
HASH FUNCTIONS

Dr Keir Finlow-Bates
Chapter extract from

Move Over Brokers Here Comes The Blockchain

Hash Functions
You don't do what you want to

But you do the same thing every day
Jello Biafra, 1987

wo chapters ago I said I would explain what a hash-linked list
was, and why hash-linked lists, and indeed hashes, are of

fundamental importance in the blockchain world. As is usually the
case with blockchain, hash-linked lists only offer one part of the
solution, which is to provide non-repudiation. The other part is
called consensus – either through proof of work or through some
other means.

T

I’ve just read back over that paragraph, and realized that there
are too many terms and concepts packed into too few words. It’s the
kind of paragraph that makes sense if you already understand the
individual concepts and the effect of their combination, but if you
don’t, then it’s gibberish.

So let’s back up, forget about computer science and
cryptography concepts, and start by looking at something in the
familiar social world, namely what non-repudiation is.

2

That never happened!
When it comes to complicated social interactions, people often

go back on their word. A handshake deal turns into an argument
after one party fails to deliver to the other, or delivers something
that the second party considers insufficient.

That is why society invented contracts – agreements, usually
(but not always) drafted in writing, in which all the terms and
conditions are laid out, along with costs, deadlines, deliverables,
and above all penalties if the contract isn’t honored. Contracts are
backed by the courts, and hence governments with their ultimate
threat of force: either imprisonment or the seizure of assets.

repudiation: the act of refusing to accept some-
thing or someone as true, good, or reasonable.

— the Cambridge Dictionary26

So what happens if one party claims that they never signed the
contract? Or that the sheaf of papers being waved by the other party
has been altered, and the terms currently being presented weren’t
the terms that were initially agreed on?

This is known as repudiation, and a number of techniques to
ensure the opposite, namely non-repudiation, have been used
through history to avoid this, the two most obvious being signatures
and witnesses.

Signatures do not just include scrawling your name in your own
handwriting or style on a piece of paper. In days gone by things
called “seals” were used. Devices such as signet rings or chops
(symbols carved into jade or soapstone) for making unforgeable
marks in wax or with ink, presumably by the individual who had
control of the seal. And in these modern days, we have digital
signatures, in which the controller of a unique sequence of ones and
zeros can use software based on cryptographic algorithms to create

3

yet another sequence of ones and zeros that only the holder of a
digital signing key could have produced.

Witnesses are usually people with “skin in the game”, either
notaries who are effectively paid witnesses, or other professionals
such as lawyers, doctors, or priests, who have something to lose
from lying about their earlier attestation.

There is, however, a third way. You can put the document out in
public, which means that enough people will have a copy for future
comparisons, in which case you are using the world as a witness.
But what if your document is very large? Or even worse, what if you
want to prove at a later date that you had the document in your
possession, but it contains confidential information that you can’t
simply publish on the World Wide Web?

Cryptographic hash functions to the rescue!

Shorter is better
To begin with, you need to understand what a hash function is:

an algorithm that takes as its input a data file of any size (so it will
work on any kind of data, whether it’s a short string of letters and
numbers, or a large video file), and outputs a fixed-length number.
Furthermore, if you put the same data in at a later date, you get the
same output back. Hash functions don’t change their mind over
time, and there is no true randomness built into them.

The initial use of hash functions was for indexing and then
searching for data. An analogy is car number plates. It is much
easier to report a car to the police, and for them to subsequently find
it if you can give them the number on the plate. Describing the
make, model, color, and distinguishing marks such as fluffy dice
hanging from the rear-view mirror doesn’t really cut it.

In Finland, number plates are typically two or three letters, a
dash, and one, two, or three digits.

However, number plates are simply serially assigned, so there is
no algorithm used to generate them. The authorities could have used
a simple formula based on the vehicle identification number (VIN),

4

instead. The VIN itself can’t be used, because it is 17 characters
long, which would make it too small to read if put on a number
plate.

A simple example would be to use the first three letters of the
VIN and sum each pair of digits of the serial number (modulo 10)
to get the last three digits of the plate. So for example, a vehicle
with a VIN of SCEDT26T8BD005261 would be fitted with a much
shorter number plate that reads SCE-077, as shown in figure 1.

Here you can immediately see one of the problems with hash
functions – different inputs can map to the same output. The first
three characters of a VIN number represent the “world
manufacturer identifier”, and the last six digits are the vehicle serial
number, so two identical models of the car made in the same
factory nine units apart will often end up with the same number
plate.

In the computer science world, this is described as a collision,
and a good hash function is supposed to be collision-resistant. Two
different inputs to the hash function should have an extremely low
probability of producing the same output. Our number plate
algorithm obviously doesn’t satisfy that requirement, so it’s not a
good hashing function.

Figure 1: An example of a hash function

5

The fingerprint of a file
Sometimes a hash of a file is described as a “fingerprint”, in that

it’s often a lot smaller, but it is almost uniquely linked to the file.
Almost.

There is a very simple proof that a hash function cannot
guarantee uniqueness. Consider a hash function that outputs an
eight-digit number for any input. That means that the outputs can
range anywhere from 0 to 99,999,999, so there are a total of 100
million possible outputs. However, there have been over 100 million
books published27. This means that if you fed each book in turn into
the hash function and were amazingly lucky in that when processing
the first 100 million books there were no two books with the same
hash output, it is guaranteed that once you feed in the 100,000,001st

book, it has to have the same output as one of the previous books.
However, the cryptographic hash functions that are used to

produce fingerprints for files have much bigger outputs. For
example, the RIPEMD-160 hash function outputs a 160-bit number,
which means there are about 1.5 × 1048 possible outputs. Roughly
speaking, that’s comparable to the number of atoms that constitute
the Earth28.

Another very popular blockchain cryptographic hash function is
called SHA-256, and it has as its output a 256-bit number, of which
there are about 1.15 × 1077. For comparison, the current estimate as
to how many particles there are in the entire visible universe is about
1080, so that’s one distinct output for every thousand particles we
know of (or rather, can estimate the existence of29). In any case,
they’re both numbers that are so big that they make the USA’s
budget deficit of $3 trillion look like pocket change, even if you
count it in cents30.

Although there may be a lot of 256-bit numbers, any individual
number can be represented very simply using a 16 by 16 grid, as in
figure 2. When represented as such, it does start to look a bit like a
fingerprint, or perhaps four chess boards glued together in a bigger
square.

6

Figure 2: Grid representation of a SHA-256 hash output

Cryptographic hash functions
In the previous section, I subtly switched from talking about

“hash functions” to “cryptographic hash functions”. To qualify as
the latter you need to have a few extra properties. First, let’s recap
what we have so far:

1. A hash function takes as an input some data of any size
(even empty data), and invariably produces an output of a
fixed length,

2. Outputs are deterministic, which means that the same input
gives the same hash output time after time, even if you
perform the hashing again days, weeks, or years later.

7

3. Collisions (identical hash outputs for two different inputs)
are rare.

Cryptographic hash functions also require that:

4. When given a hash output, it is practically impossible to
produce an input that when hashed returns that output.
Cryptographic hash functions are meant to be irreversible.
That’s why they are also sometimes known as one-way
functions or trapdoor functions.

5. It should be practically impossible to find two different
inputs that give the same output (this is kind of a
combination of items 3 and 4 on this list, but there is a
subtle difference that should become clearer later).

6. Two very similar inputs should, generally speaking, produce
very different hash outputs. For a cryptographic hash
function to work that way, it has to act in what seems like a
random fashion, without actually being random. Instead,
cryptographic hash functions should be pseudo-random. See
item 2 on this list.

Some papers and textbooks also list a further property, namely
that it should be fast and easy to compute the hash output from an
input31. However, that is not always the case. Fast and easy is a
relative term, and for some uses, especially in blockchain, we want
the computation of a hash to take a bit of effort. There will be more
on that later as well.

Magical elves under toadstools
The ideal cryptographic hash function would be the algorithmic

equivalent of a magic elf sitting under a toadstool, with a notebook,
a pen, and a coin. We will call him ELF-256.

8

ELF-256 sits there patiently waiting for someone to pass him a
message. On receiving the message, the elf springs into action
infinitely quickly (he’s a really fast elf):

He checks in his notebook to see if the message is already in
there.

• If it is not, he writes it down in his book, and tosses the
coin two hundred and fifty-six times, writing down the
result after the message for each coin toss: a 1 for heads,
and a 0 for tails.

Then he checks to see if that particular sequence of 1s and
0s has already previously been generated for an earlier
message. If it has, he crosses it out and repeats the coin
tosses again, and if necessary, again and again until he is
sure a new unique number has been generated for the new
message.

• If, on the other hand, the message is already in the book, he
looks up the number he wrote down after it the previous
time he saw it.

In either case, he then pauses for a fixed duration of time –
perhaps a microsecond – and then reads back the list of
ones and zeros that are jotted down in his book to the
person who handed him the original message.

Oh, and finally, ELF-256 jealously guards his notebook with
magic, so no one else can see what is written on the pages.

Why is ELF-256 a perfect cryptographic hash function? We can
backtrack through our list of properties and see exactly why:

1. The elf always reads out exactly 256 digits, regardless of
the length of the message passed to him.

2. If the same message is passed to the elf sometime later, he
will read out the same number that he generated the first
time he saw the message.

9

3. The elf never uses the same output number twice, so there
can never be any collisions. Well – there can be, but only
once he has generated 2256 outputs, which as I previously
demonstrated is an almost unfathomably large number.

4. Imagine you are trying to find a message the elf responds to
with a sequence of 256 ones. The chance of the elf tossing
that many heads in a row is 1 in 2256. Given that the elf takes
one microsecond to respond, the odds are that it will take
about two thousand vigintillion years*. For comparison, the
universe has only been in existence for about 14 billion
years. In short: it’s not going to happen.

5. The elf does not reuse output numbers, so two different
messages can never have the same output.

6. The outputs are generated randomly, so there is no relation
between the original messages and the outputs. As a result,
two very similar messages are going to get two very
different responses from the elf.

Cryptographers who work on designing cryptographic hash
functions are trying to come up with functions that behave as well as
ELF-256, but competing with magical elves is a difficult task.

Oh the wonderful things that a hash
can do

If you have paid enough attention over the last few pages, you
should have a decent enough understanding of how cryptographic
hash functions work and be able to appreciate how amazingly useful
these things are in all sorts of areas of computing. We have already
looked at the fact that you can take a confidential document, put it
into a cryptographic hash function like SHA-256, and then make the
two hundred and fifty-six bit output number public knowledge. At a
later date, you can produce the original document, and anyone can

* A vigintillion is a 1 followed by 63 zeros.

10

hash it with SHA-256 to check that it is indeed the real deal, and
has not been tampered with. If you published the hash output in the
notices section of a newspaper, you even have a time-stamped
record of when you had the document in your possession.

And the best and most interesting uses, in my opinion, are when
you start hashing the output of previous hashes. What that means is
that you feed an input into a cryptographic hash function, and then
you take the output you get and put it back into the hash function
again. And sometimes again and again. In the next four subsections,
we will have a closer look at some of those applications.

One time hash pads
Up until a couple of years ago, Finnish banks used “code cards”

to allow their customers to securely log in to their online bank
accounts. The card would have a list of a hundred different four-
digit numbers, and each time you used one, you would cross it off
the list, and the next time you logged in you would use the
following unmarked number. When you ran out of numbers, the
bank would send you another card in the post. Now that they’ve
finally switched to authenticator apps, I’ve got a bunch of them
sitting in the drawer of my desk that I should probably throw away,
but I’m waiting until winter to burn them in the fireplace. You never
know if they might still work, after all.

Such cards are known as one-time password pads, and they are
usually constructed randomly. However, there is another way to
make them using the repeated application of cryptographic hash
functions.

In figure 3, I show what happens when the message ‘the quick
red fox jumped over the lazy brown dog’ is passed into the SHA-
256 hash function, and the output is recorded in the next row of the
table. Each row that follows contains a hash of the previous row.

 I’ve entered the numbers in hexadecimal to make sure they fit
in the table. As modern humans, we tend to use decimal notation for
numbers (our digits are 0 to 9, presumably because we have ten

11

fingers), but note that not too long ago the Romans used letters like
I, V, X, C, and M instead. So there’s nothing special about the way
we choose to write numbers today. Hexadecimal is a way of writing
numbers if you were fortunate enough to be born with sixteen
fingers (the letters a, b, c, d, e, and f are used to represent the extra
digits), and as it happens, computers like to pretend that they have
sixteen fingers. But don’t worry about it too much. Just think of it as
writing numbers in a slightly different way.

Back to the story at hand: each time the output is fed into SHA-
256 again, to get another number, and so on for seven more goes.
You can keep hashing outputs as long as you like, to make a longer
and longer one-time hash pad, depending on how many times you
think it will be used.

You can try it for yourself, as there are plenty of online SHA-256
hash generators32. One thing to note: your first input is text, but the
output is a hexadecimal number, so when you copy/paste it into the
input box, you need to select the input type to be hex.

You may be wondering, what is the point of all of this? How
does it work? To start with, you need to get the last entry in the table
to the entity that you want to authenticate yourself to (and there is
more on authentication in the chapter titled “Error: Reference source
not found” on page Error: Reference source not found). And then,
whenever you want to prove to that entity that they are talking to
you rather than someone else, you give them the entry in the table
just before the one they already have.

12

the quick red fox jumped over the lazy brown dog

dd77f952e29e4a64c2bf5e27993fd2ebf1b0f378237abd299239bb4454d028b8

355a1ef19cb2e02ca528f60a8d9dfe533cb37e0b52ace3fabf960bd710904fe5

69c3610d92b04e41ef0937b27b06bfbea7e55f7716dd534e354f99041e8fff72

324e14abb32ee21573b5c1bdd7d4dff1d485c0ab030bd2d4c9780d5858c08dda

1c554d67a79a27b12a43d7e3e2b212f468312541cefda684c7678ea819745b24

5470bbf5478dc15bb25cd095bffb09bed25abb20063fc7e914d7e28ab80ac40f

665593ea8363949abcd3208a8470cd35be42f30809fd2ef8254244c585161136

Figure 3: A hash function-generated one-time password pad

So what happens then? Well, they take the password you
presented them with, and simply hash it with the SHA-256
function. If the result is the previous password that they already
have, then they know it is you. Do you remember cryptographic
hash function property number 4? It’s pretty much impossible to
create an input that, when hashed, gives a specific output. As a
result, it’s more than reasonable for the bank to believe that the
person who gave them the precursor number to the output they
previously had is the same person. And that’s the point of
identifying yourself with a one-time password pad: to prove you are
the same person they were previously talking to.

Hash linked lists
Imagine you are the proprietor of a popular newspaper. Every

day your presses print out a new issue with the company masthead,
the date, and the news of the day.

And then one day you discover that an eccentric billionaire has
decided to take one of your earlier editions from two months ago,
change one of the stories so it says something completely opposite
to what the genuine issue actually said (perhaps it is even libelous),
and has printed millions of copies. And not only that, but he then
paid an army of highly trained ninjas to break into all the houses of

13

your loyal subscribers in order to replace their cherished copies with
the false ones.

That may sound like a far-fetched scenario, but in the online
world it is actually not that hard to achieve – printing digital copies
costs virtually nothing, and hacking allows a single highly skilled
computer ninja to break into many digital accounts. How can you
protect yourself against this scenario?

Cryptographic hash functions to the rescue! These functions
allow us to produce something called a “hash linked list”. If each
edition of the newspaper contains a paragraph or notice that includes
a hash of contents of the paper published the day before, then the
eccentric billionaire has a much more difficult task on his hands.
Why is that the case?

Because your newspaper history is now a hash-linked list. If a
paper from sixty days ago is altered, then its hash is going to be
different. That means that the paper from the next day needs to have
the notification containing that hash altered too, which alters the
hash of that paper. And so on, and so on, through all the papers right
up to today.

Suddenly our eccentric billionaire doesn’t just have to make a
change to the article that he disliked from two months ago, but he
has to change every single newspaper from then on. That’s a lot
more work, and furthermore, with another application of
cryptographic hash functions, namely “proof of work”, we can make
it even harder for him, to the point where he might as well not
bother.

Proof of work
The fact of the matter is that in the scenario presented in the

previous section we made it a little bit harder for the eccentric
billionaire to subvert our newspaper, but we didn’t make it
impossible. Instead of simply replacing one issue of the paper, our
hash-linked list means that he has to replace sixty issues (or more, if

14

the story that he hated was further back in the past). That’s a bigger
pain in the neck, but it can still be overcome.

This is where “proof of work” properly enters the story. The
concept was first invented by Dwork and Moni in 1993 as a means
for combating spam emails33. Jakobsson and Juels14 then coined the
term “proof of work” to describe the idea and expanded on it, and
Hal Finney adapted it to enable the creation of tokens backed by
proof of work34, the precursor to Bitcoin.

Satoshi Nakamoto’s insight was to apply that concept to hash-
linked lists in order to make it harder and harder over time to
rewrite the past, and to put the whole thing on a peer-to-peer
network, thereby allowing anyone to view the data in the list, verify
that it is correct, and even assist in ensuring so much work is done
when adding more data that no one person can go back and re-write
it.

In other words, with a historical record stored in a hash-linked
list that is secured by proof of work, the further back in the past the
alteration you want to make is, the harder it is to perform the
rewrite. You have to redo all the work from the point that you want
to change, all the way through to the future.

So how does proof of work actually work in practice? Look
back at figure 3 - all those entries below the passphrase “the quick
red fox jumped over the lazy dog” are numbers. The fifth number
starts with 1, and it’s therefore the smallest number on the list. That
is what proof of work is aiming at – finding a hash output that is
below a target level; one that is small.

Hang on, if I hash the phrase, and I get a big number, then that’s
it. How am I going to get a better cryptographic hash output? The
answer is that you have permission to add some “junk” at the end of
the phrase. In cryptography, this is called a nonce, which is short for
“number used only once”.

Instead of feeding the output of the hash function back into the
SHA-256 hash function, as we did in the previous section, let’s feed
our original sentence in again and again with different endings, as
shown in figure 4, until we get an output that starts with 0:

15

This input’s hash: Starts with:
the quick red fox jumped over the lazy brown dog 0 3eec2267...

the quick red fox jumped over the lazy brown dog 1 30a16983...

the quick red fox jumped over the lazy brown dog 2 Be2cf376...

the quick red fox jumped over the lazy brown dog 3 12e08101...

the quick red fox jumped over the lazy brown dog 4 729107f6...

the quick red fox jumped over the lazy brown dog 5 297e5ae2...

the quick red fox jumped over the lazy brown dog 6 9e24b096...

the quick red fox jumped over the lazy brown dog 7 3f938d83...

the quick red fox jumped over the lazy brown dog 8 0ca85b7d...

Figure 4: SHA-256 hashing of a phrase with an added nonce

That didn’t take long – only nine tries. Because the SHA-256
cryptographic hash function acts as a random number generator, on
any individual attempt the odds are 1 in 16 that we will get an initial
digit of 0 (remember, in hexadecimal, there are sixteen possible
digits). That means that we have a 50% chance of finding a suitable
nonce to go with the sentence within eleven goes. Of course, we
could be unlucky and have to try hundreds of times, or we could be
lucky and find a suitable nonce in one go.

What if we are looking for an output that starts with two zeros?
The odds for an individual attempt are 1/16 × 1/16, or 1/256. To
have better than even odds of finding the suitable nonce we are
going to need to try 178 different nonces, so it’s probably going to
take more work. And if we want to find an output with eight leading
zeros, well for any individual attempt we have a chance of less than
one in four billion that we will luck out and find it. That means to
have a better than 50% chance of finding a suitable nonce, we are
going to have to try hashing over three billion times.

In other words, the smaller the hash output is required to be, the
more work needs to be done to find it. If your computer can perform
a SHA-256 hash in 1 microsecond, and I refuse to read an email you
send me if it doesn’t hash to a number with eight leading zeros, on
average it is going to take you about 50 minutes to find a suitable
nonce to add to your message that satisfies that requirement. And it
only takes me 1 microsecond to check that you have done the work.

16

And that is how proof of work could be used to prevent spam.
Similarly, returning to our newspaper example, an individual issue
can be made harder to forge by requiring that a nonce is added to
the last page, such that the full contents of the newspaper, when
hashed with SHA-256, produce an output with eight leading zeros.
Now our eccentric billionaire would have to do fifty hours extra
hashing work if he wanted to change an issue that came out sixty
days ago. But the downside is that the newspaper office is delayed
by about an hour each day when issuing the next paper because
they have to do the extra work too. Fortunately, they get to do it day
by day, rather than in one big go.

Merkle trees
We’ve looked at repeatedly hashing a passphrase to generate a

one-time password pad, hash linking lists of blocks of data by
including a hash of the previous block in the next block, and
making people (or rather their computers) prove that they have
done some work by challenging them to add some extra data to
their messages, which causes them to hash to a low number output.
What else can be done with cryptographic hash functions? I will
start with an analogy:

Imagine a fictional country, where all the residents are totally
obsessed with the law, and the laws that are passed by the
parliament or that arise from case history out of court decisions are
gathered up and bound in special books.

The funny thing is that the contents of those books then become
the absolute law of the country, which means that if somebody can
tamper with one of them and add a rule that says that “people
named Gary are allowed to conduct bank heists with impunity”,
then anyone called Gary is allowed to rob banks without fear of
prosecution. Criminals could tamper with the laws in order to get
away with their crimes!

The residents have come up with a very clever scheme to
protect these books from such tampering without it requiring an

17

immense amount of effort. The first thing is that they have an
amazing machine that you can feed the text of a book into and it
produces something similar to an ISBN number as an output that
you can stick on the book, but the ISBN number that is produced is
unique to each different form of text. It’s a cryptographic hash
function machine. If you take a book and you change one letter and
then put it into this machine, you get a completely different ISBN
code out.

The second thing about it is that you can't engineer a book to
give a specific ISBN code - they're almost random in that respect.
Again, evidence that the machine is a cryptographic hash function.

What the inhabitants of this country could do is to put all of the
books in a library, and then gather all the texts from all the books,
feed them into the machine, and make one single code for the whole
library. That would ensure that in the future if tampering was
suspected, they could repeat the whole arduous process, and if the
second code matched the first one, they'd know that all the books
were intact and no one had messed about with them.

But this is terribly inefficient – it means that every time you
suspect a single letter or word in one book has been changed, you
then have to go and collect all the books in the whole library from
all the different rooms in order to ensure everything is okay.

Instead, they have taken the following approach:

• They group books into pairs. Each book is run through the
machine and gets its own code, which is stuck on the back
of the book, and then the two books are put on a shelf.

• The pair of codes off the back of the two books are
concatenated (that means written one after the other) and
that new concatenated code is fed into the machine to get
yet another code. The shelf is labeled with that code.

• Each bookcase has two shelves. They repeat the process
with the codes on those shelves: they take a copy of the
codes of the front of the shelves, concatenate them, and put

18

them in the machine to get a new code, which they stick on
the bookcase.

• They have two bookcases in each room. Again, the same
process is conducted with the codes on the bookcases, in
order to get a label for the room's door.

• And there are two rooms on each floor of the law library so
in order to label the floor, they use the codes from the two
doors and then finally they put a label on the front of the
law library that is the codes from the two floors
concatenated and run through the machine.

I’m sure you understand what the process is by now. but you
may be wondering, “Why are they doing this?”

If there's a court case, and it requires the laws from book
number three, the court officials don't have to go and gather up all
the other books to check that just the relevant book has not been
changed. They take book number three and check that its code, or
hash, matches. That means running one book through the machine,
and verifying that the output matches the sticker on the back of the
book. Now somebody could have gone in and changed book
number 3, then run it through the machine and put a new code on it.
But what the court officials can now do is look at the number on the
other book next to it, check that's okay, and that together they hash
to the shelf label.

Of course, somebody could have changed the shelf label as
well, but then the court officials take the shelf label below and they
concatenate and check again, and then they check that the two
bookcase labels give the room number and that the two room
numbers on the floor give the floor number and finally that the two
floor numbers give the number on the front of the law library. It still
sounds like a lot of work, so let’s put it in a list:

1. Check that book codes hash to shelf code,

2. Check shelf codes hash to bookcase code,

19

3. Check bookcase codes hash to room code,

4. Check room codes hash to floor codes,

5. Check floor codes hash to library code, and

6. Check library code hasn’t changed.

That’s a total of six basic operations instead of collecting all 32
books (did you work out how many books a library of this type can
hold?) in order to ensure that the law in one book is still correct.

There is one final piece, namely ensuring that the code on the
front of the library is correct, but as it is displayed out in public on
the street (and perhaps they have security cameras pointed at it too),
the chances of someone called Gary making all those changes and
then getting up on a ladder in broad daylight without being seen are
slim indeed.

What I have described is called a Merkle tree (because it was
invented and patented by Ralph Merkle35), and it should be pretty
obvious that in blockchain systems such as Bitcoin the books
correspond to transactions. The code on the front of the library,
which in cryptographic terms is called the root of the Merkle tree, is
stored in the block header to ensure it cannot be tampered with,
making the library the equivalent of a blockchain block.

These days it is a very common practice to use Merkle trees to
allow people to verify a snippet or chunk of data has remained intact
and unaltered, but without having to download lots and lots of other
irrelevant transactions. You only have to check a single branch of
the Merkle tree, rather than the whole tree. As a result, Merkle trees
are used in such places as the peer-to-peer file-sharing system
BitTorrent, the anonymous communication network Tor, the
distributed version control system for software development called
Git, and of course: blockchains.

20

	Hash Functions
	That never happened!
	Shorter is better
	The fingerprint of a file
	Cryptographic hash functions
	Magical elves under toadstools
	Oh the wonderful things that a hash can do
	One time hash pads
	Hash linked lists
	Proof of work
	Merkle trees

