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Abstract—The number of embedded devices that connect to
a wireless network has been growing for the past decade. This
interaction creates a network of Internet of Things (IoT) devices
where data travel continuously. With the increase of devices
and the need for the network to extend via fog computing, we
have fog-based IoT networks. However, with more endpoints
introduced to it, the network becomes open to malicious at-
tackers. This work attempts to protect fog-based IoT networks
by creating a platform that secures the endpoints through
public-key encryption. The servers are allowed to mask the
data packets shared within the network. To be able to track
all of the encryption processes, we incorporated the use of
permissioned blockchains. This technology completes the security
layer by providing an immutable and automated data structure
to function as a hyper ledger for the network. Each data
transaction incorporates a handshake mechanism with the use of
a public key pair. This design guarantees that only devices that
have proper access through the keys can use the network. Hence,
management is made convenient and secure. The implementation
of this platform is through a wireless server-client architecture to
simulate the data transactions between devices. The conducted
qualitative tests provide an in-depth feasibility investigation on
the network’s levels of security. The results show the validity of
the design as a means of fortifying the network against endpoint
attacks.

Index Terms—Security, Privacy, Internet of Things, Permis-
sioned Blockchain, Fog computing, Fog-IoT network

I. INTRODUCTION

AN Internet of Things (IoT) network usually consists
of many wirelessly connected devices with a common

server [1]. As networks grew, variations in the IoT architecture
emerged. One example is called the fog-based IoT network.
It is an IoT architecture that makes use of fog computing to
extend the network and expand its scope [2]. The design uses
fog devices to offload network tasks from the central servers
locally. By doing so, there is an increase in the processing
capacity of the central server, and network traffic is more
manageable [3].

However, even though Fog-IoT networks optimize the stan-
dard architecture through decentralization and reallocation, it
also introduces vulnerabilities in its security. In this case, it
is the introduction of local servers [3]. Adding a new device
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to the structure creates potential entry points for malicious
attacks. Also, local servers having similar functionalities and
capabilities are just as crucial for the network domain. For
instance, a medical centre that integrates Fog-IoT into its
system can extend its services further into more remote
areas [4]. By taking advantage of the scope that fog computing
can enable the IoT network, more users from farther places can
access its health services remotely [5]. However, the further
the connection between the server and user, the harder it is
to maintain proper security of its communication. Also, with
the strategic placing of local servers away from the central
server, it adds another layer to the security that needs to be
maintained [6]. With everyone’s personal information such
as; health records and test results being stored digitally in
a network, adding more vulnerable endpoints poses a threat
to their privacy. By focusing on reinforcing these endpoints,
a Fog-IoT network can remain optimized for network system
administration while being secure from malicious attacks [7].

This work proposes a platform that can protect these
endpoints by regulating the devices that can access the shared
data. As such, we present through this journal the following
contributions:

• An overview of blockchains in Fog-IoT, its uses and
advantages towards improving the network.

• A wireless network platform that focuses on reducing the
current security vulnerabilities in Fog-IoT network sys-
tem administration. We chose to incorporate blockchain
technology, which is known for its strong immutability
and automation [8] as the central data structure of the
network. The server will use it to store and regulate data
transactions within the platform.

• The proposed platform uses permissioned blockchains
in aiding Fog-IoT network security. Most blockchain-
based cryptocurrency implementations use Bitcoin and
Ethereum due to their security towards tampering [9].
However, our platform uses a less common variation
called a permissioned blockchain. This design choice
allows us to create an architecture that only recognizes
devices through a trusted authentication [10]. By using
this variation of blockchain technology in our platform,
we can create an authorization system that will only grant
network data access to pre-authorized devices [11].

• A discussion on the different cryptographic techniques
used against IoT network attacks such as; public-key
encryption and one-way hashing. Also, we talked about
their contributions towards securing that data within the
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server.
• A data packet encryption structure using a combination

of public key and one-way hashing cryptographical tech-
niques to reinforce the data exchange within the network.
This design will allow the blockchain to secure the
network by making data only accessible to authorized
devices.

The rest of this paper is as follows: a detailed discussion
of each process used in the implementation in Section II.
The described experimental design and methodology of the
architecture in Section III. The security analysis and the
evaluation are in Section IV. Finally, conclusions are in
Section V.

II. BACKGROUND AND RELATED WORKS

A. Security in Fog-IoT

With the growing number of devices, a network needs to
expand its scope. One of the resulting architectures makes
use of fog computing to extend the network. By reallocating
resources closer to the devices through a local server, more
services become accessible [12]. As a result, more users
can effectively connect to the network without connection
constraints. However, although it is easier to share data,
it exposes the network to potential attacks through these
newly introduced endpoints. Examples of these attacks are
man-in-the-middle attacks and spoofing attacks [7]. A man-
in-the-middle attack is when a third-party user can obtain
shared data between two devices through a compromised
transmission [13]. By attacking the communication medium,
this attacker can indirectly eavesdrop on the data exchange
without being detected. As for spoofing attacks, it is when
an attacker disguises itself as a trusted device and gains
authorized access to the network [14]. If the malicious user
is seen as a trusted device by the network, it gives access
to its data. These attacks show the ability of attackers to
take advantage of a vulnerable endpoint. Therefore, with the
nature of a fog-based IoT network having a higher number of
endpoints.

A standard IoT network security layer consists of four
foundations that govern the vulnerabilities in a standard IoT
network [15]. These are endpoint protection, security moni-
toring and analysis, security configuration management, and
communication and connectivity protection. By focusing on
one of these foundations, we can increase the security of any
network. We chose to focus on endpoint security since, in
a fog-based IoT network, there is more data exposure along
the edge of the network [16]. This issue opens an avenue
for malicious attacks. The platform proposed in this paper
attempts to reinforce these endpoints by creating a more
secure communication layer for the transmitted data within
the network. This design is made possible by integrating
blockchain technology into the Fog-IoT server infrastructure.

B. Blockchain Technology

A blockchain is a form of data structure that is copied and
shared among multiple nodes [17]. Each chain is a linked list

of blocks with a structural design based on the data needed
to be stored. However, this structure is unique. Blocks can
only be added to the chain and cannot be taken from it once
added. This design makes a blockchain an immutable data
structure that contains time-stamped records that are protected
cryptographically [18]. Since a blockchain is shared, multiple
distributed copies of the chain where a network of chains can
cross-check each other to verify that all chains are the same.
Before each built block, all participants decide based on a
consensus type of voting. This voting system chooses where
the data is stored. To be able to cast a vote, a transaction fee
needs to be paid by each participant. This process is called
“mining”, and the participants in the voting system are “min-
ers” [19]. With these, blockchain technology appears to be
a novel idea that can compete with current data-management
systems. However, some traditional database technologies can
still outperform them based on their usage. This paper chose
to use blockchains due to their immutability.

A blockchain is an immutable data structure. Most records
within its ledger are made irreversible with one-way crypto-
graphic functions [20]. Immutable means that the transaction
history will be hard to change, which creates a reliable
structure between nodes. This feature generates trust within
the system since the shared records are immutable and only
validated through a consensus. Unless there is a majority in
control, tampering with any of the data will be difficult. This
system makes this structure stronger than most traditional
databases due to its unique security against attacks. Setting
within the Fog-IoT network can lead to a loss of control
over its data and users. Inconsistencies created by tampered
network settings will lead to the whole network having
unpredictable behaviour. To avoid this, the immutability of
data within a blockchain can help maintain the network’s
integrity. As a result, it is harder to manipulate the data in
a blockchain. All sensitive information is in a structure that
is hard to modify. However, most know blockchains through
their proof of work system. The device that has the most
processing power gains access to the structure and its data.
Our paper decided to choose another form of blockchain that
compliments our intentions to overcome this reliance. There
are two general types of blockchains, which are public and
permissioned [9].

1) Public Blockchain: A public blockchain is a type that
does not need to have a trusted authority to manage its data.
However, due to this lack of trust, the database is slower and
less efficient. This issue is because of the need to coordinate
with many anonymous participants and have no affiliation.
As a result, there is an introduction of uncertainties upon
implementing a public blockchain. Some of these uncertain-
ties are; Who updates the software or firmware within the
network? How much does it require to add a transaction to
a block and add it to the chain? How long does it take for a
decision to be made when appending to a chain? How credible
are these participants? Public blockchains decide whether a
device can participate in the voting process once it processes
a given complex algorithm. This protocol sets demand for high
processing power from its miners. This type of blockchain is
less suitable for IoT network implementations due to the low-
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end nature of most IoT devices and sensors. Therefore, it is
more preferred for developers to use permissioned blockchains
instead [21].

2) Permissioned Blockchain: A permissioned blockchain
uses a trusted protocol that pre-authorizes the devices that are
allowed to access its data [19]. This protocol filters these users
through an access layer. As a result, only devices permitted by
the ledger through a registered ID can gain control over the
blockchain and its services. In comparison to its public variant,
this structure provides a better means of managing its users.
However, due to its tendency to have a more fixed number of
miners, it reveals to be less dynamic. By having its trusted
devices predefined, adding them will not be as easy as public
blockchains. Although this limitation makes it seem more of
a constrained version of the public blockchain, it is a trade-
off between data security and user throughput [22]. Public
blockchains can cater to more collections of devices but limit
their users due to their high demand for processing power.
However, permissioned blockchains are better at securing
their users but limited by their capacity due to their trusted
protocol. However, permissioned blockchains are better for
IoT networks due to their advantages in data privacy [10].
Therefore, a permissioned ledger allows for a more secure
alternative to controlling data since information is only open
to a select number of participants [17].

However, data is visible to anyone who has access to the
network. A restriction still needs to be established toward
unwanted endpoints within the server. Once an endpoint gains
access to the network via the permissioned ledger, data is
made accessible. To reinforce the security of the data and
entities within the platform, we turn to cryptography. This
integration can limit the privacy issues of transparency.

C. Public Key Encryption

Cryptography is a way of creating schemes and protocols
that ensure secure communication between users [23]. In IoT,
without cryptography, most networks are insecure. This issue
means that there is no guarantee that transmissions are private
and authentic. Cryptography allows a secure communication
layer around wireless networks such as IoT servers. In this
proposal, the platform uses a combination of; public-key,
symmetric, and one-way hashing cryptographical techniques.

Public-key, or asymmetric cryptography, is based on each
device having a key pair [24]. These keys are related to each
other mathematically through a form of one-way encryption
but are not identical. A key pair from asymmetric cryptogra-
phy is composed of a public and private key. Private keys are
generated into public keys using an encryption method chosen
by the architecture. The public version is revealed to everyone
in the network, while the private key is kept secure within
each device. With proper encryption, it should be impossible
to decrypt a public key to discover its private key. However,
most key pairs are too big to be remembered by their users. As
a result, they are stored securely within different data storage
appropriated for every application that uses the technique. For
example, IoT systems that use public key pairs to protect
their data use the database within the cloud to store their

keys [25]. In decrypting a message, its contents are revealed
with the decrypted message to verify its validity. It maintains
the integrity of the message from the recipient to the sender
and vice-versa. Each action to encrypt or decrypt data comes
with a cost or resource for any processor. Also, a collection of
keys can become very complex once a large number of each
is stored. Therefore, network implementations of the design
make use of different optimization techniques such as fast and
parallel searching algorithms to manage the keys [26]. For our
platform, we plan to use permissioned blockchains. With its
automatability, we can handle the different cryptographical
techniques integrated.

Another way of using the key pair in IoT is through digital
signatures [27], which this platform incorporates. A user can
sign their messages and contents through their private key.
Digital signatures can provide authentication schemes that
maintain the integrity and non-repudiability of data [28]. With
secure authentication, only the owners of the signature can
sign their messages. Also, contents cannot be invalidated by
its sender since only they can sign their content. Once a public
key verifies a signature, the recipient can check if the message
is the same compared to its original. By doing so, there is
integrity in its contents.

However, the exposure of public keys poses a vulner-
ability to the platform. We chose to integrate a second
cryptographical tool to strengthen the security of the key
pairs. Cryptographical tools can be in conjunction with one
another [23]. The strengths of one method can cover the
weaknesses of another. As a result, to verify that these secret
keys and public-private key pairs are not visible to anyone
who gains access to the device, one-way hashing is used.
One-way hashing or digital watermarking is a mathematical
algorithm that masks the actual values of a provided key [29].
Storing passwords for large databases uses this tool to prevent
potential breaches that could lead to data loss. This hashing
function creates an irreversible variation of the password. Due
to the algorithm’s complexity, the generated variant guarantees
a high chance of being a unique value. This high probability
is due to its very high collision resistance. A collision occurs
when two different generated hashed values have the same
hashed result. Hashing functions can minimize collisions if
their design is adequate. Also, most implementations of these
hashing functions contain a cross-checking functionality to
check if a password entered is equivalent to a provided hashed
string [30]. This design allows most databases to store these
hashes without any worry of revealing sensitive information
about their users.

By applying the same construct in this paper, the construct
protects the encrypted keys from malicious attackers. Having
a diverse set of cryptographical tools can over-complicate a
design. However, it can also create a more secure architecture
that will provide better resistance to potential attackers. To
create a manageable hashing tool design, we combined one-
way hashing and public-key encryption.
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III. DESIGN AND METHODOLOGY

A. Architecture and Design Overview

The platform focuses on the data transactions between the
users and the local servers within a Fog-IoT network. It
takes these two endpoints and reinforces the security of their
data exchanges by using public-key encryption. We will store
these keys within the private blockchain. Each blockchain will
function as a secure hyper ledger. The connection between a
user and the server is reinforced by placing the encrypted keys
within the blockchain. Recording any data transactions within
the network is also made possible for monitoring purposes.
This platform allows the server to detect any malicious activity
in the network to keep user data secure. Our design divides
the architecture into two sections; the server and the client.

1) Server: The server provides the network services while
the client is the device that attempts to request access to the
network and its data. The server organizes the permissions
that govern each client within the network to ensure that
each endpoint is safe. Before carrying out any transaction
between clients, the server needs to do a security check.
This sequence allows complete control over any form of data
flow within the network. A client must first have its request
for access approved by the server before the data becomes
visible. This verification step is through a packet exchange
called a handshake. For this architecture, we use a three-point
handshake as the main design flaw of the proposed platform.
Its flow starts with a device sending its handshake packet to the
server requesting to connect. The server then takes this packet
and attempts to verify it. Upon its verification, the network
processes the message. However, if it cannot be determined,
then no access is given. A logical flow chart presenting how
the server processes access requests from clients is in Fig. 1.

2) Client: The client is the device that attempts to request
access to the network data by sending the handshake packet to
the server. Any device that can request access to the provided
services from a server is considered a client. Most of the time,
the client waits for the server response for every request it
sends. However, before that, it must first detect which servers
are available through an initial handshake packet. The process
continues with the client sending an access request to the
source of the initial message. Then, the client waits for a
response from the server. If a response from the server is
received, the client checks if the network granted its request.
If so, then the client is now free to use the services of the
server.

B. Implementation

This section highlights how we implemented each part and
the processes that carry out the previously highlighted logic. A
visual representation of the setup described in this section is in
Fig. 2. We use Raspberry Pis for both server and client. This
setup simulates the interaction between the two. Also, they
are connected wirelessly through a wireless network. In terms
of data transmission, the Raspberry Pis will communicate
through a socket module via serial communication. This
method of sharing information will be in charge of the packet
exchange between the server and client. As for Operating

Fig. 1: Logical flow of server in processing access requests
from clients.

Fig. 2: Visual abstraction of proposed design setup for the
communication between client and server.

Systems (OS) and other software-related configurations, the
Pis will be running on a Raspbian. Also, we programmed
all the scripts in Python. The rest of the information on our
implementation is composed of subsections. It highlights the
structures and setups of the platform.

1) Cryptographical Setup: Initially, the idea was to create
secure communication between the server and client. The
server was programmed to check for a unique serial ID that
only the device and the server knows. This design grants the
server the ability to filter devices based on the authenticity
of this ID. We took the serial ID from the serial number of
each unit, which is unique for each hardware. Thus, making
the serial key a potential passkey for the device. However, the
main issue is that anyone can find the serial number by just
looking at the hardware specifications of each device. At the
same time, anyone that can access the server can get a list of
all the serial numbers. They can then fake a handshake with
any serial number to gain access to any of the endpoints.
Therefore, we used public-private key cryptography paired
with one-way encryption to ensure authenticity.

The script used a Linux library called Crypto which con-
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Fig. 3: Structure of packets that are exchanged between server
and client.

tained different ciphers to encrypt the keys and the messages
sent by both the server and the client. Also, we incorpo-
rated a combination of Advanced Encryption Standard (AES),
Rivest–Shamir–Adleman (RSA) ciphers and, a one-way hash-
ing in the implementation. AES and RSA were used to encrypt
parts of the message. We used one-way hashing to generate
irreversible encryptions to allow the script to check if there is
tampering in the packets. We also used RSA ciphers to create
the public and private key pairs. These keys encrypt messages
between the server and the device, which secures a route for
data to travel. We embedded digital signatures of each device
in each packet to serve as a watermark. This design allows
the server to verify the data in terms of the structure of its
signature. The cryptographic tools are; the serial ID, public
key, private key, and the cryptographical tools mentioned.
In this design, to make sure this serial ID is safe, one-way
hashing is used.

2) Packet Structure: The packet between the server and the
client follows a unique structure to allow secure exchanges.
Our proposed platform includes a packet structure designed to
maximize the cryptographic capabilities towards securing the
data shared between two devices. We programmed each one
to contain an encrypted version of the message, a signature,
and the serial ID of the device. A visual representation of the
different encrypted layers composing this proposed structure,
is shown in Fig. 3. As mentioned in the previous section, we
used a combination of RSA, AES, and one-way hashing to
create a secure architecture. The packets sent by the client
and server are protected by; a serial ID, the public key that
each entity knows, and the private key that is only known to
the device that holds it. The following paragraphs provide a
detailed description of the encryption process of each packet.

Firstly, the message is encrypted using the serial ID of the
device that is one-way hashed. This design protects the data
from being read by anyone who does not know the serial ID
and is unaware of the hashing algorithm used to generate the
encryption key. Within this message is the type of the message
along with the device’s serial ID. Since this implementation
only focuses on the access level of the exchange, this is the
only information in the packet.

Next, the sending node generates the signature through the
RSA cipher by using the private key of the packet’s source

Fig. 4: Logical flow of packet creation in client and server.

and a hashed copy of the original message. This receiving
node then verifies the signature by confirming the integrity
of the received message with the hashed copy store with
the signature. In addition, the receiver can only open the
signature with the public key of the sender. We programmed
this signature along with the message and the sender’s serial
ID.

The sender encrypts the public key of the destination of its
packet before it is transmitted. This process makes it so that
the message is only readable with the private counterpart of
the public key that encrypted it. A visual representation of this
encryption process is through a logic flow diagram in Fig. 4.

3) Server and Client: The server is a python class that con-
tains the encryption and decryption methods used to process,
send and receive messages. Within the server is a programmed
permissioned blockchain implementation containing all the
devices that can access the server. In terms of initialization,
a script written in Python will build the blockchain. We
constructed it as a linked list of blocks that are connected
cryptographically. Within each block will be the serial IDs and
keys of devices either blocked or allowed in the IoT network.
We stored these values transparently through the blockchain
since both are visible without compromising the security of
the messages. This design is because only with a private key
can this information be used to decrypt any message. As for
accessing the blockchain, the server will search through its
blocks for the serial ID and public key pair that it obtains
from the packet. The server can only read the contents of
the message if the source is in the ledger. Otherwise, the
message is blocked. Also, the network denies any further
communication with that device.

The client is a python class that the script initializes by
providing a public key and serial ID. Then, the device can
be paired by the network using the public key and serial
ID. Just like the server, it contains the same encryption and
decryption methods to process the messages. The server and
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the client scripts can be initialized and ran using a socket
method. This connection establishes a serial communication
between the two. This bridge is created by assigning a static
Internet Protocol (IP) address to the server and having the
devices call this IP using the socket library provided in Python.

4) Communication Setup: The implementation is initial-
ized by pairing a device with a server. The previous section
mentions that the flow of the interaction was a three-point
handshake. Due to the constraints, we placed the public key
of the server in the client for the initial handshake. Also, we
stored the public key of the client and its serial ID within
the blockchain. As a result, the server treats the blockchain
as a ledger. The client then sends an access packet to the
server following the packet structure. The server receives this
message via socket programming and attempts to decrypt it.

The packet is decrypted systematically by doing its encryp-
tion process in reverse. First, the server decrypts the packet
using its private key. This design is due to RSA encryption
which protects any message from being opened unless the
private counterpart of the public key that encrypted the packet
is available to the server. The server then takes the serial ID
within the decrypted packet and searches the blockchain for
any registered device. If there is a match, the server can then
verify the source.

With the public key of the source, the recipient can verify
the signature. It will be allowed if the message is accurate.
Otherwise, it denies it if the message has been tampered with
before it reached its destination. Once the signature is verified,
the message is now considered valid. For this implementation,
it can only check if the packet is an access type. If so and its
source is proven authorized, the server sends back a message
using the same packet structuring. It notifies the device that it
has access. A visual representation of this decryption process
is through a logical flow diagram in Fig. 5.

With this design, attacks can also be simulated by having
multiple clients attempt to connect while not being registered
to the server. A visual abstraction that models a simulated
malicious attack by the proposed platform is in Fig. 6.
We tested this implementation with devices that are either
included in the blockchain or not.

IV. SECURITY ANALYSIS AND EVALUATION

Improving the security of Fog-IoT networks is the primary
purpose of this implementation. Each technique and design
choice that this paper highlight makes up a proposed solution
that focuses on the data transactions between a client and the
server of a Fog-IoT network. We carried out the implemented
solution in a controlled environment. The simulation consists
of having the user attempt to access data from the server
by sending handshake packets. The server then responds
accordingly based on the digital signatures structured within
the message. Within this design, we put constraints in place.
This design choice is due to the limitations of the hardware
and software used. However, even with these constraints, the
design should still be made sure to meet an adequate level of
security.

There are various types of modelling methodologies that
evaluate and analyze the design. Some examples of these

Fig. 5: Logical flow of packet decrypting and processing done
by server.

Fig. 6: Visual abstraction of the simulated malicious attack to
the server.

are; System Theoretic Process Analysis-Security (STPA-Sec),
Hazard and Operability (HAZOP), and Operationally Criti-
cal Threat, Asset, and Vulnerability Evaluation (OCTAVE).
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Lastly, there is STRIDE, which is an acronym for Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of
Service (DoS), and Elevation of privilege [31]. Each method is
selected based on the aspect of the system that it specializes in
evaluating and modelling. In [32], they make use of the STPA-
sec model for a case study of their proposed air refuelling
system. This modelling methodology focuses on analyzing
the safety of the system. In [33], they use the HAZOP model
to evaluate the reliability of their proposed Heat Treatment
System. This methodology focuses on the hazard and oper-
ability of the system. In [34], they use the OCTAVE method to
evaluate the information system security of a Deutsche bank.
This method focuses more on operationally critical threats and
assets related to the system. In [35], they use the STRIDE
model to evaluate the security in a telesurgery system. This
model specializes in using different types of cyber threats in
determining the level of vulnerability of a design.

Although each method has its strengths in terms of covering
different aspects of the system, the STRIDE threat model
presents the best means of describing vulnerabilities and
identifying design exploits [36]. Meanwhile, the other three
methods focus more on the hazards and risk analysis of
the system. Compared to other methods, STRIDE provides
a simpler model for evaluation that requires lesser complex
tests. Therefore, to fully evaluate the strengths and weaknesses
of our design, we chose to use the STRIDE model [37]. This
threat model is an evaluation tool that classifies security threats
into six general categories. It models potential vulnerabilities
within a system. The evaluation then uses this information to
gauge the ability of the current design to defend itself from
attacks categorized under each threat [38].

The following enumerates the results of the analysis of our
proposed solution using the STRIDE model:

1) Spoofing - It is the process of impersonating a known
user in a network. With the reinforced encryption of the
keys used by each user within our proposed platform,
successfully impersonating one will be a challenge. Due
to the number of keys required for a device to establish
a connection, the process of obtaining a user’s key is
complex.
A device must first know the public key and serial ID
of the server to establish a connection. The device must
then have a pre-registered public-key and serial ID pair.
Finally, the device must have the private counterpart of
the registered public key.
Since the private and public keys can only be created
by the network simultaneously, a private key remains
secure. Unless the owner of the key discloses this key
or an attacker manages to gain access to the device.
This condition creates a complex system that even though
spoofing is still possible with attacks of varying intensi-
ties, penetrating the server will still be a challenge. By
using permissioned blockchains to store these keys, it
secures the data against targeted attacks. As a result, this
combination of technologies improves the security of the
IoT network.
In terms of other variables, there is the number of
devices connecting to the network. It should not impact

the consistency of this design. Since the public-key and
serial ID pair is already registered, the platform can filter
through all the messages that it receives. Although it
might slow down the network throughput, it would still
be able to sift through each packet to catch any spoofing
attacks. Therefore, in terms of the spoofing evaluation,
the proposed design had countermeasures against it.
However, it does not guarantee complete security against
its threats.

2) Tampering - It is an act of altering the contents of a
message or a system without authorization. Anyone who
can access the Raspberry Pis can change the scripts of
the client and server. Therefore, since the code is open
for editing, users can directly change the device’s identity
and reinitialize the code.
However, once a message is received, no one can tamper
with its contents. With the digital signature, the sys-
tem can check the message’s integrity with a hashed
version of the original message as the device places
it into the packet. By doing so, the server can detect
tampering. Also, it can discard flagged messages. This
feature creates a filter that acts against tampering. It
can use the access layer and decide which packets to
discard. In addition, an attacker cannot tamper with
the blockchain if the network has already deployed the
server. The immutable nature of the blockchain defends
the server against any tampering attacks. Most changes to
the implementation can be during the initialization of the
devices. It will be harder to tamper with the parameters
used in the initialization after running scripts that drove
the different aspects of the implementation.
Similar to the spoofing evaluation, increasing the number
of devices should not impact the ability of the blockchain
to resist tampering. Usually, it is the connection that
bottlenecks the users that access the server. This oc-
currence might cause the processing of data to slow
down. However, each user still receives equal security
against tampering. As we use the tamper-proof and
immutability blockchains, the proposed platform can act
against tampering attacks.

3) Repudiation - Repudiability is the state where it is
possible to verify a transaction. A message is repudiated
once its receiver authenticates it. In terms of the imple-
mentation, repudiation is made possible with the digital
signatures in each packet. Digital signatures contain a
hashed copy of the original message before the sender
transmits it. Once the message is received, the recipient
can cross-check its contents with is in the signature.
Then, the server investigates it for any inconsistencies
with the signature.
Since the copy of the original message is protected by
hashing, tampering with it is close to impossible. Also,
if an attacker manages to alter the message, the signature
is there to detect it. Also, the network can only generate
signatures with a private key. Therefore, it will be hard
for an attacker to replace the signature in a packet.
Multiple devices that send messages will not impact the
server’s ability to check the authenticity of a transaction.
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Since all received packets still go through the server, it
will verify each message without exceptions.
Therefore, with a digital signature tied to each device,
messages can be verified by the network. This func-
tionality adds to the preservation of the repudiability of
the data transactions within the Fog-IoT network. Also,
by using the automatability of the blockchain, we can
further improve the ability of the network to detect data
tampering.

4) Information Disclosure - There are three crucial pieces of
information stored by each device. These are the private
key, public key and serial ID. The nature of the design
requires the sharing of the public key and serial ID
with the server. This feature means the users who have
access to the server can see two of the three pieces of
information. However, the private key is never disclosed
to any user apart from its generator. This key secures the
privacy of even the messages between the server and the
client. The private key of the recipient protects the packet.
If it is secure, then the content of the message is also safe.
As a result, breaches in privacy in this design become
highly unlikely. Therefore, by withholding an essential
key to hiding data from attackers, private information
can remain secure.

5) Denial of Service - Denial of service (DoS) focuses
on the ability of the server to do its purpose. This
implementation focuses on a secured access layer and
the communication between the server and the client.
Thus, the nature of blockchains can address this threat.
Due to their decentralized structure, we can implement a
distributive network using Fog-IoT.
With a distributed consensus, the design can have the
ability to adjust against massive amounts of incoming
access requests. As a result, the server gets proper
protection against DoS attacks using the permissioned
blockchain. Due to the decentralized and distributive
nature of Fog-IoT networks, increasing the number of
devices will be easier to manage through resource re-
allocation. Therefore, the server can defend itself from
DoS attacks that scale based on the number of attackers.
However, this is not the same with the clients. Without
a proper filtering protocol within a client’s device, more
complex DoS attacks that target the users can be an issue
for our design. Therefore, we can focus on creating a rate-
limiting protocol within the server for future iterations.
Also, it can be a network that detects DoS attacks that
target its users.

6) Evaluation of Privilege - In the current iteration of this
design, there are only two levels; has access and has
no access. A device cannot elevate their privilege unless
they are in the ledger of the server. Just as the previous
aspect, since this implementation only focuses on the
authentication layer, defensive measures against multiple
layers of authority within the network are missing. As a
result, our proposed design only provides a basic allot-
ment of security towards the client-side of this aspect.
On the other hand, servers provide no further defences
against devices that can access their data. As a result,

Aspect S T R I D E
Client X X X X - X
Server X X X X X -

TABLE I: STRIDE model evaluation of the proposed design.

data restricted to administrators can be vulnerable to all
trusted users. This development might also be a growing
concern as the network adds more devices to the server.
The result will be more server data will be exposed to
more users. However, the improvement of the server’s
architecture can address this issue. Due to blockchain
programmability and automatability, we can establish
better access levels with permissioned blockchains. The
result is better security rankings and defences. Therefore,
further improvements to the blockchain structure can
create a better authorization protocol for the network.

A summary of the evaluation of the design in terms of the
STRIDE model is in Table I. The proposed platform shows
its ability to defend itself against threats such as spoofing,
tampering, repudiation, and information disclosure. However,
there are vulnerabilities found against DoS and evaluation of
privilege attacks. Based on the analysis, we found clients to
be more prone to DoS attacks. Meanwhile, the current setup
of the server is not secure against privilege attacks. Also
included within the evaluation is further discussion on how
to improve the current iteration. Furthermore, variables such
as; the number of devices and intensity of attacks were in the
enumeration of each threat. Overall, the design shows promise
for being able to cover most of the categories while having
the potential of being able to solve the rest.

V. CONCLUSIONS

In this work, we proposed a platform that aims to strengthen
security within a Fog-IoT network. With the introduction of
endpoints through the local servers, the network is left vulner-
able to malicious attacks. As a result, data within the server is
at risk. We proposed a platform to protect the data transactions
between client and server from malicious attacks. Our design
introduces a trusted authentication system using permissioned
blockchains. This technology creates a systematic means of
filtering devices that connect to the IoT network. Also, we
plan to reinforce the security of the data transmitted within the
platform by using a combination of public keys and one-way
hashing. These cryptographic techniques create a data packet
structure to protect the data shared between the server and its
clients. By combining these technologies and techniques, we
have a Fog-IoT network platform for system administration.

To test the feasibility of the security of our proposed plat-
form, we cross-examined it against a STRIDE threat model.
The results showed that the packets transmitted between the
client and server using the proposed platform passed the
spoofing, tampering, repudiation, and information disclosure
aspects. With the private blockchain and the packet structure,
we created a secure design for Fog-IoT networks. However,
the model also showed that the platform could not address
DoS attacks against the client and the elevation of privilege



9

in servers. As a result, we proposed areas of the design
that we could improve for future iterations. Although we
could not cover all aspects of the threat model, our platform
showed its ability to handle a diverse collection of security
threats. By integrating permissioned blockchains with a public
key encrypted packet structure, we achieve a great degree
of coverage in Fog-IoT security. Therefore, we can see the
overall feasibility and potential of the platform in securing
the system administration of a Fog-IoT network.
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