
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330390913

Blockchain for Trustworthy Coordination: A First Study with LINDA and

Ethereum

Conference Paper · December 2018

DOI: 10.1109/WI.2018.000-9

CITATIONS

6
READS

315

3 authors:

Some of the authors of this publication are also working on these related projects:

Tuple based coordination View project

Bct4mas View project

Giovanni Ciatto

University of Bologna

39 PUBLICATIONS 185 CITATIONS

SEE PROFILE

Stefano Mariani

Università degli Studi di Modena e Reggio Emilia

82 PUBLICATIONS 433 CITATIONS

SEE PROFILE

Andrea Omicini

University of Bologna

478 PUBLICATIONS 7,581 CITATIONS

SEE PROFILE

All content following this page was uploaded by Giovanni Ciatto on 04 June 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330390913_Blockchain_for_Trustworthy_Coordination_A_First_Study_with_LINDA_and_Ethereum?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330390913_Blockchain_for_Trustworthy_Coordination_A_First_Study_with_LINDA_and_Ethereum?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Tuple-based-coordination?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bct4mas?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Ciatto?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Ciatto?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bologna?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Ciatto?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefano-Mariani-9?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefano-Mariani-9?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-degli-Studi-di-Modena-e-Reggio-Emilia?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefano-Mariani-9?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Omicini?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Omicini?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bologna?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Omicini?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Ciatto?enrichId=rgreq-e9fed00e52b8557b7a4e50d2bb707e0b-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM5MDkxMztBUzo3NjU5Nzc2OTY0MjgwMzNAMTU1OTYzNDcyMjI3Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Blockchain for Trustworthy Coordination:
A First Study with LINDA and Ethereum

1st Giovanni Ciatto
[0000-0002-1841-8996]

ALMA MATER STUDIORUM

Università di Bologna

Cesena, Italy

giovanni.ciatto@unibo.it

2nd Stefano Mariani
[0000-0001-8921-8150]

Università degli Studi di

Modena e Reggio Emilia

Reggio Emilia, Italy

stefano.mariani@unimore.it

3rd Andrea Omicini
[0000-0002-6655-3869]

ALMA MATER STUDIORUM

Università di Bologna

Bologna, Italy

andrea.omicini@unibo.it

Abstract—Blockchain technologies are rapidly gaining atten-
tion in the multi-agent systems (MAS) community to face critical
issues such as trust, secured communications, and data consis-
tency. In particular, the notion of smart contract can be exploited
to deploy trustworthy computations automatically executed by
the network in a consistent way. MAS coordination – modelling
and engineering of agents interaction in a MAS – thus represents
an appealing application field for smart contracts, potentially
enabling fully-decentralised, trustworthy coordination. Along this
line, we focus on the Ethereum blockchain technology, map it onto
LINDA tuple-based coordination model, and discuss two proof-
of-concept implementations of LINDA on Ethereum. We hence
demonstrate conceptual and technical feasibility of blockchain-
based coordination in MAS, while emphasising issues of applying
the blockchain beyond accountability and identity management.

Index Terms—blockchain, smart contracts, MAS, coordination,
LINDA, Ethereum, economy of coordination

I. INTRODUCTION

The term blockchain is used to denote a heterogeneous

number of technologies providing a novel way of dealing,

essentially, with distributed asset tracking or identity man-
agement. The most prominent use case is represented by

cryptocurrencies, where users’ money is the asset to keep track

of, and identity management is, therefore, crucial.

Blockchain technologies (BCTs) represent a novel approach

to secure decentralisation of both data and control in dis-

tributed systems: the former is achieved by exploiting con-

sensus protocols to (eventually) consistently replicate data

among nodes of the system; the latter is supported by enabling

autonomous computations to be triggered and regulated by

the blockchain itself. To provide these features, BCTs effec-

tively combine several results from cryptography, distributed

consensus, game theory, and state machine replication. As a

consequence, BCTs allow well-known problems of distributed

systems [2] to be dealt with—i.e. CAP [12], Byzantine Gen-

erals [16], Sybil attacks [6].

This is why BCTs have recently gained attention from the

multi-agent systems (MAS) community: trust, secured com-

munications, and data consistency are critical issues for MAS

models and technologies. BCTs are seen as a straightforward

way for injecting such features into MAS.

BCTs are also appealing from the more specific perspective

of coordination models and languages [22]. A coordination

model is “a framework in which the interaction of active

and independent entities called agents can be expressed”

[3], whereas a coordination language provides operations

to synchronise these interactions. Within this scope, BCTs

provide highly-desirable properties such as total ordering of

events, data consistency, accountability of actions, identity
management, and fault tolerance. Also, they present analogies

with tuple-based coordination models, featuring data reposi-

tories called tuple spaces work as shared blackboards where

interacting agents put information chunks called tuples and

synchronise activities based upon their availability.

Under this perspective, we advocate that a promising basic

brick for BCT-based coordination is represented by smart
contracts [30], that is, automatic and trusted activities executed

on the blockchain itself.

A. Contribution

In this paper we explore how to ground trustworthy, de-
centralised coordination in MAS upon BCTs, by taking the

LINDA model [11] – the most well-studied and influential one

[5] – and the Ethereum BCT [8] as reference, while adopting

the perspective of coordination as a service (CaaS) [33]. In

particular, our contribution is threefold:

1) a conceptual framework mapping LINDA abstractions

onto Ethereum

2) two proof-of-concept implementations of LINDA on top

of Ethereum

3) insights on the issues and opportunities arising when

doing the above, there including a definition of the

economical dimension of coordination

B. Outline

Accordingly, the remainder of the paper is organised as

follows: Section II describes Ethereum abstractions and mech-

anisms necessary to understand Section IV; Section III recalls

the archetypal LINDA model for tuple-based coordination;

Section IV describes the proposed conceptual framework for

BCT-based coordination and its proof-of-concept implemen-

tations; Section V discusses the general issues arising when

696

2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)

978-1-5386-7325-6/18/$31.00 ©2018 IEEE
DOI 10.1109/WI.2018.000-9

mixing the Blockchain and coordination; Section VI concludes

the paper.

II. ETHEREUM

The Ethereum blockchain consists of a peer-to-peer network

of nodes enacting a consensus protocol that lets them globally

(and logically) behave as a single state machine. This is why

some authors consider the blockchain as a novel approach

to State Machine Replication [27]: here, the state machine is

an interpreter executing the smart contracts deployed by end

users, and consensus ensures that all replicas evolve in the

exact same way.

From the application standpoint, smart contracts encapsulate

arbitrary and stateful functionalities, like keeping track of end

users’ balance—i.e., in terms of owned money. On purpose,

they have their own state which may change as they are

triggered by transactions, published by end users and directed

towards a particular smart contract (along with all its replicas).

Execution of transactions, as well as their chronological

ordering, is responsibility of special nodes of the blockchain

called miners, which commit the results to blocks of data

linked by hash chains, following the principles described

in [13]. This process creates a hard-to-tamper sequence of

blocks – hence, the name blockchain – tracking the history of

system evolution. Indeed, the interest around the blockchain

lies essentially in its capability of maintaining a consistent

shared state between mutually untrusted parties.

In the following, we describe the abstractions upon which

we develop the proof-of-concepts (Section IV).

A. Entities & accounts

The state of the system conceptually consists of a map

associating entity identifiers (essentially, network addresses)

to accounts. Entities can be of two sorts (Fig. 1a): end users

and smart contracts. In both cases the corresponding account

consists of a data structure containing a balance – i.e., a

counter representing the amount of ETH (Ether, the Ethereum

currency) owned – and a secured storage area containing

arbitrary user data. In the case of a smart contract, the data

structure also exposes a field containing its source code.

B. Transactions

Users may publish their transactions (essentially, messages)

at any time. Publishing triggers a gossiping algorithm even-

tually spreading information to all the participants to the

consensus protocol. Transactions are of three sorts (Fig. 1b):

deployment of a smart contract, value transfers, or invocations
of smart contracts. In any case, the transaction is composed of:

User

hash(Public Key)

Balance

Private & Public Keys

Smart Contract

Storage

Balance

Code

Address

(a) Ethereum entities.

Receiver

Sender

Invocation

Caller

Arguments

Gas

Owner

Deployment

Code

Callee

Transfer

Amount

(b) Ethereum transactions.

Fig. 1: Main components of the Ethereum blockchain.

(i) the destination address, (ii) the amount of ETH (possibly

0) to be transferred, (iii) the cryptographic signature of the

transaction, and (iv) in case of value transfers and invocations,

an input field for the smart contract; in case of deployment, the

bytecode of a program that, if executed, produces the source

code of the smart contract to be deployed.

C. Smart-contracts

Smart contracts are stateful, user-defined, reactive, im-

mutable, trustable, and deterministic processes executing de-

centralised computations on the blockchain:

• stateful: each smart contract encapsulates its own state

• user-defined: any user may publish a smart contract

• reactive: only users may trigger a smart contract

• immutable: smart contracts code cannot change

• trustable: no entity can tamper with the specification

of a published smart contract, no user can lie about its

smart contract invocations, and the side effects (possibly)

caused by computations are guaranteed to (eventually)

produce a consistent change of the system state

• deterministic: each computation always provides the

same outputs if given the same inputs, regardless of the

actual execution node

• decentralised: there is no single, centralised coordinator

governing the distributed execution of smart contracts,

which happens concurrently

Computations are expressed by means of a quasi-Turing-

complete language [34, Sec. 9] – meaning that “the com-

putation is intrinsically bounded through a parameter [. . .]

which limits the total amount of computation done” – thus

they are virtually capable of implementing any computation.

Smart contracts are objects in the OOP sense, which interact

by means of synchronous method calls, whose control flow

originates from the issuer of the transaction. As discussed in

Section V, this limits their expressiveness w.r.t. coordination.

D. Consensus, miners, and blocks

The goal of the consensus protocol is to make every node

in the blockchain participate in validation and consistency
check of transactions. A transaction is valid if its signature

proves it to be untampered, and it transfers an amount of ETH

which is at most equal to the sender’s balance. The consensus

protocol makes an arbitrary number of nodes perform exactly
the same state transition for exactly the same state machine

– provided that the nodes agree on the starting state –,

forcing them to perceive the published messages in the same

order while preventing Byzantine faulty nodes [16] – that

is, nodes deliberately lying to neighbours – from creating

inconsistencies.

Miners are the nodes in charge of validation and consistency

checking, as well as of including transactions in blocks. These

track: (i) the cryptographic hash of the previous block; (ii) a

timestamp; (iii) a list of (valid and consistent) transactions; (iv)
the hash of the global state, obtained by orderly applying all

transactions to the previous block; (iv) a Bloom filter enabling

clients to find logs possibly published due to smart contract

697

execution—see “Logs & API” at the end of this section.

Transactions triggering a faulty computation are included into

blocks, but the side effects possibly provoked are not.

Agreement about ordering of transactions is achieved by

means of the consensus mechanism known as Proof-of-Work
(PoW) [15], [19], requiring miners to compete in solving a

resource-intensive computational puzzle, and granting the right

to publish the new block containing the validated transactions

to the first succeeding. This mechanism is essential for BCT

since it provides consistency and fault-tolerance despite decen-

tralisation. Notice that the PoW mechanism, and in particular

the GHOST protocol adopted [29], provides probabilistic
consistency: inconsistencies can temporarily arise in the form

of blockchain forks, yet the protocol takes care of making one

eventually prevail on the others. In other words, the probability

of a block B being inconsistent drops down to 0 exponentially

with the amount N of blocks after B. In this context, N is

also known as the amount of confirmations of B.

E. Miners & gas

A malicious miner may produce great damage, thus, the

blockchain protocol assumes them to be rational agents, and

promotes honesty by compensating their computational effort

with the right to generate and claim cryptocurrency for each

block successfully mined.

Miners are also in charge of executing smart contracts and

deployment messages, thus, they may store and execute arbi-

trary code, which requires additional effort. To compensate and

prevent Denial of Service attacks – i.e., by simply deploying

an infinite loop – the Ethereum protocol requires users to pay

some ETH, lately reclaimed by miners, for their transactions

to be accepted—and the corresponding computation executed.

More precisely, users must endow messages with a finite

amount of gas (converted from user’s ETHs) to be spent while

executing the smart contract deployed. If the computation fails,

for an error or the consumption of all the gas, its side effects

are reverted—with no refund of ETH.

As discussed in Section V, the above economical aspects

rise challenging questions related to, i.e., associating a price

to coordination primitives.

F. Logs & API

The Ethereum bytecode provides instructions to publish logs
from smart contracts to represent occurrence of some events to

be stored within blocks. This aims at letting off-chain clients

inspect the blockchain. A number of high-level languages

(along with their compilers to EVM bytecode) have been

produced by the Ethereum community: the most widespread

is Solidity [28], coming with a JavaScript-like syntax and

resembling OO programming, where transactions are mapped

to methods and member fields correspond to account data.

III. LINDA

LINDA [11] is the archetypal tuple-based coordination

model, inspiring and influencing a huge number of coordi-

nation models and technologies throughout the years [5].

A. Main elements

The main elements of LINDA are tuples, templates, tuple
spaces, and communication primitives. A tuple is a piece

of information represented according to a well-defined tuple
language, specifying the structure of admissible tuples. A tem-

plate is a concise way of representing a set of tuples: it consists

of a pattern, represented according to a particular template
language, which may be matched by several tuples. A tuple

space is a repository where tuples may be inserted, observed,

or withdrawn by an arbitrary number of agents willing to

synchronise while being uncoupled in reference, space, and

time. On purpose, a communication primitive is an operation

provided to interacting entities to synchronise themselves upon

tuples’ insertion, observation, and consumption.

B. Main features

LINDA owes its success in the field of MAS coordination

[24] to a few peculiar features: (i) generative communication,

that is, tuples existing independently of the agents who pro-

duced them (decoupling in space and time); (ii) associative
access, namely, agents can access (i.e., observe or withdraw)

the tuples stored in a tuple space by simply specifying a

template, without the need of knowing the tuple “address”

neither its “name” (reference uncoupling); and (iii) suspensive
semantics, that is, agents’ attempts of accessing a tuple match-

ing a particular template are suspended until a tuple of such

a sort actually exists.

LINDA provides three communication primitives: out to

insert a tuple in a tuple space, in to withdraw one, rd to read

one. Despite their simplicity, such primitives are expressive

enough to cope with several common interaction patterns [11].

Suspensive semantics, in particular, is the cornerstone of the

coordination mechanism proposed by LINDA, since it deals

with synchronisation: whereas the out primitive always puts

a tuple in the tuple space, in and rd attempt to get one

based on a provided tuple template. If a tuple matching the

template is found, it is returned to the caller agent that can

continue execution; otherwise, the caller agent is suspended
until a matching tuple becomes available.

C. Architecture

In the following we refer to the LINDA model and architec-

ture proposed in [33] as an example of coordination as a ser-
vice, where the issues arising when tuple spaces are provided

in a distributed fashion are pointed out—like, for instance,

the need to split LINDA operations in two phases (namely, the

invocation of an operation, and its completion [21]) to support

their suspensive semantics. There, a coordinated system is seen

as the composition of three spaces: (i) the coordinated space,

composed by those entities to which coordination services are

provided, namely the coordinated entities; (ii) the coordination
space, composed by the (possibly many) coordination media,

i.e., one or more tuple spaces; and (iii) the interaction space,

where the pending invocations and completions – possibly

reifyied as requests and response messages, respectively – are

at rest, waiting to be consumed.

698

D. Technology

Several variants of LINDA have been proposed throughout

the years, either extending the set of communication prim-

itives, adding features such as mobility or access control

[18], [20], enabling distribution of multiple tuple spaces on

a network of interconnected computers [10], [17], and much

more [23]. Nevertheless, only a few have been developed as

a technology [5], and among these even fewer have been

implemented in a decentralised way [25], [26]. Making a

coordination model such as LINDA actually work on top of

BCT would deliver a number of benefits, among which:

• a fault tolerant implementation of tuple spaces, with tu-

ples replicated on each machine and consistency handled

by the consensus protocol

• a trustable immutable ledger of agents’ interactions,

where no one can lie thus malicious social behaviour is

easily spotted

• secure, consistent, and accountable interactions within

MAS, where coordination among agents is fully decen-

tralised and does not rely on a trusted third-party (a “con-

troller” agent) to spot and tolerate malicious behaviour

IV. LINDA ON ETHEREUM

The discussion presented in this section originates from the

mapping between the LINDA abstractions described in [33]

and the Ethereum ones, as depicted in TABLE I. The mapping

aims at providing a sound conceptual basis upon which

our vision of blockchain-based coordination can be fruitfully

designed and built. Accordingly, it aims at answering basic but

necessary architectural questions such as: Which blockchain

abstraction will serve as a coordination media? Where to store

tuples? Is it possible to mimic LINDA suspensive semantics?

The first step is quite natural for both implementations:

Ethereum end users – which may be computer programs, not

only humans – are LINDA coordinated entities. We then define

a class of smart contracts (TupleSpace) whose instances

are coodination media exposing a LINDA-like interface. The

coordination space is therefore composed by the set of smart

contracts instantiating the TupleSpace class. Coordinated

entities can request execution of coordination operations by

publishing regular Ethereum invocation transactions, specify-

ing a TupleSpace instance as the intended recipient and

the invoked operation as payload. Such transactions would

conceptually “rest on the blockchain” until miners execute the

corresponding TupleSpace smart contract. Then, in the first

implementation (“Writers Pay”), the coordination media even-

tually publishes the completion of invocations by publishing

a log “on the blockchain”, representing the completion event;

whereas in the second implementation (“Readers Pay”), an

explicit operation checks wether the result of the invocation is

available (getResult). In either case, the interaction space

coincides with the structure collecting both issued requests and

published responses, that is, the blockchain itself.

In what follows, we thoroughly describe the design and

implementation choices made for the two contract spaces

prototypes we built, while highlighting the impact that such

choices have on expressiveness and faithfulness of the pro-

posed Ethereum-based implementation of LINDA.

A. Contract spaces: “Writers Pay”

In this implementation, contract spaces are called “Writers

Pay” because tuples producers are the one who pay the cost

of coordination.

On tuple spaces & primitives: Tuple spaces can be

implemented on top of Ethereum smart contracts by storing

tuples in a dedicated tupleSpace field, as a key-value map

associating tuples to a corresponding TupleInfo record with

two fields: quantity, as the amount of identical copies of

the tuple, and queue, tracking the list of pending requests

waiting for the tuple. Each pending request is a record of type

WaitingPeer, storing the address of the requesting process

and the type of its request (either READ or TAKE, see below).

Contract spaces defined this way support three operations

(the communication primitives): Write (for LINDA out),

Read (for rd), and Take (for in), which any end user

may invoke by signing and publishing an invocation trans-

action containing the operation name, its actual argument

(i.e. either the tuple or the template), and the address of

the TupleSpace smart contract. Being this an ordinary

transaction in the eyes of the Ethereum network, it must be

endowed with some gas. Technically, the necessary amount

of cash is automatically and transparently computed by the

end user’s client software. In fact, client libraries, such as

web3js, usually come with some built-in method to estimate

the gas consumption of a transaction, e.g. [9]. In any case,

the general rule for out-of-gas exceptions applies: side effects

are reverted as if the operation was never invoked—except for

wasted amount of ETH equivalent to the gas provided.

On primitives completion (events): The completion of

an operation requires publication of a block containing the

invoked transaction and the corresponding event notification
to be logged on the blockchain, too. Solidity comes equipped

with a built-in event abstraction, enabling developers to define

the structure (namely, name + formal parameters) of arbitrary

event notifications, and to rise them accordingly (name +
actual parameters).

Events are reified as Ethereum logs. “Writers Pay”

contract spaces support (generation of) TupleWritten,

TupleRead, and TupleTaken event notifications, repre-

senting completion of the corresponding coordination oper-

ation. A TupleWritten notification conveys information

about the tuple inserted and the address of the inserting entity.

Similarly, TupleRead and TupleTaken notifications track

the tuple retrieved and the address of the entity accessing it.

As clarified in the last paragraph below, decomposition

in “invocation” and “completion” stages is required to em-

ulate LINDA suspensive semantics. Since computations in

Ethereum are atomic and transactional, the event abstraction

is one way to decouple invocation and completion so as

to emulate suspension—the other one is discussed in the

following section, as part of the alternative implementation

699

Coordination as a service (LINDA) Ethereum (Writers pay) Ethereum (Readers pay)
Coordinated entity Off-chain end user
Coordinated space The set of end users

Coordination medium (tuple space) TupleSpace smart contracts

Coordination space
The set of currently deployed
TupleSpace smart contracts

Request (operation invocation)
Take, Read or Write

transaction invocation

Response (operation completion)
Log/event within a GetResult

confirmed block transaction invocation
Interaction space The blockchain itself

TABLE I: Conceptual mapping between LINDA and Ethereum.

therein described. Thus, in the case where a matching tuple is

missing, the Read or Take operations are split over two trans-

actions: the one published by the operation requestor simply

records that a new operation is pending, then, TupleRead
or TupleTaken events are raised – i.e., the operation is

completed – within the transaction of an entity performing a

Write operation which provides the missing tuple. This leads

to interesting implications discussed in Section V—namely,

tuples producers incur the cost of coordination, hence the name

“Writers Pay”.
On primitives invocation (transactions): Whenever

an agent publishes a transaction invoking the Take
operation with template "tt", the behaviour of

the smart contract depends on the value of field

tupleSpace["tt"].quantity:

• if it is greater than zero, then it is decremented, and a

TupleTaken("tt", msg.sender) event is raised

• otherwise, a new WaitingPeer(msg.sender,
SuspensiveOperations.TAKE) object is put into

the tupleSpace["tt"].queue list

In both cases, msg.sender enables developers to re-

fer to the agent invoking the operation—that is, the one

having published the transaction. The Read case is the

same, except that tupleSpace["tt"].quantity is

not decremented, TupleRead is the event to be raised,

and SuspensiveOperations.READ is used within the

WaitingPeer object.

Whenever an agent publishes a transaction invoking the

Write operation with tuple "t", the smart contract in-

creases tupleSpace["t"].quantity and then, for each

WaitingPeer item w in tupleSpace["t"].queue:

• if w.operation equals SuspensiveOpe-
rations.READ, then a TupleRead("t",
msg.sender) event is raised

• otherwise a TupleTaken("t", msg.sender)
event is raised, and tupleSpace["t"].quantity
is consequently decreased

Anyway, w is removed from tupleSpace["t"].queue.

Queue iteration ends if tupleSpace["t"].quantity
reaches 0.

The Solidity source code of the contract spaces proof-of-

concept just described is available from a dedicated GitLab

repository [7].

B. Contract spaces: “Readers Pay”

In this alternative implementation, contract spaces are called

“readers pay” because tuples consumers are the one who pay

the cost of coordination. As for previous section, this aspect

is extensively discussed in Section V.

On tuple spaces & primitives: We define a novel class for

coordination media, namely TupleSpaceER (Explicit Result),

which is a variant of the TupleSpace class described

above. Instances of the TupleSpaceER class expose the same

LINDA-like interface – that is, Write, Read, and Take
–, plus a GetResult operation to explicitly retrieve the

completion of a pending request, if any. Indeed, the conceptual

mapping from TABLE I is almost unaffected, except for

the “response” entry: operation completions are modelled

here as invocation transaction too, similarly to invocations

(requests). An end user may request a getter operation with

template "tt" by issuing a Read("tt") or Take("tt")
invocation transaction over a contract space, and she can

later check for its completion by issuing a GetResult()
operation, which may return a failure or the tuple found. In

other words, coordinated entities are now expected to perform

a “busy wait” on completion of their coordination operations—

until an invocation to GetResult() provides a result.

On primitives completion (getResult): As in the

case of “Writers Pay” contract spaces, tuple spaces are

smart contracts storing tuples, in a tupleSpace field, as

a key-value map associating tuples to the corresponding

TupleInfo record, which in this case just contains a sin-

gle entry: quantity. Pending requests are now tracked

by a single key-value map, namely pendingOperations,

associating entities IDs to a PendingOperations
record made of a queue of PendingOp records. Each

PendingOp record keeps track of (i) operation, i.e., the

SuspensiveOperations which is currently pending, (ii)
template, i.e, the tuples the operation is currently waiting

for, and (iii) alreadySatisfied, i.e., a boolean value

stating whether the operation has already been served or not.

The effect of invoking a Read or Take operation is to

append a new PendingOp entry to the queue corresponding

to that user. If the tuple requested by Read or Take opera-

tions is available, the corresponding PendingOp records are

marked as alreadySatisfied—and the tuple quantity
is decreased, in case of Take. The effect of invoking a

700

GetResult operation is to remove any satisfied or satisfiable

PendingOp entry from that user’s queue. Finally, the effect

of a Write operation is simply to increase the corresponding

tuple’s quantity field.

On primitives invocation (transactions): Every

time an operation is requested by a user caller
invoking the Take method over a template "tt",

a new PendingOp entry op is appended to

pendingOperations[caller].queue in order to

keep track of it. In case tupleSpace["tt"].quantity
> 0, field op.alreadySatisfied is set to true and

tupleSpace["tt"].quantity is decreased, since the

request can already be satisfied given the current state of the

contract space. The Read operation has a similar behaviour,

except that tupleSpace["tt"].quantity is never

decreased; whereas the Write("t") operation simply

increases tupleSpace["t"].quantity.

Operation GetResult works as follows. Upon invo-

cation, field pendingOperations[caller].queue is

scanned for a PendingOp record which is either already

satisfied or satisfiable—that is, the corresponding tuple’s

quantity is strictly positive. If some satisfied or satisfiable

pending operation is found, say pending, it is removed

from pendingOperations[caller].queue and pen-
ding.template is successfully returned to the calling

user. In case pending is not currently satisfied and the

corresponding operation is SuspensiveOperations
.TAKE, then the operation is satisfied on the fly, i.e., tuple-
Space[pending.template].quantity is decreased.

Otherwise, if no satisfied or satisfiable pending operation is

found, an empty tuple is returned to the calling user as failure.

Also the Solidity source code of the contract spaces proof-of-

concept just described is available from a dedicated GitLab

repository [7].

V. ON BLOCKCHAIN-BASED COORDINATION: DISCUSSION

Regardless of the many industries the blockchain is hyped

to be disrupting [31] – from healthcare to insurance, from

supply chain to IoT – the actual issues it is exploited to

solve are always the same: identity management and asset
tracking. The former deals with guaranteeing and enabling

verification of the identity of a given entity, which can be a

stakeholder, a user, a software component, a hardware device,

or any other goods—e.g., food [32]. The latter deals with

securely and safely keeping track of a given asset – which

usually is money but can be anything, from legal documents

to insurance policies – and of all the actions which involve

moving its ownership. The foremost goal of both is to enable

accountability—that is, the ability to track who did what in a

secure and verifiable way.

We advocate that the real potential of BCTs would be to

go beyond identity management and asset tracking, towards

brand new use cases taking advantage of its peculiar features

such as security, decentralisation of trust, fault tolerance, and

consistency. In our case, this novel use case is represented by

the coordination of distributed agents of an open MAS in a

fully-decentralised way.

A. Beyond blockchain “comfort-zone”

The aim of the contract spaces proof-of-concept we propose

is twofold. On the one hand, we argue that tuple-based coor-

dination is a promising application for permissionless public
blockchains such as Ethereum, taking full advantage of those

properties highly desirable from the coordination standpoint –

especially for open systems – such as inherent decentralisa-
tion, events ordering, eventual consistency, and fault tolerance.

Then, our study shows the feasibility of the approach, and

paves the way towards further well-grounded research efforts.

On the other hand, we are interested in understanding the

practical expressiveness of the novel computational approach

represented by smart contracts – starting from Ethereum ones

– w.r.t. their capability of serving as a basic brick for the design

of brand new coordination models and technologies. Thus, we

aim at stretching the blockchain out of its “comfort-zone” so

as to early detect issues and opportunities. For instance, our

study already raises the issue that:

• smart contracts are purely reactive, that is, the control

flow of their computations always originates from off-

chain entities

• these entities pay for the computation to be performed

• the cost of the computation is proportional to its compu-

tational complexity

This implies that coordination models designed on top of a

BCT must take into account this sort of economical aspect

and the reactive, synchronous nature of smart contracts. The

following two sections discuss both issues.

B. Towards an economy of coordination

In the “Writers Pay” implementation of contract spaces the

financial burden that entities have to bear for accessing infor-

mation is constant, since the Read and Take operations have

a O(1) complexity: in fact, for both operations, the employed

algorithm either raises an event, in case the read/taken tuple

is available, or adds an operation to the list of pending ones

otherwise. In both cases, the amount of computational steps

to be performed is constant. Conversely, the cost that entities

performing a Write operation incur is proportional to the

amount n of pending requests waiting for the tuple. Thus,

Write complexity is O(n): in the worst case, it is required

to iterate over all the pending requests.

So, for “Writers Pay” contract spaces, the higher the de-
mand for a tuple, the higher the cost in providing it. This

resembles the way in which ads are paid, where the cost of

the ad is somehow proportional to the number of potential

customers reached.

Symmetrically, in the “Readers Pay” implementation of

contract spaces the financial burden for information production

is constant, whereas the cost for information access is variable

and potentially unbounded for the calling entity E. In fact,

all three canonical operations – namely, Write, Take, and

Read – have O(1) complexity since they either increase the

701

quantity counter for a given tuple (Write) or simply

append an operation to the queue of pending ones (Take
or Read) for entity E. At the same time, the GetResult
operation needs to iterate on the whole queue of pending

operations for entity E (in the worst case), so it has O(m)
complexity, being m the amount of pending requests for E.

Furthermore, an execution of the GetResult operation is not

guaranteed to reduce the size of the aforementioned queue,

e.g., because no pending operation can be satisfied. In the

worst case, E is expected to invoke the GetResult operation

l times, before it can complete the operation(s) it requested.

This is why, in practice, we consider it to have O(m · l) worst

case complexity.

Thus, for “Readers Pay” contract spaces, the higher the need
for a tuple, the higher the cost in providing it. This resembles

the way in which market works, where the cost of an item is

somehow proportional to the demand for it.

Possibly, other different implementations could be con-

ceived where financial aspects are balanced in other ways.

Yet, the point here is: researchers and practitioners can no
longer ignore the economical aspect inevitably bound to smart

contracts. Therefore, w.r.t. to blockchain-based coordination,

the economy of coordination is intended as the cost associated

to communication and coordination primitives—in our case,

according to the contract-spaces model.

C. On the control flow of smart contracts

An even more subtle aspect needs to be further discussed:

as already said, smart contracts do not have their own control

flow, but “borrow” that of off-chain entities to perform their

computations. Hence, they are purely reactive. As discussed

in [4], this is not simply an implementation detail of Solidity,

but it is a trait hard-coded into the Ethereum operational

semantics. This is a serious constraint when designing syn-

chronisation mechanisms and coordination policies requiring

to either schedule future computations or postpone them,

since the delayed computation will not be able to start unless

someone else’s control flow becomes available.

This is what happens, for instance, with our Read/Take
implementation when no available tuple is matching the re-

quested template: the request is stored, then the control flow

of the smart contract goes back to the off-chain entity who

requested the operation. Only if and when some other user

lends its own control flow to the blockchain again, either by

issuing a Write operation for a tuple matching that template,

or a GetResult, the aforementioned Read/Take operation

may complete. If such an implementation detail may be

negligible in other contexts, in blockchain-based coordination

it is not: as we discussed in previous section, in fact, since

every computation has an associated cost, establishing who

has to pay for it – and possibly, the rewards for doing so –

is crucial. Indeed, we provided two implementations of the

contract space concept precisely to bring this issue to light,

emphasising the impact that different technical choices have

on the cost of coordination.

For the above reasons, we argue that a well-founded and

thorough research activity aimed at pushing the blockchain

well beyond its traditional use cases – identity management

and asset tracking – should start exactly by accounting for the

aforementioned economic and control flow related issues.

D. Blockchain as a basic brick for coordination

Given all the considerations made so far, there is evidence

that the blockchain is a promising technology to look at

when designing fault-tolerant and secured solutions for fully

decentralised coordination in open systems:

• agents are uniquely identified as Ethereum accounts and

their actions are always tracked and visible to others

• all the interactions are logged persistently on an attack-

proof distributed ledger, thus their history is available at

all times

• no central authority for trusting participants is needed

Nevertheless, we do not envision coordination mechanisms

and policies designed and implemented directly on the block-

chain, exploiting its API with no mediation layer in between.

Instead, we foresee the blockchain used as the backbone of

a distributed coordination infrastructure, as one of the basic

layers of a coordination middleware, providing vital services
such as identification of clients, privacy of communications,

secured and ordered event log, tolerance to failures and

malicious behaviours. As depicted in Fig. 2, communication

and coordination services could then be built on top of this

secured event ledger, keeping track of all the coordination-

related events that the higher layers of the middleware should

deal with.

We understand that Ethereum exposes some issues regarding

scalability of the approach, for instance strong serialisation of

transactions – thus to the events occurring within a MAS –

which may be both a blessing – since it gives event ordering

Networked hosts

The Blockchain

Communication
& Coordination

services

Application
specific
services

Com
& C

A
Workflow

management

Service
orchestration

Dependencies
resolution

Data
pipelines

Internet of Things
Business Intelligence Web Services

Fig. 2: A layered architecture for a coordination middleware:

the blockchain serves as the backbone on top of which

communication and coordination services are built.

702

in a distributed system – and a curse—especially for LINDA,

which would otherwise allows for concurrent readings of the

tuples. We also acknowledge the privacy concerns arising

from a publicly available blockchain such as Ethereum. For

these reasons we plan to reproduce our contract spaces on

different BCTs like, for instance, HyperLedger Fabric (HLF),

whose Execute-Order-Validate semantics and permissioned
architecture [1] is expected to positively affect both concurrent

execution of transactions and information visibility.

VI. CONCLUSION AND OUTLOOK

This paper pursues a twofold goal: (i) reporting about feasi-
bility of implementing a LINDA-like tuple-based coordination

service on top of a reference blockchain technology, and

(ii) shedding some light on the most notable issues arising

when doing so—e.g., the economical impact of performing

coordination operations.

Accordingly, we show how LINDA can be implemented

on Ethereum, focussing on how to emulate the suspensive

semantics of LINDA communication primitives by leveraging

Ethereum transactions and events. While doing so, we bring a

few early issues to attention, concerning the cost of execution

of a smart contract and a transaction, and the handling of

multiple control flows.

The next steps we are planning for further advancing inves-

tigation of blockchain-based coordination are: (i) performing

a comparison of different implementations of our contract

space concept on top of different blockchain technologies, thus

of different smart contracts implementations – for instance

HLF [1] and Corda [14], – and (ii) defining a rigorous

formalisation of the semantics behind different blockchain and

smart contract models in terms of their potential coordination

capabilities.

REFERENCES

[1] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K.,
De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y.,
Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith,
K., Sorniotti, A., Stathakopoulou, C., Vukolić, M., Cocco, S.W., Yellick,
J.: Hyperledger fabric: A distributed operating system for permissioned
blockchains. In: 13th EuroSys Conference (EuroSys ’18). ACM, New
York, NY, USA (2018)

[2] Bashir, I.: Mastering Blockchain – Distributed ledgers, decentralization
and smart contracts explained. Packt Publishing (2017)

[3] Ciancarini, P.: Coordination models and languages as software integra-
tors. ACM Computing Surveys 28(2), 300–302 (Jun 1996)

[4] Ciatto, G., Calegari, R., Mariani, S., Denti, E., Omicini, A.: From
the blockchain to logic programming and back: Research perspectives.
In: WOA 2018 – 19th Workshop “From Objects to Agents”. CEUR
Workshop Proceedings (Jun 2018)

[5] Ciatto, G., Mariani, S., Omicini, A., Zambonelli, F., Louvel, M.: Twenty
years of coordination technologies: State-of-the-art and perspectives. In:
Di Marzo Serugendo, G., Loreti, M. (eds.) Coordination Models and
Languages, Lecture Notes in Computer Science, vol. 10852, pp. 51–80.
Springer (2018)

[6] Douceur, J.R.: The Sybil attack. In: 1st International Workshop on Peer-
to-Peer Systems (IPTPS ’01). pp. 251–260 (Jan 2002)

[7] Ether-Linda: Home. http://gitlab.com/das-lab/blockchain/ether-linda
[8] Ethereum: Home. http://www.ethereum.org
[9] Ethereum: Web3js library and the method for estimating transactions

required gas. https://github.com/ethereum/wiki/wiki/JavaScript-API#
web3ethestimategas

[10] Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns,
and Practice. Addison-Wesley Longman Ltd., Essex, UK (1999)

[11] Gelernter, D.: Generative communication in Linda. ACM Transactions
on Programming Languages and Systems 7(1), 80–112 (Jan 1985)

[12] Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services. SIGACT News 33(2),
51–59 (Jun 2002)

[13] Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In:
Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology-CRYPT0’
90. pp. 437–455. Springer (1991)

[14] Hearn, M.: Corda: A distributed ledger. http://docs.corda.net/ static/
corda-technical-whitepaper.pdf (2016)

[15] Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols.
In: Preneel, B. (ed.) Secure Information Networks, IFIPAICT, vol. 23,
pp. 258–272. Springer (1999)

[16] Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem.
ACM Transactions on Programming Languages and Systems 4(3), 382–
401 (Jul 1982)

[17] Louvel, M., Pacull, F.: LINC: A compact yet powerful coordination
environment. In: Kühn, E., Pugliese, R. (eds.) Coordination Models and
Languages, LNCS, vol. 8459, pp. 83–98. Springer (2014)

[18] Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: A coordination model
and middleware supporting mobility of hosts and agents. ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 15(3), 279–
328 (Jul 2006)

[19] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008),
http://bitcoin.org/bitcoin.pdf

[20] Nicola, R.D., Ferrari, G.L., Pugliese, R.: Klaim: a kernel language
for agents interaction and mobility. IEEE Transactions on Software
Engineering 24(5), 315–330 (May 1998)

[21] Omicini, A.: On the semantics of tuple-based coordination models. In:
1999 ACM Symposium on Applied Computing (SAC’99). pp. 175–182.
ACM, New York, NY, USA (28 Feb – 2 Mar 1999)

[22] Omicini, A., Viroli, M.: Coordination models and languages: From
parallel computing to self-organisation. The Knowledge Engineering
Review 26(1), 53–59 (Mar 2011)

[23] Omicini, A., Zambonelli, F.: Coordination for Internet application devel-
opment. Autonomous Agents and Multi-Agent Systems 2(3), 251–269
(Sep 1999)

[24] Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.): Coor-
dination of Internet Agents: Models, Technologies, and Applications.
Springer (Mar 2001)

[25] Papadopoulos, G.A.: Models and technologies for the coordination of
Internet agents: A survey. In: Omicini et al. [24], chap. 2, pp. 25–56

[26] Rossi, D., Cabri, G., Denti, E.: Tuple-based technologies for coordina-
tion. In: Omicini et al. [24], chap. 4, pp. 83–109

[27] Schneider, F.B.: Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR) 22(4),
299–319 (Dec 1990)

[28] Solidity: Home. http://solidity.readthedocs.io/
[29] Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s transaction process-

ing. fast money grows on trees, not chains. Report 2013/881, Cryptology
ePrint Archive (2013), http://eprint.iacr.org/2013/881

[30] Szabo, N.: Formalizing and securing relationships on public networks.
First Monday 2(9) (1 Sep 1997), http://ojphi.org/ojs/index.php/fm/
article/view/548/469

[31] Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology
Behind Bitcoin is Changing Money, Business, and the World. Penguin
(2016)

[32] Tian, F.: An agri-food supply chain traceability system for China based
on RFID & blockchain technology. In: 13th International Conference
on Service Systems and Service Management (ICSSSM 2016). pp. 1–6
(Jun 2016)

[33] Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Infor-
maticae 73(4), 507–534 (2006)

[34] Wood, G.: Ethereum: a secure decentralised generalised transaction
ledger (2014), http://ethereum.github.io/yellowpaper/paper.pdf

703

View publication statsView publication stats

https://www.researchgate.net/publication/330390913

