index (or vout).

14
15 # set values

16 relative_blocks = 20

17 txid = ’76c102821b916a625bd3f0c3c6e35d5c308b7c23e78b8866b06a3a466041db0a’

8https://github.com/karask/python-bitcoin-utils/blob/master/examples/spend_p2sh_csv_p2pkh.py

84 7.1. Timelocks

18 vout = 0

19
20 seq = Sequence(TYPE_RELATIVE_TIMELOCK , relative_blocks)

21
22 # create transaction input from tx id of UTXO (contained 11.1 tBTC)

23 txin = TxInput(txid, vout, sequence=seq.for_input_sequence())

24
25 # secret key needed to spend P2PKH that is wrapped by P2SH

26 p2pkh_sk = PrivateKey(’cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9’)

27 p2pkh_pk = p2pkh_sk.get_public_key().to_hex()

28 p2pkh_addr = p2pkh_sk.get_public_key().get_address()

29
30 # create the redeem script - needed to sign the transaction

31 redeem_script = Script([seq.for_script(), ’OP_CHECKSEQUENCEVERIFY’, ’OP_DROP’,

32 ’OP_DUP’, ’OP_HASH160’, p2pkh_addr.to_hash160(),

33 ’OP_EQUALVERIFY’, ’OP_CHECKSIG’])

34
35 # to confirm that address is the same as the one that the funds were sent

36 #addr = P2shAddress.from_script(redeem_script)

37 #print(addr.to_string())

38
39 # send/spend to any random address

40 to_addr = P2pkhAddress(’n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR’)

41 txout = TxOutput(to_satoshis(11), to_addr.to_script_pub_key())

42
43 # no change address - the remaining 0.1 tBTC will go to miners)

44
45 # create transaction from inputs/outputs

46 tx = Transaction([txin], [txout])

47
48 # print raw transaction

49 print("\nRaw unsigned transaction:\n" + tx.serialize())

50
51 # use the private key corresponding to the address that contains the

52 # UTXO we are trying to spend to create the signature for the txin -

53 # note that the redeem script is passed to replace the scriptSig

54 sig = p2pkh_sk.sign_input(tx, 0, redeem_script)

55
56 # set the scriptSig (unlocking script) -- unlock the P2PKH (sig, pk) plus

57 # the redeem script, since it is a P2SH

58 txin.script_sig = Script([sig, p2pkh_pk, redeem_script.to_hex()])

59 signed_tx = tx.serialize()

60
61 # print raw signed transaction ready to be broadcasted

62 print("\nRaw signed transaction:\n" + signed_tx)

63 print("\nTxId:", tx.get_txid())

64
65
66 if __name__ == "__main__":

67 main()

Timelocks important caveat

Remember that nLockTime is set for the whole transaction and that it is either specified as a
block height or as block header time (Unix Epoch). Thus, if the transaction tries to spend two
inputs one with block height CLTV and the other with time CLTV it would be impossible to

Chapter 7. Scripting 2 85

spend.

Input 0:

1 OP_CLTV

Input 1:

500000001 OP_CLTV

The same would apply even for a single locking script that had both types of absolute
locking.

1 OP_CLTV OP_DROP 500000001 OP_CLTV

Relative timelocks use nSequence which is per input and thus for CSV the issue comes
up only when a single script has both types of locking.

7.2 RBF & CPFP

Replace-by-fee and child-pays-for-parent are two mechanisms that can help when transactions
are stuck in the mempool due to low fees. They probably don’t belong to the scripting section
but RBF uses nSequence, the values of which, could influence timelocks.

Replace-By-Fee

Replace-by-fee, specified in BIP-1259 is a mechanism for replacing any transaction that is
still in the mempool. It is primarily useful for re-sending a transaction of yours in case it
was stuck, e.g. due to low fees. However, it may be useful for other reasons.

Similar to timelocks it applies only to version 2 transactions and you need to set nSe-
quence to a value of 0x01 to 0x7fffffff. However, since that such a value also enables rel-
ative timelocks one has to be careful. Typically, for RBF you set the nSequence value to 1,
which makes relative timelocks irrelevant, or from 0xf0000000 to 0xfffffffd which disables
relative timelocks.

When creating transactions with the Bitcoin core software RBF transactions are opt-in. A
replaceable transaction has the bip125-replaceable flag set to yes in its JSON display. You
can make all transactions replaceable by default by setting walletrbf=1 as a node option.

To work, in addition to setting the nSequence the transaction needs to reuse one or more
of the same UTXOs10 and increase the fees.

Using the Bitcoin core wallet there is an easy way to RBF a transaction (that is, of course,
replaceable) by using bumpfee:

9https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki
10Note that this allows the new transaction to have different output addresses.

86 7.3. Hash Time-Locked Contracts

$ bitcoin-cli -named bumpfee txid=53fe...ffb4

Child-pays-for-parent

Child-pays-for-parent or CPFP is a mechanism (or trick, if you wish) for including a previous
transaction (parent) in a block by creating a transaction (child) that spends one of the UTXOs
of the parent. Miners will notice that the new transaction uses another one and will consider
both transactions’ fees when deciding whether to include it in the next block.

For example if someone sends you bitcoins but the transaction was stuck (e.g. due to low
fees) you as a recipient can create a transaction that tries to spend the bitcoins from your
address from the unconfirmed transaction. The fees of this transaction should be quite high
to properly incentivize the miner (i.e. proper fees for two transactions).

If the fee is high enough the miner will want to include the new (child) transaction and
in doing so he is forced to include the initial transaction (parent) in the same block. There
is nothing special with CPFP and can apply to any transaction. It makes use of miners’
incentives to prioritize a transaction.

The sender of some funds can use RBF to increase the fee to unstuck a transaction from
the mempool. The recipient of some funds can use CPFP to indirectly increase the fee
to unstuck a transaction from the mempool.

7.3 Hash Time-Locked Contracts

Hashlocks

A hashlock is a type of locking script that restricts the spending of an output until a specific
piece of data, e.g. a passphrase, is publicly revealed. The passphrase can be shared by any
means. All hashlock outputs using the same passphrase can then be spent. Such a locking
script would be:

OP_HASH256 <passphrase_hash> OP_EQUAL

This makes it possible to create multiple outputs locked with the same hashlock and
when one is spent the rest will also be available for spending, since, by spending one the
passphrase will be revealed). Effectively, by spending one such output you share the passphrase.

Of course, since the passphrase will become public, everyone will be able to spend the
rest of the outputs, which is not very useful. Thus, outputs protected by hashlocks are
typically also protected by specific signatures so that only the owners of the corresponding
keys could spend the remaining outputs. This is similar to what 2FA offers (something one
owns and something one knows).

Chapter 7. Scripting 2 87

OP_HASH256 <passphrase_hash> OP_EQUALVERIFY

OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY OP_CHECKSIG

HTLC

A Hashed Time-Locked Contract (BIP-19911) is a combination of a hashlock and a timelock
that requires the receiver of a payment to either provide a passphrase or forfeit the payment
allowing the sender to take the funds back. For example:

OP_IF

OP_SHA256 <passphrase_hash> OP_EQUALVERIFY

OP_DUP OP_HASH160 <receiver PKH>

OP_ELSE

100 OP_CHECKSEQUENCEVERIFY OP_DROP

OP_DUP OP_HASH160 <sender PKH>

OP_ENDIF

OP_EQUALVERIFY

OP_CHECKSIG

The above locking script would be created by both sender and receiver collaborating.
The receiver knows the passphrase, also called pre-image, but only shares its hash, also called
digest. The sender can then send some funds to that P2SH address. The receiver can claim
the funds if he reveals (in the blockchain) the passphrase. If not, after 100 blocks pass the
sender can claim the funds.

Let’s go through this scenario in more detail. Alice wants to learn some information, e.g.
a passphrase, and is willing to pay to get it. Bob has the passphrase and is willing to sell it12.
To setup an HTLC, see figure 7.5 (i), the following steps are required:

• Alice (sender) and Bob (receiver) exchange public keys

• Alice and Bob agree upon a timeout threshold

• Bob sends the passphrase_hash (digest) to Alice

• They can now both create the script and P2SH address Alice sends funds to the new
P2SH address

According to the locking script there are only two possible scenarios as seen in figure 7.5
(ii) and (iii) respectively.

(ii) Bob claims the funds and in doing so reveals the passphrase.

(iii) Bob does not claim the funds until the agreed timeout. Alice can take the funds back.
11https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
12This scenario might sound very abstract but it will make more sense in the Atomic Swaps section.

88 7.4. Atomic Swaps

Figure 7.5: HTLC setup with potential scenarios.

HTLC Applications

HTLC transactions are a safe and cheap method of exchanging secrets for money over the
blockchain. Applications include Atomic Swaps, Lightning Network, Zero-knowledge con-
tingent payments13 and potentially several others.

7.4 Atomic Swaps

Atomic Swaps is a way of trustlessly exchanging funds between different blockchains. You
can swap funds in a predetermined exchange rate. For example Alice wants to send 1 BTC
to Bob in the Bitcoin blockchain and receive 100 LTC from Bob in the Litecoin blockchain.
It is important that these two transactions effectively happen atomically, either both happen
or none.

To accomplish that we can use two HTLC contracts, one in each blockchain. The same
passphrase should be used, thus once the funds from one of the blockchains is claimed
(passphrase revealed) it can immediately be claimed in the other.

Let us describe a step-by-step example demonstrating the mechanism as seen in fig-
ure 7.6.

(i) Initial setup

• Alice and Bob exchange public keys on both Bitcoin and Litecoin.

• Alice and Bob agree upon the timeout thresholds, say 48 and 24 hours.

• Alice knows of a passphrase (pre-image) which is hashed to produce a digest; the
latter is shared with Bob.

(ii) Both Alice and Bob create a HTLC for the Bitcoin and Litecoin blockchain respectively.
The funds can be redeemed by:

• the passphrase and their counterpart’s signature, or

• by both Alice’s and Bob’s signatures.

• Alice sends 1 BTC to the Bitcoin’s HTLC and Bob sends 100 LTC to the Litecoin’s
HTLC. No one broadcasts the transaction!

13https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/

Chapter 7. Scripting 2 89

Figure 7.6: Atomic swap between Bitcoin and Litecoin blockchains.

(iii) Both Alice and Bob create a refund transaction for the funds they have just sent

• Alice creates a timelocked refund transaction that would be valid after 48 hours.

• Bob creates a timelocked refund transaction that would be valid after 24 hours.

• Both pass the refund transaction to their counterpart for their signature (satisfying
the “both signatures” clause of the HTLCs).

• They now both have a final refund transaction that is ready to be broadcasted if
something goes wrong.

(iv) Alice and Bob both broadcast the funding transaction from step (ii).

(v) Alice unlocks the Litecoin HTLC by the “passsphrase” clause of the HTLC revealing
the passphrase in the process.

(vi) Bob uses the passphrase to unlock the Bitcoin HTLC as well and the atomic swap was
successful.

Note that the above ordering is not strict in any sense. As long as the refund transactions
are both signed before the passphrase is revealed everyone is safe.

If Bob does not send the LTC, Alice will be able to get her 1 BTC back after 48 hours by
broadcasting her refund transaction.

If Alice does not send the BTC, Bob will be able to get his 100 LTC back after 24 hours
by broadcasting his refund transaction.

It is important to understand that active participation is required in this exchange. For
example, if Bob does not use the passphrase to claim the bitcoin in time after the passphrase
is revealed, Alice can use her refund transaction and also get her bitcoin back!

90 7.5. Payment Channels

Participants in an atomic swap need to inspect the blockchain for the relevant transac-
tions!

Atomic swaps allow for trustless exchange between assets of different blockchains. One
potential use case is trustless decentralized exchanges.

7.5 Payment Channels

Payment channels is a class of techniques that allows two participants to make multiple
Bitcoin transactions without committing all of those transactions to the blockchain; i.e. most
of the transactions are off-chain.

The Bitcoin wiki lists14 several approaches to implement Payment Channels. We will
only go through some of them including the one currently used in the Lightning Network.

• Nakamoto high-frequency transactions

• Spillman-style payment channels

• CLTV-style payment channels

• Poon-Dryja payment channels

• Decker-Wattenhofer duplex payment channels

• Decker-Russell-Osuntokun eltoo Channels (eltoo; requires SIGHASH_INPUT)

Spillman-style payment channels

TODO

CLTV-style payment channels

TODO

Poon-Dryja payment channels

TODO

7.6 Exercises

Exercise 7.1 In section 7.1 we created an address for a relative timelock. Now create
an address that locks the funds with an absolute timelock some time in the future (use
block height or timestamp).

14https://en.bitcoin.it/wiki/Payment_channels

Chapter 7. Scripting 2 91

Exercise 7.2 In section 7.1 we spent from an address with a relative timelock. Now
create a script that unlocks the funds from an address with an absolute timelock like
the one created in the previous exercise.

Exercise 7.3 Implement the example HTLC scenario of section 7.3. Create the appro-
priate scripts for both Alice and Bob.

Exercise 7.4 Write the HTLC locking script that Alice needs to create for the atomic
swap in step (ii) as described in section 7.4.

Exercise 7.5 Write the unlocking script that Alice needs to use to claim the litecoin in
step (v) as described in section 7.4.

Exercise 7.6 Try to design a platform that would facilitate atomic swaps between
Bitcoin and Litecoin. Think about it holistically and in practical terms; i.e. how would
you design and implement such a platform. Keep a note of all the potential difficulties
that might come up and try to find solutions.

8. Advanced Topics

8.1 Lightning Network 92

8.2 Sidechains 92

8.1 Lightning Network

8.2 Sidechains

92

Chapter 8. Advanced Topics 93

