
Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains

by

Ethan Buchman

A Thesis
presented to

The University of Guelph

In partial fulfilment of requirements
for the degree of

Master of Applied Science
in

Engineering Systems and Computing

Guelph, Ontario, Canada

c©Ethan Buchman, June, 2016

ABSTRACT

TENDERMINT: BYZANTINE FAULT TOLERANCE IN THE
AGE OF BLOCKCHAINS

Ethan Buchman Advisor:
University of Guelph, 2016 Professor Graham Taylor

Tendermint is a new protocol for ordering events in a distributed network
under adversarial conditions. More commonly known as consensus or atomic
broadcast, the problem has attracted significant attention recently due to the
widespread success of digital currencies, such as Bitcoin and Ethereum, which
successfully solve the problem in public settings without a central authority.
Tendermint modernizes classic academic work on the subject to provide a
secure consensus protocol with accountability guarantees, as well as an inter-
face for building arbitrary applications above the consensus. Tendermint is
high performance, achieving thousands of transactions per second on dozens
of nodes distributed around the globe, with latencies of about one second,
and performance degrading moderately in the face of adversarial attacks.

Dedicated to Theda.

iii

Preface

The structure and presentation of this thesis was much inspired by Diego On-
garo’s 2014 Doctoral Dissertation, “Consensus: Bridging Theory and Prac-
tice”, wherein he specifies and evaluates the Raft consensus algorithm.

Much of the work done in this thesis was done in collaboration with
Jae Kwon, who initiated the Tendermint project. Please see the Github
repository, at https://github.com/tendermint/tendermint, for a more direct
account of contributions to the codebase.

iv

https://github.com/tendermint/tendermint

Acknowledgments

I learned early in life from Tony Montana that a man has only two things in
this world, his word and his balls, and he should break em for nobody. This
thesis would not have been completed if I had not given my word to certain
people that I would complete it. These include my family, in particular
my parents, grandparents, and great uncle Paul, and my primary adviser,
Graham, who has, for one reason or another, permitted me a practically
abusive amount of flexibility to pursue the topic of my choosing. Thanks
Graham.

Were it not for another set of individuals, this thesis would probably have
been about machine learning. These include Vlad Zamfir, with whom I have
experienced countless moments of discovery and insight; My previous em-
ployer and favorite company, Eris Industries, and especially their CEO and
COO, Casey Kuhlman and Preston Byrne, for hiring me, mentoring me, and
giving me such freedom to research and tinker and ultimately start my own
company with technology they helped fund; Jae Kwon, for his direct mentor-
ship in consensus science and programming, for being a great collaborator,
and for being the core founder and CEO at Tendermint; Lucius Meredith, for
mentoring me in the process calculi; Zach Ramsay, for being, for all intents
and purposes, my heterosexual husband; and of course, Satoshi Nakamoto,
whomever you are, for sending me down this damned rabbit hole in the first
place.

There are of course many other people who have influenced my life during
the course of this graduate degree; you know who you are, and I thank you
for being that person and for all you’ve done for me.

v

Contents

1 Introduction 1
1.1 Bitcoin . 1
1.2 Tendermint . 2
1.3 Contributions . 3

2 Background 5
2.1 Replicated State Machine . 5
2.2 Asynchrony . 6
2.3 Broadcast and Consensus . 8
2.4 Byzantine Fault Tolerance . 10
2.5 Cryptography, Trust, and Economics 13
2.6 Blockchain . 14
2.7 Process Calculus . 14
2.8 The Need For Tendermint . 17

3 Tendermint Consensus 18
3.1 Tendermint Overview . 18
3.2 Consensus . 19

3.2.1 Proposals . 22
3.2.2 Votes . 22
3.2.3 Locks . 23
3.2.4 Formal Specification 25

3.3 Blockchain . 28
3.3.1 Why Blocks? . 28
3.3.2 Block Structure . 29

3.4 Safety . 29
3.5 Accountability . 31
3.6 Faults and Availability . 33

vi

3.7 Conclusion . 34

4 Tendermint Subprotocols 35
4.1 P2P-Networking . 35
4.2 Consensus Gossip . 36

4.2.1 Block Data . 36
4.2.2 Votes . 37

4.3 Mempool . 37
4.4 Syncing the Blockchain . 38
4.5 Conclusion . 38

5 Building Applications 39
5.1 Background . 39
5.2 Tendermint Socket Protocol 40
5.3 Separating Agreement and Execution 43
5.4 Microservice Architecture . 44
5.5 Determinism . 45
5.6 Termination . 45
5.7 Examples . 46

5.7.1 Merkleeyes . 46
5.7.2 Basecoin . 47
5.7.3 Ethereum . 47

5.8 Conclusion . 48

6 Governance 49
6.1 Governmint . 49
6.2 Validator Set Changes . 50
6.3 Punishing Byzantine Validators 51
6.4 Software Upgrades . 52
6.5 Crisis Recovery . 53
6.6 Conclusion . 54

7 Client Considerations 55
7.1 Discovery . 55
7.2 Broadcasting Transactions . 55
7.3 Mempool . 56
7.4 Semantics . 57
7.5 Reads . 57

vii

7.6 Light Client Proofs . 58
7.7 Conclusion . 58

8 Implementation 59
8.1 Binary Serialization . 59
8.2 Cryptography . 60
8.3 Merkle Hash Tree . 60
8.4 RPC . 61
8.5 P2P Networking . 61
8.6 Reactors . 61

8.6.1 Mempool . 61
8.6.2 Consensus . 62
8.6.3 Blockchain . 62

8.7 Conclusion . 63

9 Performance and Fault Tolerance 64
9.1 Overview . 64
9.2 Throughput and Latency . 65
9.3 Crash Failures . 66
9.4 Random Network Delay . 71
9.5 Byzantine Failures . 71
9.6 Related Work . 73
9.7 Conclusion . 73

10 Related Work 75
10.1 Beginnings . 75

10.1.1 Faulty Things . 76
10.1.2 Clocks . 76
10.1.3 FLP . 77
10.1.4 Common Coin . 78
10.1.5 Transaction Processing 78
10.1.6 Broadcast Protocols 79

10.2 Byzantine . 79
10.2.1 Byzantine Generals . 79
10.2.2 Randomized Consensus 80
10.2.3 Partial Synchrony . 80
10.2.4 PBFT . 81
10.2.5 BFT Improvements . 82

viii

10.3 Non-Byzantine . 82
10.3.1 Paxos . 83
10.3.2 Raft . 83

10.4 Blockchain . 83
10.4.1 Bitcoin . 84
10.4.2 Ethereum . 84
10.4.3 Proof-of-Stake . 85
10.4.4 HyperLedger . 85
10.4.5 HoneyBadgerBFT . 86

10.5 Conclusion . 87

11 Conclusion 88

ix

List of Figures

2.1 Overview of replicated state machine architecture 7
2.2 Byzantine processes tell lies 12

3.1 Overview of Tendermint consensus logic 20
3.2 Formal specification of Tendermint consensus in the π-calculus,

part I . 26
3.3 Formal specification of Tendermint consensus in the π-calculus,

part II . 27

5.1 TMSP Message Types . 41
5.2 TMSP Architecture . 42

9.1 Latency-Throughput trade-off in non-faulty global network . . 67
9.2 Latency-throughput trade-off in non-faulty local network . . . 68
9.3 Latency-Throughput trade-off in non-faulty global network of

large machines . 69

x

List of Tables

9.1 Latency statistics under crash faults 70
9.2 Latency statistics under randomized delays 72
9.3 Latency statistics under Byzantine faults 74

xi

Chapter 1

Introduction

The cold, hard truth about computer engineering today is that comput-
ers are faulty - they crash, corrupt, slow down, perform voodoo. What’s
worse, we’re typically interested in connecting computers over a network (like
the Internet), and networks can be more unpredictable than the computers
themselves. These challenges are primarily the concern of “fault tolerant
distributed computing”, whose aim is to discover principled protocol designs
enabling faulty computers communicating over a faulty network to stay in
sync while providing a useful service. In essence, to make a reliable system
from unreliable parts.

In an increasingly digital and globalized world, however, systems must
not only be reliable in the face of unreliable parts, but in the face of ma-
licious or “Byzantine” ones. Over the last decade, major components of
critical infrastructure have been ported to networked systems, as have vast
components of the world’s finances. In response, there has been an explosion
of cyber warfare and financial fraud, and a complete distortion of economic
and political fundamentals.

1.1 Bitcoin

In 2009, an anonymous software developer known only as Satoshi Nakamoto
introduced an approach to the resolution of these issues that was simultane-
ously an experiment in computer science, economics, and politics. It was a
digital currency called Bitcoin [71]. Bitcoin was the first protocol to solve
the problem of fault tolerant distributed computing in the face of malicious

1

adversaries in a public setting. The solution, dubbed a “blockchain”, hosts a
digital currency, where consent on the order of transactions is negotiated via
an economically incentivized cryptographic random lottery based on partial
hash collisions. In essence, transactions are ordered in batches (blocks) by
those who find partial hash collisions of the transaction data, in such a way
that the correct ordering is the one where the collisions have the greatest
cumulative difficulty. The solution was dubbed Proof-of-Work (PoW).

Bitcoin’s subtle brilliance was to invent a currency, a cryptocurrency, and
to issue it to those solving the hash collisions, in exchange for their doing
such an expensive thing as solving partial hash collisions. In spirit, it might
be assumed that the capacity to solve such problems would be distributed
as computing power is, such that anyone with a CPU could participate.
Unfortunately, the reality is that the Bitcoin network has grown into the
largest supercomputing entity on the planet, greater than all others com-
bined, evaluating only a single function, distributed across a few large data
centers running Application Specific Integrated Circuits (ASICs) produced
by a small number of primarily Chinese companies, and costing on the order
of two million USD per day in electricty [7]. Further, its technical design
has limitations: it takes up to an hour to confirm transactions, is difficult
to build applications on top of, and does not scale in a way which preserves
its security guarantees. This is not to mention the internal bout of political
struggles resulting from the immaturity of the Bitcoin community’s gover-
nance mechanisms.

Despite these troubles, Bitcoin, astonishingly, continues to churn, and
its technology, of cryptography and distributed databases and co-operative
economics, continues to attract billions in investment capital, both in the
form of new companies and new cryptocurrencies, each diverging from Bitcoin
in its own unique way.

1.2 Tendermint

In 2014, Jae Kwon began the development of Tendermint, which sought to
solve the consensus problem, of ordering and executing a set of transactions
in an adversarial environment, by modernizing solutions to the problem that
have existed for decades, but have lacked the social context to be deployed
widely until now.

In early 2015, in an effort led by Eris Industries to bring a practical

2

blockchain solution to industry, the author joined Jae Kwon in the develop-
ment of the Tendermint software and protocols.

The result of that collaboration is the Tendermint platform, consisting
of a consensus protocol, a high-performance implementation in Go, a flexi-
ble interface for building arbitrary applications above the consensus, and a
suite of tools for deployments and their management. We believe Tender-
mint achieves a superior design and implementation compared to previous
approaches, including that of the classical academic literature [31, 17, 75] as
well as Bitcoin [71] and its derivatives [105, 4, 55] by combining the right
elements of each to achieve a practical balance of security, performance, and
simplicity.

The Tendermint platform is available open source at https://github.com/
tendermint/tendermint, and in associated repositories at https://github.com/
tendermint. The core is licensed GPLv3 and most of the libraries are Apache
2.0.

1.3 Contributions

The primary contributions of this thesis can be found in Chapters 3 and
9, and in the many commits on https://github.com/tendermint/tendermint
and related repositories. Of particular significance are:

• A formal specification of Tendermint in the π-calculus and an informal
proof of correctness of its safety and accountability (Chapter 3).

• A refactor of the core consensus state machine in the spirit of the for-
mal specification to be more robust, deterministic, and understandable
(https://github.com/tendermint/tendermint/).

• Evaluation of the software’s performance and characteristics in normal,
faulty, and malicious conditions on large deployments (Chapter 9).

• Countless additional tests, leading to innumerable bug fixes and perfor-
mance improvements (https://github.com/tendermint/tendermint/).

Chapters 4-8 describe the many other components of a complete system.
Some of these, like the subprotocols used to gossip data (Chapter 4) and
the various low-level software libraries (Chapter 8), were designed and im-
plemented by Jae Kwon before being joined by the author. The rest was

3

https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint
https://github.com/tendermint
https://github.com/tendermint
https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint/
https://github.com/tendermint/tendermint/

designed and implemented with regular consultation and inspiration from
the author. For a more direct accounting of contributions, please see the
Github repositories.

Though not recounted in this thesis, the author made various contribu-
tions during this time to the Ethereum Project1, an alternative to Bitcoin
which generalizes the use of the technology from currency to arbitrary com-
putations. In addition, the author has been invited on numerous occasions
to speak privately and publicly about both Ethereum and Tendermint, in-
cluding as an instructor2,3, and a presenter4,5,6.

A final note on thesis structure: Despite being placed at the end, Chap-
ter 10 provides significant context and may enhance understanding of the
thesis if read before Chapter 3. However, in order to not delay the reader’s
introduction to Tendermint, it is placed at the end.

1Most notably tests, bug-fixes, and performance improvements in the Go implementa-
tion at https://github.com/ethereum/go-ethereum

2Private instructor to a major financial institution, 2015
3Blockchain University, 2015, http://blockchainu.co
4Cryptoeconomicon, 2015
5International Workshop on Technical Computing for Machine Learning and Mathe-

matical Engineering, 2014, http://www.esat.kuleuven.be/stadius/tcmm2014/
6The Blockchain Workshops, 2016 http://nyc.blockchainworkshops.org/

4

https://github.com/ethereum/go-ethereum
http://blockchainu.co
http://www.esat.kuleuven.be/stadius/tcmm2014/
http://nyc.blockchainworkshops.org/

Chapter 2

Background

Distributed consensus systems have become a critical component of modern
Internet infrastructure, powering every major Internet application at some
level or another. This chapter introduces the necessary background material
for understanding and discussing these systems. In addition, it introduces
the π-calculus, a formal language for describing concurrent processes, which
will be used to specify the Tendermint algorithm in Chapter 3.

2.1 Replicated State Machine

The most common paradigm for studying and implementing distributed con-
sensus is that of the Replicated State Machine, wherein a deterministic state
machine is replicated across a set of processes, such that it functions as a
single state machine despite the failure of some processes [87]. The state
machine is driven by a set of inputs, known as transactions, where each
transaction may or may not, depending on its validity, cause a state transi-
tion and return a result. More formally, a transaction is an atomic operation
on a database, meaning it either completes or doesn’t occur at all, and can’t
be left in an intermediate state [42]. The state transition logic is governed
by the state machine’s state transition function, which maps a transaction
and the current state to a new state and a return value. The state transition
function is also sometimes referred to as application logic.

It is the responsibility of the consensus protocol to order the transactions
so that the resulting transaction log is replicated exactly by every process.
Using a deterministic state transition function implies that every process will

5

compute the same state given the same transaction log.
A summary of the replicated state machine architecture is given in Figure

2.1.
Tendermint was motivated from the desire to create a general purpose,

high-performance, secure, and robust replicated state machine.

2.2 Asynchrony

The purpose of a fault-tolerant replicated state machine is to co-ordinate a
network of computers to stay in sync while providing a useful service, despite
the presence of faults.

Staying in sync amounts to replicating the transaction log successfully;
providing a useful service amounts to keeping the state machine available
for new transactions. These aspects of the system are traditionally known as
safety and liveness, respectively. Colloquially, safety means nothing bad hap-
pens; liveness means that something good eventually happens. A violation
of safety implies two or more valid, competing transaction logs. Violating
liveness implies an unresponsive network.

It is trivial to satisfy liveness by accepting all transactions. And it is
trivial to satisfy safety by accepting none. Hence, state machine replica-
tion algorithms can be seen to operate on a spectrum defined by these ex-
tremes. Typically, processes require some threshold of received information
from other processes before they commit a new transaction. In synchronous
environments, where we make assumptions about the maximum delay of net-
work messages or the maximum speed of processor clocks, it is easy enough
to take turns proposing new transactions, poll for a majority vote, and skip
a proposer’s turn if they don’t propose within the bounds of the synchrony
assumptions.

In asynchronous environments, where no such assumptions about network
delays or processor speeds are warranted, the trade-off is much more difficult
to manage. In fact, the so called FLP impossibility result demonstrates
the impossibility of distributed consensus among deterministic asynchronous1

processes if even a single processes can crash [37]. The proof amounts to
showing that, because processes can fail, there are valid executions of the
protocol in which processes fail at the exact opportune times to prevent
consensus. Hence, we have no guarantee of consensus.

1Prior to FLP, the distinction between sync/async wasn’t as prominent

6

Client

Consensus
Protocol

Tx1: set(x, 5)
 Tx2: set(y, 11)
Tx3: set(z, 3)

...

Transaction Log

State

x = 5
y = 11
z = 3

Consensus
Protocol

Tx1: set(x, 5)
 Tx2: set(y, 11)
Tx3: set(z, 3)

...

Transaction Log

State

x = 5
y = 11
z = 3

Consensus
Protocol

Tx1: set(x, 5)
 Tx2: set(y, 11)
Tx3: set(z, 3)

...

Transaction Log

State

x = 5
y = 11
z = 3

API

API

API

Tx

Figure 2.1: A replicated state machine replicates a transaction log and re-
sulting state across multiple machines. Transactions are received from the
client, run through the consensus protocol, ordered in the transaction log,
and executed against the state. In the figure, each diamond represents a sin-
gle machine, with dotted lines representing communication between machines
to carry out the consensus protocol for ordering transactions.

7

Typically, synchrony in a protocol is reflected by the use of timeouts to
manage certain transitions. In asynchronous environments, where messages
can be arbitrarily delayed, relying on synchrony (timeouts) for safety can
lead to a fork in the transaction log. Relying on synchrony to ensure liveness
can cause the consensus to halt, and the service to become unresponsive.
The former case is usually considered more severe, as reconciling conflicting
logs can be a daunting or impossible task.

In practice, synchronous solutions are only used where the message la-
tency is under extremely well defined control, for instance between controllers
on an airplane [49], or between datacenters utilizing synchronized atomic
clocks [23]. Thus, while many efficient synchronous solutions exist, the gen-
eral unreliability of computer networks is too great a risk for them to be used
in practice without significant additional costs.

There are fundamentally two ways to overcome the FLP impossibility
result. The first is to use stronger synchrony assumptions - even rather
weak assumptions are sufficient, for instance, that only eventually, crashed
processes are suspected of crashing and correct ones are not [19]. Typically,
this approach utilizes leaders, which play a special co-ordinating role, and
which can be skipped if they are suspected of being faulty after some timeout.
In practice, such leader-election mechanisms can be difficult to get right.

The second way to overcome FLP is to use non-determinism - include ran-
domization elements such that the probability of coming to consensus tends
to 1. While clever, relying on randomization is typically much slower, though
certain advanced cryptographic techniques have in recent years achieved
tremendous improvements in speed [67]

2.3 Broadcast and Consensus

In order for a process to replicate its state on other processes, it must have
access to basic communication primitives which allow it to disseminate, or de-
liver, information. One of the most useful such primitives is reliable broadcast.
Reliable broadcast (RBC) is a broadcast primitive satisfying, for message m
[19]:

• validity - if a correct process broadcasts m, it eventually delivers m

• agreement - if a correct process delivers m, all correct processes even-
tually deliver m

8

• integrity - m is only delivered once, and only if broadcast by its sender

In essence, RBC enables a message to be eventually delivered once on all
correct processes.

Another, more useful primitive is atomic broadcast (ABC), which satisfies
RBC and an additional property [19]:

• total order - if correct processes p and q deliver m and m′, then p
delivers m before m′ iff q delivers m before m′

Atomic broadcast is thus a reliable broadcast where values are delivered in
the same order on each host. Note this is exactly the problem of replicating
a transaction log. While colloquially, the problem may be referred to as
consensus, the standard definition of the consensus primitive satisfies the
following [19]:

• termination - every correct process eventually decides

• integrity - every correct process decides at most once

• agreement - if one correct process decides v1 and another decides v2,
then v1 = v2

• validity - if a correct process decides v, at least one process proposed v

Intuitively, consensus and ABC appear remarkably similar, with the crit-
ical difference that ABC is a continuous protocol, whereas consensus expects
to terminate. That said, it is well known that each can be reduced to the
other [19]. Consensus is easily reduced to ABC by deciding the first value
to be atomically broadcast. ABC can be reduced to consensus by running
many instances of the consensus protocol, in sequence, though certain subtle
considerations must be made, especially for handling Byzantine faults. A
complete description of the parameter space surrounding the reduction of
ABC to consensus remains an open topic of research.

Historically, despite the fact that most use cases actually require ABC, the
most widely adopted algorithm has been a consensus algorithm called Paxos,
introduced, and proven correct, by Leslie Lamport in the 90s [59]. Paxos
simultaneously empowered and confused the discipline of consensus science,
on the one hand by providing the first real-world, practical, fault-tolerant
consensus algorithm, and on the other by being so difficult to understand

9

and explain. Each implementation of the algorithm used its own unique
bag of ad-hoc techniques to build ABC from Paxos, making the ecosystem
difficult to navigate, understand, and utilize. Unfortunately, there was little
work on improving the problem framing to make it more understandable,
though there were efforts to delineate solutions to the various difficulties
[18].

In 2013, Ongaro and Ousterhout published Raft [75], a state machine
replication algorithm whose motivating design goal was understandability.
Rather than starting from a consensus algorithm, and attempting to build
what was needed (ABC), the design of Raft considered first and foremost the
transaction log, and sought orthogonal components which could fit together
to provide what is ultimately ABC, though it is not described as such.

Paxos has been the staple consensus algorithm for industry, upon which
the likes of Amazon [26], Google [10], and others have built out highly avail-
able global Internet services. The Paxos consensus sits at the bottom of the
application stack, providing a consistent interface to resource management
and allocation, operating at much slower time scales than the highly-available
applications facing the users.

Since its debut, however, Raft has seen tremendous adoption, especially
in the open source community, with implementations in virtually ever major
language [96], and use as the backbone in major projects, including CoreOs’s
distributed Linux distribution [32] and the open source time-series database
InfluxDB [51, 45].

Raft’s major divergent design decisions from Paxos was to focus on the
transaction-log first, rather than a single value, in particular to allow a leader
to persist in committing transactions until he goes down, at which point lead-
ership election can kick in. In some ways, this is similar to the approach taken
by blockchains, though the major advantage of blockchains is the ability to
tolerate a different kind of fault.

2.4 Byzantine Fault Tolerance

Blockchains have been described as “trust machines” [97] on account of the
way they reduce counter party risk through the decentralization of responsi-
bility over a shared database. Bitcoin, in particular, is noted for its ability to
withstand attacks and malicious behaviour by any of the participants. Tradi-
tionally, consensus protocols tolerant of malicious behaviour were known as

10

Byzantine Fault Tolerant (BFT) consensus protocols. The term Byzantine
was used due to the similarity of the problem to that faced by generals of the
Byzantine army attempting to co-ordinate themselves to attack Rome using
only messengers, where one of the generals may be a traitor [61].

In a crash fault, a process simply halts. In a Byzantine fault, it can
behave arbitrarily. Crash faults are easier to handle, as no process can lie
to another process. Systems which only tolerate crash faults can operate via
simple majority rule, and therefore typically tolerate simultaneous failure of
up to half of the system. If the number of failures the system can tolerate is
f , such systems must have at least 2f + 1 processes.

Byzantine failures are more complicated. In a system of 2f +1 processes,
if f are Byzantine, they can co-ordinate to say arbitrary things to the other
f + 1 processes. For instance, suppose we are trying to agree on the value
of a single bit, and f = 1, so we have N = 3 processes, A, B, and C, where
C is Byzantine, as in Figure 2.2. C can tell A that the value is 0 and tell
B that it’s 1. If A agrees that its 0, and B agrees that its 1, then they will
both think they have a majority and commit, thereby violating the safety
condition. Hence, the upper bound on faults tolerated by a Byzantine system
is strictly lower than a non-Byzantine one.

In fact, it can be shown that the upper limit on f for Byzantine faults
is f < N/3 [78]. Thus, to tolerate a single Byzantine process, we require at
least N = 4. Then the faulty process can’t split the vote the way it was able
to when N = 3.

In 1999, Castro and Liskov published Practical Byzantine Fault Toler-
ance [17], or PBFT, which provided the first optimal Byzantine fault toler-
ant algorithm for practical use. It set a new precedent for the practicality of
Byzantine fault tolerance in industrial systems by being capable of processing
tens of thousands of transactions per second. Despite this success, Byzantine
fault tolerance was still considered expensive and largely unnecessary, and
the most popular implementation was difficult to build on top of [20]. Hence,
despite a resurgence in academic interest, including numerous improved vari-
ations [107, 58] not much progress was made in the way of implementations
and deployment. Furthermore, PBFT provides no guarantees if a third or
more of the network co-ordinates to violate safety.

11

It's 0!

It's 0!

It's 0!

It's 1!

It's 1!

It's 1!

It's ?

It's 0!
It's 1!

A
B

C

Tally:

A: 0
B: 1
C: 0

Final: 0

Tally:

A: 0
B: 1
C: 1

Final: 1

Figure 2.2: A Byzantine process, C, tells A one thing and B another, caus-
ing them to come to different conclusions about the network. Here, simple
majority vote results in a violation of safety due to only a single Byzantine
process.

12

2.5 Cryptography, Trust, and Economics

Fundamentally, fault tolerance is a problem deriving from a lack of trust -
an inability to know how some process will behave. Formally, trust might
be defined information theoretically as a means for reducing the entropy of
one’s model of the world - to trust someone is to optimistically reduce one’s
uncertainty about the world, enabling more focused attention on higher order
forms of organization.

Cryptographic primitives are also fundamentally related to the problem of
trust, and may similarly be defined as mechanisms which allow for a massive
reduction in entropy - successfully authenticating a cryptographic function
collapses a distribution over possible outcomes to a single, or in some cases
a small number, of outcomes.

It is well known that civilizations that have greater forms of institutional
trust, such as the rule-of-law, have higher productivity and more vibrant
economies [108]. The result makes intuitive sense, as being able to trust
more about an interaction reduces the space of possible outcomes that need
to be actively modelled, making it easier to co-ordinate. Unfortunately, it
is becoming increasingly difficult to evaluate the trustworthiness of modern
institutions as their complexity has skyrocketed in recent decades, increasing
the likelihood that the certainty they allegedly provide is an illusion.

Fortunately, cryptography can form the basis for new institutions of
trust in society which may dramatically improve the capacity for human
co-ordination at global scale on account of reduced risk of fraudulent and/or
unaccountable activity. Of particular interest is the importance of crypto-
graphic primitives in BFT algorithms, both for authentication and for seeding
non-determinism.

Most interestingly, economic mechanisms may also serve as means for
reducing entropy, in so far as economic agents can be incentivized - which
is to say be made more likely to execute a particular behaviour. In fact,
Bitcoin’s great insight was that cryptographic primitives could be used in
conjunction with economic incentives to sufficiently reduce the entropy of a
public consensus network to achieve secure replication of state.

A more formal investigation of the information theoretic grounds of trust,
cryptography, consensus, and economics, and in particular their inter-relationship,
remains for future work.

13

2.6 Blockchain

A blockchain is, at heart, an integrity-focused approach to Byzantine Fault
Tolerant Atomic Broadcast. The Bitcoin blockchain, for instance, uses a com-
bination of economics and cryptographic randomization to provide a strong
probabilistic guarantee that safety will not be violated, given a weak syn-
chrony assumption, namely, that blocks are gossipped much more rapidly
than they are found via the partial-hash collision lottery. In practice, how-
ever, it is well known that Bitcoin’s security guarantees are vulnerable to a
number of subtle attacks [24, 33].

The blockchain gets its name from the two key optimizations it employs
in solving ABC. The first is that it groups transactions in blocks in order to
amortize the high commit latency (on the order of ten minutes) over many
transactions. The second is to link blocks via cryptographic hashes into
an immutable chain, such that is easy to verify the historical record. Both
optimizations are natural improvements to a naive BFT-ABC, the former
improving performance, the latter improving tolerance to certain kinds of
difficult to model Byzantine faults.

Over the last few years, it has become common to “blockchainize” consen-
sus algorithms, that is, to adapt them to ABC using the blockchain paradigm
of hash-linked transaction batches. To the author’s knowledge, Tendermint
was the first such proposal, upgrading a well known BFT algorithm from the
late 80s [31], though it has since evolved to a consensus algorithm of its own.
It has been followed by IBM, which upgraded PBFT to a blockchain [14, 76],
and by JP Morgan, which upgraded a BFT version of Raft [9].

2.7 Process Calculus

Distributed systems, where pieces of the system execute concurrently with
one another, are notorious for being difficult to design, build, and debug.
They are further difficult to formally verify, as most techniques for formal
verification, and in fact the very foundations of computer science, have been
specifically developed with sequential computation in mind.

Process calculi are a family of models introduced to provide a formal
basis for concurrent computation. The most popular calculus, the Commu-
nicating Sequential Processes (CSP) [46] forms the theoretical foundation
for many modern programming languages, such as Go, which include con-

14

currency primitives in the language design [89].
In the 80s, Robin Milner introduced the Calculus of Communicating Sys-

tems (CCS), designed to be a concurrent analog of the sequential lambda
calculus that underlies most functional programming languages. While the
lambda calculus has function application as its basic unit of computation,
CCS uses communication between two concurrent processes over a shared
channel as its basic operational primitive. A more general form of CCS, the
π-calculus, enables mobility in the communication graph between processes,
such that the channels of communication can themselves be passed along
other channels, thereby blurring the distinction between data, variables, and
channels. The result is a coherent, minimalistic model of computation more
powerful than its sequential predecessors.

The π-calculus has proven to be a highly effective tool for the study of
concurrent systems, with applications from business process management [64]
to cellular biology [80]. The remarkably simple notation simplifies the de-
scription of concurrent protocols. Furthermore, the well known equivalence
between computation and logic [2] enables logical systems to be defined com-
plementary to the various process calculi, providing formal means to discuss
and verify the properties of systems specified in an appropriate calculus.

Our presentation of the π-calculus is sufficient merely to specify the Ten-
dermint algorithm. For a more complete introduction, see [68].

The grammar of a simple π-calculus, in Backus-Naur form, is as follows:

P := 0 void

| P | P par

| α.P guard

| α.P + α.P guarded-choice

| (νx)P fresh

| F s(y) func

α := τ null

| x!(y) send

| x?(y) receive

| suspi suspect

15

Each grammatical rule is labelled with a reference to its functional mean-
ing. A process may be the empty process, 0. It may be the parallel compo-
sition of two processes, P | P , denoting two processes running concurrently.
A guarded processes, α.P , only allows process P to execute after an ac-
tion, α, has occurred. The action can be a null action, τ , or it can be the
sending, x!(y), or receiving, x?(y), of y along x. Guarded choice injects
non-determinism into the operation of the calculus, such that the processes
α.P + β.Q will non-deterministically execute α or β, and then run P or Q,
respectively. A new channel, x, can be created via (νx)P , such that x is
only accessible in P . Functional forms F s(y) allow us to pass variables s and
y into the process called F , which may cause it self to execute recursively.
Typically, we let s be state-like variables, while y are channels in the calcu-
lus. Finally, since we are interested in consensus in asynchronous networks,
we employ an abstraction of timeouts knows as unreliable failure detectors
[19], and model them as a non-deterministic action [72]. The suspi action is
triggered when process i is suspected of having failed - in other words, after
some timeout.

Note that we may use
∑
P to denote guarded-choice over more than

two processes, and
∏
P to denote the parallel composition of more than two

processes. We also admit a polyadic form of send and receive, for instance the
process x?(v, w) | x!(y, z) is equivalent to x?(d).d?(v).d?(w) | (νc)x!(c).c!(y).c!(z).

An operational semantics defines the actual non-reversible computational
steps that a process may execute. Effectively, the only relevant operation is
communication, known as the comm rule:

(x?(y).P |x!(z))→ P{z/y} (2.1)

The notation P{z/y} means that all occurrences of y in P are replaced with
z. In other words, z was sent on x, received as y, and fed to P .

Given a π-calculus process, we can follow its execution by applying the
comm rule. For instance,

(x?(y).y!(x)|x!(z))→ z!(x) (2.2)

Now, we can use a formal logic to express properties a process might
satisfy. For instance, the modal Hennessy–Milner logic can express that a
process will satisfy some other logic expression after some or all forms of an
action have occurred [69]. By adding more complex operators to the logic,
formal systems can be built up which easily describe important properties

16

of distributed systems, such as safety and liveness [92], and localization [15].
Systems written in the π-calculus can then be formally verified to satisfy the
relevant properties using model checking software [101].

While we use the π-calculus to specify the Tendermint algorithm, we
leave use of an associated formal logic, and the corresponding verification of
properties, to future work.

2.8 The Need For Tendermint

The success of Bitcoin and its derivatives, especially Ethereum [105], and
their promise of secure, autonomous, distributed, fault-tolerant execution of
arbitrary code has caused virtually every major financial institution on the
planet to become interested in the blockchain phenomenon. In particular,
there has emerged an understanding of two forms of the technology: On the
one hand are the public blockchains, known affectionately as the Big Bad
Public Blockchains or BBPBs, whose protocols are dominated by in-built
economic incentives bootstrapped by a native currency. On the other are so
called private blockchains, which might more accurately be called “consortia
blockchains”, and which are effectively improvements on traditional consen-
sus and BFT algorithms through the use of hash trees, digital signatures,
peer-to-peer networking, and enhanced accountability.

As the infrastructure of our societies continues to decentralize, and as
the nature of business becomes more inter-organizational, there is increasing
need for a transparent, accountable, high performance BFT system, which
can support applications from finance to domain registration to electronic
voting, and which comes equipped with advanced mechanisms for gover-
nance and evolution into the future. Tendermint is that solution, optimized
for consortia, or inter-organizational logic, but flexible enough to accommo-
date anyone from private enterprise to global currency, and high-performance
enough to compete with the major, non-BFT, consensus solutions available
today, such as etcd, consul, and zookeeper, while providing greater resilience,
security guarantees, and flexibility to application developers.

A more comprehensive discussion of consensus science and related algo-
rithms is reserved for Chapter 10.

17

Chapter 3

Tendermint Consensus

This chapter presents the Tendermint consensus algorithm and an associated
blockchain for atomic broadcast. The BFT consensus problem is described
in detail, and a formal specification of Tendermint consensus is given in the
π-calculus. The Tendermint blockchain is informally proven to satisfy atomic
broadcast. We leave it to future work to capture the full blockchain protocol
in a process calculus and to verify its properties.

3.1 Tendermint Overview

Tendermint is a secure state-machine replication algorithm in the blockchain
paradigm. It provides a form of BFT-ABC that is furthermore accountable
- if safety is violated, it is always possible to verify who acted maliciously.

Tendermint begins with a set of validators, identified by their public key,
where each validator is responsible for maintaining a full copy of the repli-
cated state, and for proposing new blocks (batches of transactions), and
voting on them. Each block is assigned an incrementing index, or height,
such that a valid blockchain has only one valid block at each height. At each
height, validators take turns proposing new blocks in rounds, such that for
any given round there is at most one valid proposer. It may take multiple
rounds to commit a block at a given height due to the asynchrony of the
network, and the network may halt altogether if one-third or more of the
validators are offline or partitioned. Validators engage in two phases of vot-
ing on a proposed block before it is committed, and follow a simple locking
mechanism which prevents any malicious coalition of less than one third of

18

the validators from compromising safety.
Note that the core round-based voting mechanism is the consensus algo-

rithm, which is strung together into blocks to yield atomic broadcast. Each
block contains some metadata, known as its header, which includes the hash
of the block at the previous height, resulting in a hash chain. The header
also includes the block height, local time the block was proposed, and the
Merkle root hash of transactions included in the block.

3.2 Consensus

The consensus algorithm can be roughly divided into the following, somewhat
orthogonal, components:

• Proposals: a new block must be proposed by the correct proposer at
each round, and gossiped to the other validators. If a proposal is not
received in sufficient time, the proposer should be skipped.

• Votes: two phases of voting must occur to ensure optimal Byzantine
fault tolerance. They are called pre-vote and pre-commit. A set of
pre-commits from more than two-thirds of the validators for the same
block at the same round is a commit.

• Locks: Tendermint ensures that no two validators commit a different
block at the same height, presuming less than one-third of the valida-
tors are malicious. This is achieved using a locking mechanism which
determines how a validator may pre-vote or pre-commit depending on
previous pre-votes and pre-commits at the same height. Note that this
locking mechanism must be carefully designed so as to not compromise
liveness.

In order to provide tolerance to a single Byzantine fault, a Tendermint
network must contain at minimum four validators. Each validator must pos-
sess an asymmetric cryptographic key-pair for producing digital signatures.
Validators start from a common initial state, which contains the ordered list,
L, of validators. Each validator is identified via their public key, and all pro-
posals and votes must be signed by the respective private key. This ensures
that proposals and votes can always be verified by any observer. It is helpful
to assume that up to one-third of validators are malicious, co-operating in
arbitrary ways to subvert system safety or liveness.

19

Propose

Prevote Block Commit Prevote Nil

Wait for
prevotes from

+2/3

Precommit Nil

Precommit Block

Wait for
precommits
from +2/3

New Round

Valid blockInvalid block or
not received in

time

+2/3 prevote
for block

no +2/3 prevote
for block

no +2/3
precommit for

block

+2/3
precommit for

block

New
Height

Figure 3.1: After the proposal step, validators only make progress after hear-
ing from two-thirds or more (+2/3) of other validators. The dotted arrow
extends the consensus into atomic broadcast by moving to the next height.

20

Consensus begins at round 0; the first proposer is the first validator in L.
The outcome of a round is either a commit, or a decision to move to the next
round. With a new round comes the next proposer. Using multiple rounds
gives validators multiple opportunities to come to consensus in the event of
network asynchrony or validator failures.

In contrast to algorithms which require a form of leader election, Tender-
mint has a new leader (the proposer) for each round. Validators vote to skip
to the next round in the same way they vote to accept the proposal, lending
the protocol a uniformity of mechanism that is absent from algorithms with
an explicit leader-election program.

The beginning of each round has a weak dependence on synchrony as it
utilizes local clocks to determine when to skip a proposer. That is, if a val-
idator does not receive a proposal within a locally measured TimeoutPropose
of entering a new round, it can vote to skip the proposer. Inherent in this
mechanism is a weak synchrony assumption, namely, that the proposal will
eventually be delivered within TimeoutPropose, which may itself increment
with each round. This assumption is discussed more fully in Chapter 10.

After the proposal, rounds proceed in a fully asynchronous manner - a
validator makes progress only after hearing from at least two-thirds of the
other validators. This relieves any sort of dependence on synchronized clocks
or bounded network delays, but implies that the network will halt if one-
third or more of the validators become unresponsive. This circuit of weakly
synchronous proposals, followed by asynchronous voting, is depicted in Figure
3.1.

To round-skip safely, a small number of locking rules are introduced which
force validators to justify their votes. While we don’t necessarily require
them to broadcast their justifications in real time, we do expect them to
keep the data, such that it can be brought forth as evidence in the event that
safety is compromised by sufficient Byzantine failures. This accountability
mechanism enables Tendermint to provide stronger guarantees in the face of
such failure than eg. PBFT, which provides no guarantees if a third or more
of the validators are Byzantine.

Validators communicate using a diverse set of messages for managing
the blockchain, application state, peer network, and consensus. The core
consensus algorithm, however, consists of just two messages:

• ProposalMsg : a proposal for a block at a given height and round, signed
by the proposer.

21

• VoteMsg : a signed vote for a proposal.

In practice, we use additional messages to optimize the gossiping of block
data and votes, as discussed in Chapter 4.

3.2.1 Proposals

Each round begins with a proposal. The proposer for the given round takes
a batch of recently received transactions from its local cache (the Mempool,
see Chapter 4), composes a block, and broadcasts a signed ProposalMsg con-
taining the block. If the proposer is Byzantine, it might broadcast different
proposals to different validators.

Proposers are ordered via a simple, deterministic round robin, so only
a single proposer is valid for a given round, and every validator knows the
correct proposer. If a proposal is received for a lower round, or from an
incorrect proposer, it is rejected.

Cycling of proposers is necessary for Byzantine tolerance. For instance, in
Raft, if an elected leader is Byzantine and maintains strong network connec-
tions to other nodes, it can completely compromise the system, destroying
all safety and liveness guarantees. Tendermint preserves safety via the voting
and locking mechanisms, and maintains liveness by cycling proposers, so if
one won’t process any transactions, others can pick up. Perhaps more inter-
estingly, validators can vote through governance modules (see Chapter 6) to
remove or replace Byzantine validators.

3.2.2 Votes

Once a complete proposal is received by a validator, it signs a pre-vote for
that proposal and broadcasts it to the network. If a validator does not receive
a correct proposal within ProposalTimeout, it pre-votes for nil instead.

In asynchronous environments with Byzantine validators, a single stage
of voting, where each validator casts only one vote, is not sufficient to ensure
safety. In essence, because validators can act fraudulently, and because there
are no guarantees on message delivery time, a rogue validator can co-ordinate
some validators to commit a value while others, having not seen the commit,
go to a new round, within which they commit a different value.

A single stage of voting allows validators to tell each other what they
know about the proposal. But to tolerate Byzantine faults (which amounts,

22

essentially to lies, fraud, deceit, etc.), they must also tell each other what
they know about what other validators have professed to know about the
proposal. In other words, a second stage ensures that enough validators
witnessed the result of the first stage.

A pre-vote for a block is thus a vote to prepare the network to commit
the block. A pre-vote for nil is a vote to prepare the network to move to the
next round. In an ideal round with an online proposer, more than two-thirds
of validators will pre-vote for the proposal. A set of more than two-thirds of
pre-votes for a single block at a given round is known as a polka1. A set of
more than two-thirds of pre-votes for nil is a nil-polka.

When a validator receives a polka (read: more than two-thirds pre-votes
for a single block), it has received a signal that the network is prepared to
commit the block, and serves as justification for the validator to sign and
broadcast a pre-commit vote for that block. Sometimes, due to network
asynchrony, a validator may not receive a polka, or there may not have been
one. In that case, the validator is not justified in signing a pre-commit for
that block, and must therefore sign and publish a pre-commit vote for nil.
That is, it is considered malicious behaviour to sign a pre-commit without
justification from a polka.

A pre-commit is a vote to actually commit a block. A pre-commit for nil
is a vote to actually move to the next round. If a validator receives more than
two-thirds pre-commits for a single block, it commits that block, computes
the resulting state, and moves on to round 0 at the next height. If a validator
receives more than two-thirds pre-commits for nil, it moves on to the next
round.

3.2.3 Locks

Ensuring safety across rounds can be tricky, as circumstances must be avoided
which would provide justification for two different blocks to be committed
at two different rounds at the same height. In Tendermint, this problem is
solved via a locking mechanism which revolves around the polka (ie. more
than two thirds pre-vote for the same block). In essence, a pre-commit must
be justified by a polka, and a validator is considered locked on the last block
it pre-commit. There are two rules of locking:

1The original term used was PoL, or PoLC, for Proof-of-Lock or Proof-of-Lock-Change.
The term evolved to polka as it was realized the validators are doing the polka.

23

• Prevote-the-Lock: a validator must pre-vote for the block they are
locked on, and propose it if they are the proposer. This prevents val-
idators from pre-committing one block in one round, and then con-
tributing to a polka for a different block in the next round, thereby
compromising safety.

• Unlock-on-Polka: a validator may only release a lock after seeing a
polka at a round greater than that at which it locked. This allows
validators to unlock if they pre-committed something the rest of the
network doesn’t want to commit, thereby protecting liveness, but does
it in a way that does not compromise safety, by only allowing unlocking
if there has been a polka in a round after that in which the validator
became locked.

For simplicity, a validator is considered to have locked on nil at round
-1 at each height, so that Unlock-on-Polka implies that a validator cannot
pre-commit at a new height until they see a polka.

These rules can be understood more intuitively by way of examples. Con-
sider four validators, A, B, C, D, and suppose there is a proposal for blockX
at round R. Suppose there is a polka for blockX, but A doesn’t see it, and
pre-commits nil, while the others pre-commit for blockX. Now suppose the
only one to see all pre-commits is D, while the others, say, don’t see D’s
pre-commit (they only see their two pre-commits and A’s pre-commit nil).
D will now commit the block, while the others go to round R+ 1. Since any
of the validators might be the new proposer, if they can propose and vote
for any new block, say blockY , then they might commit it and compromise
safety, since D already committed blockX. Note that there isn’t even any
Byzantine behaviour here, just asynchrony!

Locking solves the problem by forcing validators to stick with the block
they pre-committed, since other validators might have committed based on
those pre-commits (as D did in this example). In essence, once more than
two-thirds pre-commit a block in a round, the network is locked on that block,
which is to say it must be impossible to produce a valid polka for a different
block at a higher round. This is direct motivation for Prevote-the-Lock.

Prevote-the-Lock is not sufficient, however. There must be a way to
unlock, lest we sacrifice liveness. Consider a round where A and B pre-
committed blockX while C and D pre-committed nil - a split vote. They all
move to the next round, and blockY is proposed, which C and D prevote

24

for. Suppose A is Byzantine, and prevotes for blockY as well (despite being
locked on blockX), resulting in a polka. Suppose B does not see the polka
and pre-commits nil, while A goes off-line and C and D pre-commit blockY .
They move to the next round, but B is still locked on blockX, while C and
D are now locked on blockY , and since A is offline, they can never get a
polka. Hence, we’ve compromised liveness with less than a third (here, only
one) Byzantine validators.

The obvious justification for unlocking is a polka. Once B sees the polka
for blockY (which C and D used to jusitfy their pre-commits for blockY),
it ought to be able to unlock, and hence pre-commit blockY . This is the
motivation for Unlock-on-Polka, which allows validators to unlock (and pre-
commit a new block), if they have seen a polka in a round greater than that
in which they locked.

3.2.4 Formal Specification

Now that we have explained the protocol in detail, we provide a formal
specification in the π-calculus.

Let Consensus :=
∏N

i=1 Yi represent a consensus protocol over a set of
N validators, each executing one of a mutually exclusive set of processes,
Yi. Internal state s = {r, p, v} consists of a strictly increasing round, r, a
proposal p, containing the proposed block for this round; and a set of votes,
v, containing all votes at all rounds. We denote by v1r and v2r the set of
prevotes and pre-commits, respectively, at round r, and we let vote :: v
denote the union of sets {vote} and v (ie. the addition of vote to v). We
define proposer(r) = r mod N to be the index of the proposer at round r.
We represent a peer at a particular point in the protocol as Y r,p,v

i . Processes
Yi range over PRi, PVi, PCi, respectively abbreviating propose, prevote,
precommit. We introduce additional sub-functions for PV and PC to capture
the recursion, denoted PV 1, PV 2, etc.

Peers are connected using broadcast channels for each message type,
namely proposei, prevotei, and precommiti, as well as a channel for deciding
on, or committing, a value, di. Via an abuse of notation, a single send on a
broadcast channel xxxi can be received by each process along xxxi.

We use only two message types: proposals and votes. Each contains a
round number, block (hash), and signature, denoted msg.round, msg.block,
msg.sig. Note we can absorb the signature into the broadcast channel itself,
but we need it for use as evidence in the event of Byzantine behaviour.

25

Consensus :=
∏N

i=1 PR
0,∅,∅,
i

PRr,p,v
i :=if i = proposer(r) then

proposei!(prop) | PV r,prop,v
i , where prop = chooseProposal(p)

else if p 6= ∅ then

PV r,p,v
i

else

proposeproposer(r)?(prop).PV r,prop,v
i + suspproposer(r).PV

r,∅,v
i

PV r,p,v
i := prevotei!(p) | (ν c)(

∏n
j=1 prevotej?(w).c!(prevotej, w) | PV 1r,p,v

i (c))

PV 1r,p,v
i (c) := if maxb(|

{
w ∈ v1r : w.block = b

}
|) > 2

3
N then

PCr,b,v
i

else if |v1r | >
2

3
N then

PCr,∅,v
i

else

c?(pv, vote). if vote.round < r then

pv?(w).c!(pv, w) | PV 1r,p,v
i (c)

else if vote.round = r then

PV 1r,p,vote::v
i (c)

else

PRvote.round,p,vote::v
i

Figure 3.2: Formal specification of Tendermint consensus in the π-calculus,
part I. chooseProposal(p) must return p if it is not ∅, and otherwise should
gather transactions from the mempool as described in Chapter 4. After
receiving a proposal or timing out, validators move onto prevote, where they
broadcast their prevote and wait to receive prevotes from the others. If a
vote is received for a later round, we skip ahead to that round.

26

PCr,p,v
i := precommiti!(p) | (ν c)(

∏n
j=1 precommitj?(w).c!(preccomitj, w) | PC1r,p,v

i (c))

PC1r,p,v
i (c) := if maxb(|

{
w ∈ v2r : w.block = b

}
|) > 2

3
N then

di!(b)

else if |v2r | >
2

3
N then

PRr+1,∅,v
i

else

c?(pc, vote). if vote.round < r then

pc?(w).c!(pc, w) | PC1r,p,v
i (c)

else if vote.round = r then

PC1r,p,vote::v
i (c)

else

PRvote.round,p,vote::v
i

Figure 3.3: Formal specification of Tendermint consensus in the π-calculus,
part II. Validators broadcast their pre-commit and wait to receive pre-
commits from the others. If a vote is received for a later round, we skip
ahead to that round. When more than two-thirds pre-commit for block b,
we fire b on channel di, signalling the commit, and terminating the protocol.

27

The specification is given in two parts, in Figures 3.2 and 3.3.

3.3 Blockchain

Tendermint operates on batches, or blocks, of transactions at a time. Con-
tinuity is maintained from one block to the next by explicitly linking each
block to the one before it via it’s cryptographic hash, forming a blockchain.
The blockchain contains both the ordered transaction log and evidence that
the block was committed by the validators.

3.3.1 Why Blocks?

Consensus algorithms typically commit transactions one at a time by design,
and implement batching after the fact. As mentioned in Chapter 2, tackling
the problem from the perspective of batched atomic broadcast results in two
primary optimizations, which give us more throughput and fault-tolerance:

• Bandwidth optimization: since every commit requires two rounds of
communication across all validators, batching transactions in blocks
amortizes the cost of a commit over all the transactions in the block.

• Integrity optimization: the hash chain of blocks forms an immutable
data structure, much like a Git repository, enabling authenticity checks
for sub-states at any point in the history.

Blocks induce another effect as well, which is more subtle but potentially
important. They increase the minimum latency of a transaction to that of
the whole block, which for Tendermint is on the order of hundreds of millisec-
onds to seconds. Traditional serializable database systems provide commit
latencies on the order of milliseconds to tens of milliseconds. They are able
to do this because they are not Byzantine Fault Tolerant, requiring only one
round of communication (instead of two) and responses from over half of the
replicas (instead of two-thirds). However, unlike the fast commit times inter-
rupted by leader elections in other algorithms, Tendermint provides a more
regular pulse that is more responsive to the overall health of the network, in
terms of node failures and asynchrony.

What role such pulses might play in the coherence of communicating
autonomous systems on the internet is yet to be determined, though pur-
posefully induced latency has shown promise in the financial markets [86].

28

3.3.2 Block Structure

The purpose of blocks is to contain a batch of transactions, and to link to
the previous block. The link comes in two forms: the previous block hash,
and the set of pre-commits which caused the previous block to be committed,
also known as the LastCommit. Thus a block is composed of three parts:
the block header, the list of transactions, and the LastCommit.

3.4 Safety

Here we sketch a brief proof that Tendermint satisfies atomic broadcast,
which is defined as satisfying:

• validity - if a correct process broadcasts m, it eventually delivers m

• agreement - if a correct process delivers m, all correct processes even-
tually deliver m

• integrity - m is only delivered once, and only if broadcast by its sender

• total order - if correct processes p and q deliver m and m′, then p
delivers m before m′ iff q delivers m before m′

Note that if we take m to be a block, Tendermint does not satisfy validity,
since there is no guarantee that a proposed block is eventually committed, as
validators may move to a new round and commit a different block. If we take
m to be a batch of transactions in a block, then we can satisfy validity by
having validators re-propose the same batch until it is committed. However,
to satisfy the first half of integrity we must introduce an additional rule that
forbids a correct validator from proposing a block or pre-committing for a
block containing a batch of transactions that has already been committed.
Fortunately, batches can be indexed by their merkle root, and a lookup
performed before proposals and pre-commits.

Alternatively, if we take message m to be a transaction, then we can
satisfy validity by asserting a persistence property on the mempool, namely,
that a transaction persists in the mempool until it is committed. However,
to satisfy the first half of integrity we must rely on the application state
to enforce some ruleset over transactions such that a given transaction is
only valid once. This can be done, for instance, using sequence numbers on

29

accounts, as is done in ethereum, or by keeping a list of unused resources,
each of which can only be used once, as is done in Bitcoin. Since there are
multiple approaches, Tendermint does not in itself ensure that a message is
only delivered once, but allows the application developer to specify. Note
that the second half of integrity is trivially satisfied, since only transactions
in blocks proposed by a correct proposer can be committed.

To show that Tendermint satisfies the remaining properties, we introduce
a new property, state machine safety, and show that a protocol satisfing state
machine safety satisfies agreement and total order. State machine safety
states that if a correct validator commits a block at some height H, no other
correct valdiator will ever commit a different block at H. Given that all
messages are eventually received, this immediately implies agreement, since
if a correct validator commits a block B at height H containing a transaction
m, all other correct validators will be unable to commit any other block, and
hence must eventually commit B, thereby delivering m.

Now, it remains to show that state machine safety satisfies total order, and
that Tendermint satisfies state machine safety. To see the former, consider
two messages m and m′ delivered by validators p and q. State machine safety
ensures that p delivers m at height Hm if and only if q delivers m at height
Hm, and that p delivers m′ at height Hm′ if and only if q delivers m′ at height
Hm′ . Without loss of generality, and since height is strictly increasing, let
Hm < Hm′ . Then we have that p delivers m before m′ if and only if q delivers
m before m′, which is exactly the statement of total order.

Finally, to show Tendermint satisfies state machine safety when less than
a third of validators are Byzantine, we proceed by way of contradiction. Sup-
pose Tendermint does not satisfy state machine safety, allowing more than
one block to be committed at the same height. Then we show that at least
one-third of validators must be Byzantine for that to happen, contradicting
our assumption.

Consider a correct validator having committed block B at height H and
round R. To commit a block means the validator witnessed pre-commits
for block B in round R from more than two-thirds of validators. Suppose
another block C is committed at height H. We have two options: either it
was committed in round R, or round S > R.

If it was committed in round R, then more than two-thirds of validators
must have pre-committed for it in round R, which means that at least a third
of validators pre-committed for both blocks B and C in round R, which is
clearly Byzantine. Suppose block C was instead committed in round S > R.

30

Since more than two-thirds pre-committed for B, they are locked on B in
round S, and thus must pre-vote for B. To pre-commit for block C, they
must witness a polka for C, which requires more than two-thirds to pre-vote
for C. However, since more than two-thirds are locked on and required to
pre-vote for B, a polka for C would require at least one third of validators to
violate Prevote-the-Lock, which is clearly Byzantine. Thus, to violate state
machine safety, at least one third of validators must be Byzantine. Therefore,
Tendermint satisfies state machine safety when less than a third of validators
are Byzantine.

Given the above, then, Tendermint satisfies atomic broadcast.
In future work, we aim to provide a more formal proof of Tendermint’s

safety property.

3.5 Accountability

An accountable BFT algorithm is one that can identify all Byzantine valida-
tors when there is a violation of safety. Traditional BFT algorithms do not
have this property, and provide no guarantees in the event safety is compro-
mised. Of course, accountability can only apply when between one-third and
two-thirds of validators are Byzantine. If more than two-thirds are Byzan-
tine, they can completely dominate the protocol, and we have no guarantee
that a correct validator will receive any evidence of their misdeeds.

Futhermore, accountability can be at best eventual in asynchronous net-
works - following a violation of safety, the delayed delivery of critical messages
may make it impossible to determine which validators were Byzantine until
some time after the safety violation is detected. In fact, if correct processes
can receive evidence of Byzantine behaviour, but fail irreversibly before they
are able to gossip it, there may be cases where accountability is permanently
compromised, though in practice such situations should be surmountable
with advanced backup solutions.

By enumerating the possible ways in which a violation of safety can occur,
and showing that in each case, the Byzantine validators are identifiable, a
protocol can be shown to be accountable. Tendermint’s simplicity affords
it a much simpler analysis than protocols which have to manage leadership
elections.

There are only two ways for a violation of safety to occur in Tendermint,
and both are accountable. In the first, a Byzantine proposer makes two

31

conflicting proposals within a round, and Byzantine validators vote for both
of them. In the second, Byzantine validators violate locking rules after some
validators have already committed, causing other validators to commit a
different block in a later round. Note that it is not possible to cause a
violation of safety with two-thirds or fewer Byzantine validators using only
violations of Unlock-on-Polka - more than a third must violate Prevote-the-
Lock for there to be a polka justifying a commit for the remaining honest
nodes.

In the case of conflicting proposals and conflicting votes, it is trivial to
detect the conflict by receiving both messages, and to identify culprits via
their signatures.

In the case of violating locking rules, following a violation of safety, correct
validators must broadcast all votes they have seen at that height, so that the
evidence can be stitched together. The correct validators, which number
something under two-thirds, were collectively privy to all votes which caused
the two blocks to be committed. Within those votes, if there are not a third
or more validators signing conflicting votes, then there are a third or more
violating Prevote-the-Lock.

If a pre-vote or a pre-commit influenced a commit, it must have been seen
by a correct validator. Thus, by collecting all votes, violations of Prevote-
the-Lock can be detected by matching each pre-vote to the most recent pre-
commit by the same validator, unless there isn’t one.

Similarly, violations of Unlock-on-Polka can be detected by matching each
pre-commit to the polka that justifies it. Note that this means a Byzantine
validator can pre-commit before seeing a polka, and escape accountability if
the appropriate polka eventually occurs. However, such cases cannot actually
contribute to violations of safety if the polka is happening anyways.

The current design provides accountability following a post-crisis broad-
cast protocol, but it could be improved to allow accountability in real time.
That is, a commit could be changed to include not just the pre-commits, but
all votes justifying the pre-commits, going all the way back to the beginning
of the height. That way, if safety is violated, the unjustified votes can be
detected immediately.

32

3.6 Faults and Availability

As a BFT consensus algorithm, Tendermint can tolerate Byzantine failure
in up to (but not including) one-third of validators. This means nodes can
crash, send different and contradictory messages to different peers, refuse to
relay messages, or otherwise behave arbitrarily, without compromising safety
or liveness (with the usual FLP caveat for liveness).

There are two places in the protocol where we can make optimizations
for asynchrony by utilizing timeouts based on local clocks: after receiving
two-thirds or more pre-votes, but not for a single block or nil, and after
receiving two-thirds or more pre-commits, but not for a single block or nil.
In each case, we can sleep for some amount of time to give slower or delayed
votes a chance to be received, thereby reducing the likelihood of going to a
new round without committing a block. Clocks do not need to be synced
across validators, as they are reset each time a validator observes votes from
two-thirds or more others.

If a third or more of validators crash, the network halts, as no validator
is able to make progress without hearing from more than two-thirds of the
validator set. The network remains available for reads, but no new commits
can be made. As soon as validators come back on-line, they can carry on
from where they left in a round. The consensus state-machine should employ
a write-ahead log, such that a recovered validator can quickly return to the
step it was in when it crashed, ensuring it doesn’t accidentally violate a rule.

If a third or more of validators are Byzantine, they can compromise safety
a number of ways, for instance, by proposing two blocks for the same round,
and voting both of them through to commit, or by pre-committing on two
different blocks at the same height but in different rounds by violating the
rules on locking. In each case, there is clear, identifiable evidence that certain
validators misbehaved. In the first instance, they signed two proposals at the
same round, a clear violation of the rules. In the second, they may have pre-
voted for a different block in round R than they locked on in R−1, a violation
of the Prevote-the-Lock rule.

When using economic and governance components to incentivize and
manage the consensus (Chapter 6) these additional accountability guarantees
become critical.

33

3.7 Conclusion

Tendermint is a weakly synchronous, Byzantine fault tolerant, state machine
replication protocol, with optimal Byzantine fault tolerance and additional
accountability guarantees in the event the BFT assumptions are violated.
The protocol uses a round-robin approach for proposers, and uses the same
mechanism to skip a proposer as to commit a proposed block. Safety is
maintained across rounds via a simple locking mechanism.

The presentation of the protocol in this chapter left out many impor-
tant details, such as the efficient gossiping of blocks, buffering transactions,
changes to the validator set, and the interface with application logic. These
important topics are taken up in subsequent chapters.

34

Chapter 4

Tendermint Subprotocols

The presentation of Tendermint consensus in the previous chapter left out a
number of details regarding the gossip protocols used to disseminate blocks,
votes, transactions, and other peer information. This was done in order
to focus in on the consensus protocol itself, without distraction from the
hydra of practical software engineering. This chapter describes one particular
approach to filling in these details, by implementing components as relatively
independent reactors that are multiplexed over each peer connection.

4.1 P2P-Networking

On startup, each Tendermint node receives an initial list of peers to dial.
For each peer, a node maintains a persistent TCP connection over which
multiple subprotocols are multiplexed in a rate-limited fashion. Messages
are serialized into a compact binary representation to be sent on the wire,
and connections are encrypted via an authenticated encryption protocol [28].

Each remaining section of this chapter describes a separate reactor that is
multiplexed over each peer connection. An additional peer exchange reactor
can be run which allows nodes to request other peer addresses from each
other and keep track of peers they have connected to before, in order to stay
connected to some minimum number of other peers.

35

4.2 Consensus Gossip

The consensus reactor wraps the consensus state machine, and ensures each
node broadcasts to all peers its current state every time it changes. In this
way, each node keeps track of the consensus state of all its peers, allowing it to
optimize the gossiping of messages to only send peers information they need
at the very moment, and which they don’t already have. For each peer, a
node maintains two routines which continuously check for new information to
send the peer, namely, proposals and votes. Information should be gossiped
in a “rarest first” manner in order to maximize gossip efficiency and minimize
the chance that some information becomes unavailable [62]

4.2.1 Block Data

In Chapter 3, it was assumed that proposal messages include the block.
However, since blocks emerge from a single source and can be quite large,
this puts undue pressure on the block proposer to upload the data to all
other nodes; blocks can be disseminated much more quickly if they are split
into parts and gossiped.

A common approach to securely gossiping data, as popularized by various
p2p protocols [21, 79], is to use a Merkle tree [65], allowing each piece of the
data to be accompanied by a short proof (logarithmic in the size of the
data) that the piece is a part of the whole. To use this approach, blocks
are serialized and split into chunks of an appropriate size for the expected
block size and number of validators, and chunks are hashed into a Merkle
tree. The signed proposal, instead of including the entire block, includes just
the Merkle root hash, allowing the network to co-operate in gossiping the
chunks. A node informs its peers every time it receives a chunk, in order to
minimize the bandwidth wasted by transmitting the same chunk to a node
more than once.

Once all the chunks are received, the block is deserialized and validated
to ensure it refers correctly to the previous block, and that its various check-
sums, implemented as Merkle trees, are correct. While it was previously
assumed that a validator does not pre-vote until the proposal (including the
block) is received, some performance benefit may be obtained by allowing
validators to pre-vote after receiving a proposal, but before receiving the full
block. This would imply that it is okay to pre-vote for what turns out to be
an invalid block. However, pre-committing for an invalid block must always

36

be considered Byzantine.
Peers that are catching up (i.e. are on an earlier height) are sent chunks

for the height they are on, and progress one block at a time.

4.2.2 Votes

At each step in the consensus state machine, after the proposal, a node is
waiting for votes (or a local timeout) to progress. If a peer has just entered a
new height, it is sent pre-commits from the previous block, so it may include
them in the next blocks LastCommit if it’s a proposer. If a peer has pre-
voted but has yet to pre-commit, or has pre-committed, but has yet to go to
the next round, it is sent pre-votes or pre-commits, respectively. If a peer is
catching up, it is sent the pre-commits for the committed block at its current
height.

4.3 Mempool

Chapter 3 made little mention of transactions, as Tendermint operates on
blocks of transactions at a time, and has no concern for individual transac-
tions, so long as their checksum in the block is correct.

Transactions are managed independently in an in-memory cache, which,
following Bitcoin, has come to be known as the mempool. Transactions are
validated by the application logic when they are received and, if valid, added
to the mempool and gossiped using an ordered multicast algorithm. A node
maintains a routine for each peer which ensures that transactions in the
mempool are sent to the peer in the same order in which they were processed
by the node.

Proposers reap transactions from the ordered list in the mempool for new
block proposals. Once a block is committed, all transactions included in the
block are removed from the mempool, and the remaining transactions are
re-validated by the application logic, as their validity may have changed on
account of other transactions being committed, which the node may not have
had in its mempool.

37

4.4 Syncing the Blockchain

The consensus reactor provides a relatively slow means of syncing with the
latest state of the blockchain, as it was designed for real-time consensus,
meaning peers wait to receive all information to commit a single block before
worrying about the next block. To accommodate peers that may be more
than just a few blocks behind, an additional reactor, the blockchain reactor,
allows peers to download many blocks in parallel, enabling a peer to sync
hundreds of times faster than via the consensus reactor.

When a node connects to a new peer, the peer sends its current height.
The node will request blocks, in order, beginning with its current height,
from all peers that self-reported higher heights, and download the blocks
concurrently, adding them to the block pool. Another routine continuously
attempts to remove blocks from the pool and add them to the blockchain by
validating and executing them, two blocks at a time, against the latest state
of the blockchain. Blocks must be validated two blocks at a time because the
commit for one block is included as the LastCommit data in the next one.

The node continuously queries its peers for their current height, and con-
tinues to concurrently request blocks until it has caught up to the highest
height among its peers, at which point it stops making requests for peer
heights and starts the consensus reactor.

4.5 Conclusion

A number of subprotocols are required for a practical implementation of
the Tendermint blockchain. These include the gossipping of consensus data
(votes and proposals), of block data, and of transactions, and some means
for new peers to quickly catch up with the latest state of the blockchain.

38

Chapter 5

Building Applications

Tendermint is designed to be a general purpose algorithm for replicating a
deterministic state machine. It uses the Tendermint Socket Protocol (TMSP)
to standardize communication between the consensus engine and the state
machine, enabling application developers to build their state machines in
any programming language, and have it automatically replicated via Tender-
mint’s BFT algorithm.

5.1 Background

Applications on the Internet can in general be characterized as containing
two fundamental components:

• Engine: handles core security, networking, replication. This is typically
a webserver, like Apache or Nginx, when powering a web app, or a
consensus algorithm when powering a distributed application.

• State-machine: the actual application logic that processes transactions
received from the engine and updates internal state.

This separation of concerns enables application developers to write state-
machines in any programming language representing arbitrary applications,
on top of an engine which may be specialized for its performance, security,
usability, support, and other considerations.

Unlike web-servers and their applications, which often take the form of
processes communicating over a socket via the Common Gateway Interface

39

(CGI) protocol, consensus algorithms have traditionally had much less usable
or less general purpose interfaces to build applications on top of. Some,
like zookeeper, etcd, consul, and other distributed key-value stores, provide
HTTP interfaces to a particular instance of a simple key-value application,
with some more interesting features like atomic compare-and-swap operations
and push notifications. But they do not give the application developer control
of the state-machine code itself.

Demand for such a high-level of control over the state-machine running
above a consensus engine has been driven primarily by the success of Bitcoin
and the consequent interest in blockchain technology. By building more ad-
vanced applications directly into the consensus, users, developers, regulators,
etc. can achieve greater security guarantees on arbitrary state-machines, far
beyond key-value stores, like currencies, exchanges, supply-chain manage-
ment, governance, and so on. What has captured the attention of so many
is the potential of a system which permits collective enforcement of the ex-
ecution of code. It is practically a re-invention of many dimensions of the
legal system, using distributed consensus algorithms and deterministically
executable contracts, rather than policemen, lawyers, judges, juries, and the
like. The ramifications for the development of human society are explosive,
much as the introduction of the democratic rule of law was in the first place.

Tendermint aims to provide the fundamental interface and consensus en-
gine upon which such applications might be built.

5.2 Tendermint Socket Protocol

The Tendermint Socket Protocol (TMSP) defines the core interface by which
the consensus engine communicates with the application state machine. The
interface definition consists of a number of message types, specified using
Google’s Protocol Buffers [100], that are length-prefixed and transmitted over
a socket. A list of message types, their arguments, return values, and purpose
is given in Figure 5.1, and an overview of the architecture and message flow
is shown in Figure 5.2.

TMSP is implemented as an ordered, asynchronous server, where message
types come in pairs of request and response, and where a special message
type, Flush, pushes any buffered messages over the connection and awaits all
responses.

At the core of the TMSP are two messages: AppendTx and Commit.

40

type Appl i ca t ion i n t e r f a c e {
// Return a p p l i c a t i o n i n f o
In f o () (i n f o s t r i n g)

// Set a p p l i c a t i o n opt ion
SetOption (key s t r i ng , va lue s t r i n g) (l og s t r i n g)

// Append a tx
AppendTx(tx [] byte) Result

// Val idate a tx f o r the mempool
CheckTx(tx [] byte) Result

// Return the a p p l i c a t i o n Merkle root hash
Commit () Result

// Query f o r s t a t e
Query (query [] byte) Result

// S i g n a l s the beg inning o f a block
BeginBlock (he ight u int64)

// S i g n a l s the end o f a block
// v a l i d a t o r s : changed v a l i d a t o r s from app to TendermintCore
EndBlock (he ight u int64) (v a l i d a t o r s [] ∗ Val idator)

}

type CodeType int32

type Result s t r u c t {
Code CodeType
Data [] byte
Log s t r i n g // Can be non−d e t e r m i n i s t i c

}

type Va l idator s t r u c t {
PubKey [] byte
Power uint64

}

Figure 5.1: The TMSP application interface as defined in Go. TMSP mes-
sages are defined using Google’s Protocol Buffers, and their serialized form
is length prefixed before being sent over the TMSP socket. Return values
include a Code, similar to an HTTP Status Code, representing any errors,
and 0 is used to indicate no error. Messages are buffered client side until a
Flush message is sent, at which point all messages are transmitted. While the
server design is asynchronous, message responses must be correctly ordered
and match their request.

41

Consensus Logic

Application Logic
Mempool

TxResult
TxResult

...
StateRoot

CheckTx

TxResult

Reap
Proposal Txs

Proposer

New
Block

BeginBlock
AppendTx
AppendTx

...
EndBlock
Commit

TMSP

TMSP

Figure 5.2: The consensus logic communicates with the application logic via
TMSP, a socket protocol. Two sockets are maintained, one for the mempool
to check the validity of new transactions, and one for the consensus to execute
newly committed blocks.

42

Once a block is decided by the consensus, the engine calls AppendTx on each
transaction in the block, passing it to the application state-machine to be
processed. If the transaction is valid, it will result in a state-transition in the
application.

Once all AppendTx calls have returned, the consensus engine calls Com-
mit, causing the application to commit to the latest state, and persist it to
disk.

5.3 Separating Agreement and Execution

Using the TMSP affords us an explicit separation between consensus, or
agreement on the order of transactions, and their actual execution in the
state-machine. In particular, we achieve consensus on the order first, and
then execute the ordered transactions. This separation actually improves
the system’s fault tolerance [107]: while 3f + 1 replicas are still needed for
agreement to tolerate f Byzantine failures, only 2f + 1 replicas are needed
for execution. That is, while we still need a two-thirds majority for ordering,
we only need a one-half majority for execution.

On the other hand, the fact that transactions are executed after they
are ordered results in possibly invalid transactions, which can waste system
resources. This is solved using an additional TMSP message, CheckTx, which
is called by the mempool, allowing it to check whether the transaction would
be valid against the latest state. Note, however, that the fact that commits
come in blocks at a time introduces complexity in the handling of CheckTx
messages. In particular, applications are expected to maintain a second state-
machine that executes only those rules of the main state-machine pertaining
to a transaction’s validity. This second state-machine is updated by CheckTx
messages and is reset to the latest committed state after every commit. In
essence, the second state machine describes the transaction pool’s filter rules.

To some extent, CheckTx can be used as an optimistic execution return-
ing a result to the transaction sender with the caveat that the result may be
wrong if a block is committed with a conflicting transaction before the trans-
action of interest is committed. This sort of optimistic execution is the focus
of an approach to scalable BFT systems that can work quite well for partic-
ular applications where conflicts between transactions are rare. At the same
time, it adds additional complexity to the client, by virtue of needing to han-
dle possibly invalid results. The approach is discussed further in Chapter 10.

43

5.4 Microservice Architecture

Adopting separation of concerns as a strategy in application design is gen-
erally considered wise practice [50]. In particular, many large scale appli-
cation deployments today adopt a microservice architecture, wherein each
functional component is implemented as a standalone network service, and
typically encapsulated in a Linux container (e.g. using Docker) for efficient
deployment, scalability, and upgradeability.

Applications running above Tendermint consensus will often be decom-
posable into microservices. For instance, many applications will utilize a
key-value store for storing state. Running the key-value store as an indepen-
dent service is quite common, in order to take advantage of the data store’s
specialized features, such as high-performance data types or Merkle trees.

Another important microservice for applications is a governance module,
which manages a certain subset of TMSP messages, enabling the application
to control validator set changes. Such a module can become a powerful
paradigm for governance in BFT systems.

Some applications may utilize a native currency or account structure for
users. It may thus be useful to provide a module which supports basic el-
ements of, for instance, handling digital signatures and managing account
dynamics.

The list of possible microservices to compose a complex TMSP applica-
tion goes on. In fact, one might even build an application which can launch
sub-applications using data sent in transactions. For instance, including the
hash of a docker image in a transaction, such that the image could be pulled
from some file-storage backend and run as a sub-application where future
transactions in the consensus could cause it to execute. This is the approach
of ethereum, which allows developers to deploy bits of code to the network
that can be triggered to run within the Ethereum Virtual Machine by fu-
ture transactions [105], and of IBM’s recent OpenBlockChain (OBC) project,
which allows developers to send full docker contexts in transactions, defining
containers that run arbitrary code in response to transactions addressed to
them [76].

44

5.5 Determinism

The most critical caveat about building applications using TMSP is that
they must be deterministic. That is, for the replicated state-machine to not
compromise safety, every node must obtain the same result when executing
the same transaction against the same state.

This is not a unique requirement for Tendermint. Bitcoin, Raft, Ethereum,
any other distributed consensus algorithm, and applications like lock-step
multi-player gaming must all be strictly deterministic, lest a consensus fail-
ure arise.

There are many sources of non-determinism in programming languages,
most obviously via random numbers and time, but also, for instance, via
the use of floating point precision, and by iteration over hash tables (some
languages, such as Go, enforce randomized iteration over hash tables to force
programmers to be explicit about when they need ordered data structures).
The strict restriction on determinism, and its notable lacking from every ma-
jor programming language, prompted ethereum to develop its own, Turing-
complete, fully deterministic virtual machine, which forms the platform for
application developers to build applications above the ethereum blockchain.
While deterministic, it has many quirks, such as 32-byte stack words, stor-
age keys, and storage values, and no support for byte-shifting operations -
everything is big number arithmetic.

Deterministic programming is well studied in the world of real-time, lock-
step, multi-party gaming. Such games constitute another example of repli-
cated state machines, and are quite similar in many ways to consensus algo-
rithms. Application developers building with TMSP are encouraged to study
their methods, and to take care when implementing an application. On the
one hand, the use of functional programming languages and proof methods
can enable the construction of correct programs. On the other, compilers are
being built to translate possibly non-deterministic programs to canonically
deterministic ones [1].

5.6 Termination

If determinism is critical for preserving safety, termination of transaction
execution is critical for preserving liveness. It is, however, not in general
possible to determine whether a given program halts for even a single input,

45

let alone all of them, a problem known as the Halting Problem [98, 25].
Ethereum’s virtual machine solves the problem by metering, that is,

charging for each operation in the execution. This way, a transaction is
guaranteed to terminate when the sender runs out of funds. Such metering
may be possible in a more general case, via compilers that compile programs
to metered versions of themselves.

It is difficult to solve this problem without significant overhead. In
essence, a validator cannot tell if an execution is in an infinite loop or is
just slow, but nearly complete. It may be possible to use the Tendermint
consensus protocol to decide on transaction timeouts, such that more than
two-thirds of validators must agree that a transaction timed out and is thus
considered invalid (ie. having no effect on the state). However, we do not
pursue the idea further here, leaving it to future work. In the meantime,
it is expected that applications will undergo thorough testing before be-
ing deployed in any consensus system, and that monitoring and governance
mechanisms will be used to resurrect the system in the event of consensus
failure.

5.7 Examples

In this section, examples of increasingly more complex TMSP applications are
introduced and discussed, with particular focus on CheckTx and managing
the mempool.

5.7.1 Merkleeyes

A simple example of a TMSP application is a Merkle tree based key-value
store. Tendermint provides Merkleeyes, a TMSP application which wraps
a self-balancing, Merkle binary search tree. The first byte of a transaction
determines if the transaction is a get, set, or remove operation. For get
and remove operations, the remaining bytes are the key. For the set opera-
tion, the remaining bytes are a serialized list containing the key and value.
Merkleeyes may utilize a simple implementation of CheckTx that only de-
codes the transaction, to ensure it is properly formatted. One could also
make a more advanced CheckTx, where get and remove operations on un-
known keys are invalid. Once Commit is called, the latest updates are added
into the Merkle tree, all hashes are computed, and the latest state of the tree

46

is committed to disk.
Note that Merkleeyes was designed to be a module used by other TMSP

applications for a Merkle tree based key-value store, rather than a stand
alone TMSP application, though the simplicity of the TMSP interface makes
it amenable to both.

5.7.2 Basecoin

A more complete example is a simple currency, using an account structure
pioneered by Ethereum, where each user has a public key and an account
with the balance for that public key. The account also contains a sequence
number, which is equal to the number of transactions sent by the account.
Transactions can send funds from the account if they include the correct
sequence number and are signed by the correct private key. Without the
sequence number, the system would be susceptible to replay attacks [93],
where a signed transaction debiting an account could be replayed, causing
the debit to occur multiple times. Furthermore, to prevent replay attacks in
a multi-chain environment, transaction signatures should include a network
or blockchain identifier.

An application supporting a currency has naturally more logic than a sim-
ple key-value store. In particular, certain transactions are distinctly invalid,
such as those with an invalid signature, incorrect sequence number, or send-
ing an amount greater than the sender’s account balance. These conditions
can be checked in CheckTx.

Furthermore, a supplementary application state must be maintained for
CheckTx in order to update sequence numbers and account balances when
there are multiple transactions involving the same accounts in the mempool
at once. When commit is called, the supplementary application state is reset
to the latest committed state. Any transactions still in the mempool can be
replayed via CheckTx against the latest state.

5.7.3 Ethereum

Ethereum uses the mechanisms already described to filter transactions out
of the mempool, but it also runs some transactions in a virtual machine,
which updates state and returns results. The virtual machine execution is
not done in CheckTx, as it is much more expensive and depends heavily on
the ultimate order of transactions as they are included in blocks.

47

5.8 Conclusion

TMSP provides a simple yet flexible means to build arbitrary applications,
in any programming language, that inherit BFT state-machine replication
from the Tendermint consensus algorithm. It plays much the same role for a
consensus engine and an application that, for instance, CGI plays for Apache
and Wordpress. However, application developers must take special care to
ensure their applications are deterministic, and that transaction executions
terminate.

48

Chapter 6

Governance

So far, this thesis has reviewed the basic elements of the Tendermint con-
sensus protocol and application environment. Critical elements of operating
the system in the real world, such as managing validator set changes and
recovering from a crisis, have not yet been discussed.

This chapter proposes an approach to these problems that formalizes
the role of governance in a consensus system. As validator sets come to
encompass more decentralized sets of agents, competent governance systems
for maintaining the network will be increasingly paramount to the network’s
success.

6.1 Governmint

The basic functionality of governance is to filter proposals for action, typically
through a form of voting. The most basic implementation of governance as
software is a module that enables users to make proposals, vote on them,
and tally the votes. Proposals may be programmatic, in which case they
may execute automatically following a successful vote, or they may be non-
programmatic, in which case their execution is a manual exercise.

To enable certain actions in Tendermint, such as changing the validator
set or upgrading the software, a governance module has been implemented,
called Governmint. Governmint is a minimum viable governance application
with support for multiple groups of entities, each of which can vote internally
on proposals, some of which may result in programmatic execution of actions,
like changing the validator set, or upgrading Governmint itself (for instance

49

to add new proposal types or other voting mechanisms).
The system utilizes digital signatures to authenticate voters, and may

use a variety of possible voting schemes. Of particular interest are quadratic
voting schemes, where the cost to vote is quadratic in the weight of the vote,
which have been shown to have a superior ability to satisfy voter preferences
[84].

6.2 Validator Set Changes

Validator set changes are a critical component of real world consensus algo-
rithms that many previous approaches have failed to specify or have been
left as a black art. Raft took pains to expound a sound protocol for validator
set changes, which required the change pass through consensus, using a new
message type. Tendermint takes a similar approach, though it is standard-
ized through the TMSP interface using the EndBlock message, which is run
after all the AppendTx messages, but before Commit. If a transaction, or set
of transactions, is included in a block with the intended effect of updating
the validator set, the application can return a list of validators to update by
specifying their public key and new voting power in response to the EndBlock
message. Validators can be removed by setting their voting power to zero.
This provides a generic means for applications to update the validator set
without having to specify transaction types.

If the block at height H returns an updated validator set, then the block
at height H + 1 will reflect the update. Note, however, that the LastCommit
in block H + 1 must utilize the validator set as it was at H, since it may
contain signatures from a validator that was removed.

Changes to voting power are applied for H+1 such that the next proposer
is affected by the update. In particular, the validator that otherwise should
have been the next proposer may be removed. The round robin algorithm
should handle this gracefully, simply moving on to the next proposer in line.
Since the same block is replicated on at least two-thirds of validators, and
the round robin is deterministic, they will all make the same update and
expect the same next proposer.

50

6.3 Punishing Byzantine Validators

One of the salient points of Bitcoin’s design is its incentive structure, in so far
as the goal of the protocol was to incentivize validators to behave correctly by
rewarding them. While this makes sense in the context of Bitcoin’s consensus
protocol, a superior incentive may be to provide strong dis-incentives, such
that validators have real skin-in-the-game [95], rather than a soft opportunity
cost.

Disincentives can be achieved in Tendermint using an approach first pro-
posed by Vitalik Buterin [12] as a so-called Proof-of-Stake protocol. In
essence, validators must make a security deposit (“they must bond some
stake”) in order to participate in consensus. In the event that they are found
to double-sign proposals or votes, other validators can publish evidence of
the transgression in the form of a transaction, which the application state
can use to change the validator set by removing the transgressor, burning
its deposit. This has the effect of associating an explicit economic cost with
Byzantine behaviour, and enables one to estimate the cost of violating safety
by bribing a third or more of the validators to be Byzantine.

Note that a consensus protocol may specify more behaviours to be pun-
ished than just double signing. In particular, we are interested in punishing
any strong signalling behaviour which is unjustified - typically, any reported
change in state that is not based on the reported state of others. For instance,
in a version of Tendermint where all pre-commits must come with the polka
that justifies them, validators may be punished for broadcasting unjustified
pre-commits. Note, however, that we cannot just punish for any unexpected
behaviour - for instance, a validator proposing when it is not their round
to propose may be a basis for optimizations which pre-empt asynchrony or
crashed nodes.

In fact, a generalization of Tendermint along these two lines, of 1) looser
forms of justification and 2) allowing validators to propose before their term,
gives rise to a family of protocols similar in nature to that proposed by Vlad
Zamfir, under the guise Casper, as the consensus mechanism for a future ver-
sion of ethereum [109]. A more formal account of the relationship between the
protocols, and of the characteristics of anti-Byzantine justifications, remains
for future work.

51

6.4 Software Upgrades

Governmint can also be used as a natural means for negotiating software up-
grades on a possibly decentralized network. Software upgrades on the public
Internet are a notoriously challenging operation, requiring careful planning
to maintain backwards compatibility for users that don’t upgrade right away,
and to not upset loyal users of the software by introducing bugs, removing
features, adding complexity, or, perhaps worst of all, updating automatically
without permission.

The challenge of upgrading a decentralized consensus system is made es-
pecially apparent with Bitcoin. While Ethereum has already managed a suc-
cessful, non-backwards-compatible upgrade, due to its strong leadership and
unified community, Bitcoin has been unable to make some needed upgrades,
despite a plethora of software engineering ills, on account of a viciously di-
vided community and a lack of strong leadership.

Upgrades to blockchains are typically differentiated as being soft forks
or hard forks, on account of the scope of the changes. Soft forks are meant
to be backwards compatible, and to use degrees of freedom in the protocol
that may be ignored by users who have not upgraded, but which provide new
features to users which do. Hard forks, on the other hand, are non-backwards
compatible upgrades that, in Bitcoin’s case, may cause violations of safety,
and in Tendermint’s case, cause the system to halt.

To cope, developers of the Bitcoin software have rolled out a series of
soft forks for which validators can vote by signalling in new blocks. Once
a certain threshold of validators are signalling for the update, it automati-
cally takes effect across the network, at least for users with a version of the
software supporting the update. The utility of the Bitcoin system has grown
tremendously on account of these softforks, and is expected to continue to do
so on account of upcoming ones. Interestingly, the failure of the community
to successfully hard fork the software has on the one hand raised concerns
about the long term stability of the system, and on the other triggered ex-
citement and inspiration about the system’s resilience to corrupt governance
- its ungovernability.

There are many reasons to take the latter stance, given the overwhelming
government corruption apparent in the world today. Still, cryptography and
distributed consensus provide a new set of tools that enables a degree of
transparency and accountability otherwise not imaginable in the paper-pen-
handshake world of modern governments, nor even the digital world of the

52

traditional web, which suffers tremendously from a lack of sufficiently robust
authentication systems.

In a system using Governmint, developers would be identifiable entities
on the blockchain, and may submit proposals for software upgrades. The
mechanism is quite similar to that of a Pull Request on Github, only it is
integrated into a live running system, and the agreement passes through
the consensus protocol. Clients should be written with configurable update
parameters, so they can specify whether to update automatically or to require
that they are notified first.

Of course, any software upgrade which is not thoroughly vetted could pose
a danger to the system, and a conservative approach to upgrades should be
taken in general.

6.5 Crisis Recovery

In the event of a crisis, such as a fork in the transaction log, or the sys-
tem coming to a halt, a traditional consensus system provides little or no
guarantees, and typically requires manual intervention.

Tendermint assures that those responsible for violating safety can be iden-
tified, such that any client who can access at least one honest validator can
discern with cryptographic certainty who the dishonest validators are, and
thereby chose to follow the honest validators onto a new chain with a valida-
tor set excluding those who were Byzantine.

For instance, suppose a third or more validators violate locking rules,
causing two blocks to be committed at height H. The honest validators can
determine who double-signed by gossipping all the votes. At this point, they
cannot use the consensus protocol, because the basic fault assumptions have
been violated. Note that being able to at this point accumulate all votes for
H implies strong assumptions about network connectivity and availability
during the crisis, which, if it cannot be provided by the p2p network, may
require validators use alternative means, such as social media and high avail-
ability services, to communicate evidence. A new blockchain can be started
by the full set of remaining honest nodes, once at least two-thirds of them
have gathered all the evidence.

Alternatively, modifying the Tendermint protocol so that pre-commits
require polka would ensure that those responsible for the fork could be pun-
ished immediately, and would not require an additional publishing period.

53

This modification remains for future work.
More complex uses of Governmint are possible for accommodating various

particularities of crisis, such as permanent crash failures and the compromise
of private keys. However, such approaches must be carefully thought out, as
they may undermine the safety guarantees of the underlying protocol. We
leave investigation of these methods to future work, but note the importance
of the socio-economic context in which a blockchain is embedded, in terms
of understanding its ability to recover from crisis.

Regardless of how crisis recovery proceeds, its success depends on inte-
gration with clients. If clients do not accept the new blockchain, the service
is effectively offline. Thus, clients must be aware of the rules used by the
particular blockchain to recover. In the cases of safety violation described
above, they must also gather the evidence, determine which validators to
remove, and compute the new state with the remaining validators. In the
case of the liveness violation, they must keep up with Governmint.

6.6 Conclusion

Governance is a critical element of a distributed consensus system, though
competent governance systems remain poorly understood. Tendermint pro-
vides governance as a TMSP module called Governmint, which aims to facil-
itate increased experimentation in software-based governance for distributed
systems.

54

Chapter 7

Client Considerations

This chapter reviews some considerations pertaining to clients that interact
with an application hosted on Tendermint.

7.1 Discovery

Network discovery occurs simply by dialing some set of seed nodes over TCP.
The p2p network uses authenticated encryption, but the public keys of the
validators must be verified somehow out of band, that is, via an alternative
medium not within the purview of the protocol. Indeed, in these systems,
the genesis state itself must be communicated out of band, and ideally is the
only thing that must be communicated, as it should also contain the public
keys used by validators for authenticated encryption, which are different than
those used for signing votes in consensus.

For validator sets that may change over time, it is useful to register all
validators via DNS, and to register new validators before they actually be-
come validators, and remove them after they are removed as validators. Al-
ternatively, validator locations can be registered in another fault-tolerant
distributed data store, including possibly another Tendermint cluster itself.

7.2 Broadcasting Transactions

As a generalized application platform, Tendermint provides only a simple
interface to clients for broadcasting transactions. The general paradigm is
that a client connects to a Tendermint consensus network through a proxy,

55

which is either run locally on its machine, or hosted by some other provider.
The proxy functions as a non-validator node on the network, which means
it keeps up with the consensus and processes transactions, but does not sign
votes. The proxy enables client transactions to be quickly broadcast to the
whole network via the gossip layer.

A node need only connect to one other node on the network to broadcast
transactions, but by default will connect to many, minimizing the chances
that the transaction will not be received. Transactions are passed into the
mempool, and gossiped through the mempool reactor to be cached in the
mempool of all nodes, so that eventually one of them will include it in a
block.

Note that the transaction does not execute against the state until it gets
into a block, so the client does not get a result back right away, other than
confirmation that it was accepted into the mempool and broadcast to other
peers. Clients should register with the proxy to receive the result as a push
notification when it is computed during the commit of a block.

It is not essential that a client connect to the current proposer, as eventu-
ally any validator which has the transaction in its mempool may propose it.
However, preferential broadcasting to the next proposer in line may lead to
lower latency for the transaction in certain cases where the network is under
high load. Otherwise, the transaction should be quickly gossiped to every
validator.

7.3 Mempool

The mempool is responsible for caching transactions in memory before they
are included in blocks. Its behaviour is subtle, and forms a number of chal-
lenges for the overall system architecture. First and foremost, caching arbi-
trary numbers of transactions in the mempool is a direct denial of service
attack that could trivially cripple the network. Most blockchains solve this
problem using their native currency, and permitting only transactions which
spend a certain fee to reside in the mempool.

In a more generalized system, like Tendermint, where there is not neces-
sarily a currency to pay fees with, the system must establish stricter filtering
rules and rely on more intelligent clients to resubmit transactions that are
dropped. The situation is even more subtle, however, because the rule set for
filtering transactions in the mempool must be a function of the application

56

itself. Hence the CheckTx message of TMSP, which the mempool can use to
run a transaction against a transient state of the application to determine if
it should be kept around or dropped.

Handling the transient state is non-trivial, and is something left to the
application developer, though examples are provided in the many example
applications. In any case, clients must monitor the state of the mempool
(i.e. the unconfirmed transactions) to determine if they need to rebroadcast
their transactions, which may occur in highly concurrent settings where the
validity of one transaction depends on having processed another.

7.4 Semantics

Tendermint’s core consensus algorithm provides only at-least-once seman-
tics, which is to say the system is subject to replay attacks, where the same
transaction can be committed many times. However, many users and appli-
cations expect stronger guarantees from a database system. The flexibility
of the Tendermint system leaves the strictness of these semantics up to the
application developer. By utilizing the CheckTx message, and by adequately
managing state in the application, application developers can provide the
database semantics that suit them and their users’ needs. For instance, as
discussed in Chapter 5, using an account based system with sequence num-
bers mitigates replay attacks, and changes the semantics from at-least-once
to exactly-once.

7.5 Reads

Clients issue read requests to the same proxy node they use for broadcasting
transactions (writes). The proxy is always available for reads, even if the
network halts. However, in the event of a partition, the proxy may be parti-
tioned from the rest of the network, which continues making blocks. In that
case, reads from the proxy might be stale.

To avoid stale reads, the read request can be sent as a transaction, pre-
suming the application permits such queries. By using transactions, reads
are guaranteed to return the latest committed state, i.e. when the read trans-
action is committed in the next block. This is of course much more expensive
than simply querying the proxy for the state. It is possible to use heuristics

57

to determine if a read will be stale, such as if the proxy is well-connected to
its peers and is making blocks, or if it’s stuck in a round with votes from
one-third or more of validators, but there is no substitute for performing an
actual transaction.

7.6 Light Client Proofs

One of the major innovations of blockchains over traditional databases is
their deliberate use of Merkle hash trees to enable the production of compact
proofs of system substates, so called light-client proofs. A light client proof is
a path through a Merkle tree that allows a client to verify that some key-value
pair is in the Merkle tree with a given root hash. The state’s Merkle root
hash is included in the block header, such that it is sufficient for a client to
have only the latest header to verify any component of the state. Of course,
to know that the header itself is valid, they must have either validated the
whole chain, or kept up-to-date with validator set changes only and rely on
economic guarantees that the state transitions were correct.

7.7 Conclusion

Clients of a Tendermint network function similarly to those of any other
distributed database, though considerations must be made for the block-
based nature of commits and the behaviour of the mempool. Additionally,
clients must be designed with a particular application in mind. Though this
adds some complexity, it enables tremendous flexibility.

58

Chapter 8

Implementation

The reference implementation of Tendermint is written in Go [81] and hosted
at https://github.com/tendermint/tendermint. Go is a C-like language with
a rich standard library, concurrency primitives for light-weight massively con-
current executions, and a development environment optimized for simplicity
and efficiency.

The code uses a number of packages which are modular enough to be
isolated as their own libraries. These packages were written for the most part
by Jae Kwon, with bug fixes, tests, and the occasional feature contributed
by the author. The most important of these packages are described in the
following sub-sections.

8.1 Binary Serialization

Tendermint uses a binary serialization algorithm optimized for simplicity
and determinism. It supports all integer types (including varints, which are
encoded with a one-byte length prefix), strings, byte arrays, and time (unix
time with millisecond precision). It also supports arrays of any type and
structs (encoded as a list of ordered values, ignoring keys). It is somewhat
inspired by Go’s type system, especially its use of interface types, which can
be implemented as one of many concrete types. Interfaces can be registered
and each concrete implementation given a leading type-byte in its encoding.

See https://github.com/tendermint/go-wire for more details.

59

https://github.com/tendermint/tendermint
https://github.com/tendermint/go-wire

8.2 Cryptography

Consensus algorithms such as Tendermint use three primary cryptographic
primitives: digital signatures, hash functions, and authenticated encryption.
While many implementations of these primitives exist, choosing a cryptog-
raphy library for enterprise software is no trivial task, given especially the
profound insecurity of the world’s most used security library, OpenSSL [77].

Contributing to the insecurity of cryptographic systems is the potential
deliberate undermining of their security properties by government agencies
such as the NSA, who, in collaboration with the NIST, have designed and
standardized many of the most popular cryptographic algorithms in use to-
day. Given the apparent unlawfulness of such agencies, as made evident, for
instance, by Edward Snowden [43], and a history of trying to compromise
public cryptographic standards [63], many in the cryptography community
prefer to use algorithms designed in an open, academic environment. Ten-
dermint, similarly, uses only such algorithms.

Tendermint uses RIPEMD160 as its cryptographic hash function, which
produces 20-byte outputs. It is used in the Merkle trees of transactions
and validator signatures, and for computing the block hash. Go provides an
implementation in its extended library. RIPEMD160 is also used as one of
two hashing functions by Bitcoin in the derivation of addresses from public
keys.

As its digital signature scheme, Tendermint uses Schnorr signatures over
the ED25519 elliptic curve. ED25519 was designed in the open by Dan Bern-
stein [6], with the intention of being high performance and easy to implement
without introducing vulnerabilities. Bernstein also introduced NaCl, a high
level library for doing authenticated encryption that uses the ED25519 curve.
Tendermint uses the implementation provided by Go in its extended library.

8.3 Merkle Hash Tree

Merkle trees function much like other tree-based data-structures, with the
additional feature that it is possible to produce a proof of membership of a
key in the tree that is logarithmic in the size of the tree. This is done by
recursively concatenating and hashing keys in pairs until only a single hash is
left, the root hash of the tree. For any leaf in the tree, a trail of hashes leading
from it to the root serves as proof of its membership. This makes Merkle

60

trees particularly useful for p2p file-sharing applications, where pieces of a
large file can be verified as belonging to the file without having all the pieces.
Tendermint uses this mechanism to gossip block parts on the network, where
the root hash is included in the block proposal.

Tendermint also provides a self-balancing, Merkle binary tree, modeled
after the AVL tree [3], as a TMSP service called Merkleeyes. The IAVL tree
can be used for storing state of dynamic size, allowing lookups, inserts, and
removals in logarithmic time.

8.4 RPC

Tendermint exposes HTTP APIs for querying the blockchain, network infor-
mation, and consensus state, and for broadcasting transactions. The same
API is available via three methods: GET requests using URI encoded pa-
rameters, POST requests using the JSONRPC standard [53], and websockets
using the JSONRPC standard. Websockets are the preferred method for high
transaction throughput, and are necessary for receiving events.

8.5 P2P Networking

The P2P subprotocols used by Tendermint are described more fully in Chap-
ter 4.

8.6 Reactors

The Tendermint node is composed of multiple concurrent reactors, each man-
aging a state machine sending and receiving messages to peers over the net-
work, as described in Chapter 4. Reactors synchronize by locking shared
datastructures, but the points of synchronization are kept to a minimum, so
that each reactor runs mostly concurrently with the others.

8.6.1 Mempool

The mempool reactor manages the mempool, which caches transactions be-
fore they are packed in blocks and committed. The mempool uses a subset of

61

the application’s state machine to check the validity of transactions. Trans-
actions are kept in a concurrent linked list structure, allowing safe writes and
many concurrent reads. New, valid transactions are added to the end of the
list. A routine for each peer traverses the list, sending each transaction to
the peer, in order, only once. The list is also scanned to collect transactions
for a new proposal, and is updated every time a block is committed: commit-
ted transactions are removed, uncommitted transactions are re-run through
CheckTx, and those that have become invalid are removed.

8.6.2 Consensus

The consensus reactor manages the consensus state machine, which handles
proposals, voting, locking, and the actual committing of blocks. The state
machine is managed using a few persistent go-routines, which order received
messages and enable them to be played back deterministically to debug the
state. These go-routines include the readLoop, for reading off the queue
of received messages, and the timeoutLoop, for registering and triggering
timeout events.

Transitions in the consensus state machine are made either when a com-
plete proposal and block are received, or when more than two-thirds of either
pre-votes or pre-commits have been received at a given round. Transitions
result in the broadcast of proposals, block data, or votes, which are queued
on the internalReqQueue, and processed by the readLoop in serial with mes-
sages received from peers. This puts internal messages and peer messages
on equal footing as far as being inputs to the consensus state machine, but
allows internal messages to be processed faster, as they don’t sit in the same
queue as those from peers.

8.6.3 Blockchain

The blockchain reactor syncs the blockchain using a much faster technique
than the consensus reactor. Namely, validators request blocks of increment-
ing height until none of their peers have blocks of any higher height. Blocks
are collected in a blockpool and synced to the blockchain by a worker routine
that periodically takes blocks from the pool and validates them against the
current chain.

Once the blockchain reactor finishes syncing up, it turns on the consensus
reactor to take over.

62

8.7 Conclusion

The implementation of Tendermint in Go takes advantage of the language’s
concurrency primitives, garbage collection, and type safety, to provide a clear,
modular, easy to read code base with many reusable components. As will
be shown in Chapter 9, the implementation obtains high performance and is
robust to many different kinds of fault.

63

Chapter 9

Performance and Fault
Tolerance

Tendermint is designed as a Byzantine fault tolerant state-machine replica-
tion algorithm. It guarantees safety so long as less than a third of validators
are Byzantine, and guarantees liveness similarly, so long as network messages
are eventually delivered, with weak assumptions about network synchrony
for gossiping proposals. In this section, we evaluate Tendermint’s fault toler-
ance empirically by injecting crash faults and Byzantine faults. The goal is
to show that the implementation of Tendermint consensus does not compro-
mise safety in the event of such failures, that it suffers minimum performance
impact, and that it is quick to recover.

Performance of the Tendermint algorithm can be evaluated in a few key
ways. The most obvious measures are the block commit time, which is a
measure of finalization latency, and transaction throughput, which measures
the network’s capacity. We collect measurements for each on networks with
validators distributed over the globe, where the number of validators ranges,
in multiples of 2, from 2 to 64.

9.1 Overview

The experiments in this chapter can be reproduced using the repository at
https://github.com/tendermint/network testing. All experiments take place
in docker containers running on Amazon EC2 instances of type t2.medium
or c3.8xlarge. The t2.medium has 2 vCPU and 4 GB of RAM, and the

64

https://github.com/tendermint/network_testing

c3.8xlarge, has 32 vCPUs and 60 GB of RAM. Instances are distributed across
seven datacenters, spanning five continents. A second docker container, re-
sponsible for generating transactions, is run on each instance. Transactions
are 250 bytes in size (a reasonable size for including a few 32 or 64 byte
hashes and signatures), and were constructed to be debuggable, to be quick
to generate, and to contain some stochasticity. Thus, the leading bytes are
Big-Endian encoded integers representing transaction number and validator
index for that instance, the trailing 16 bytes are randomly drawn from the
operating system, and the intermediate bytes are just zeros.

A network monitoring tool is used to maintain active websocket connec-
tions to each validator’s Tendermint RPC server, and uses its local time when
it receives a new committed block for the first time as the official commit
time for that block. Experiments were first run without the monitor by copy-
ing all data from the validators for analysis and using the local time of the
2/3th validator committing a block as the commit time. Using the monitor is
much faster, amenable to online monitoring, and was found to not impact the
results so long as only block header information (and not the whole block)
was passed over the websockets.

Docker containers on remote machines are easily managed using the
docker-machine tool, and the network testing repository provides some tools
which take advantage of Go’s concurrency features to perform actions on
docker containers on many remote machines at once.

Each validator connects directly to each other to avoid confounding effects
of network topology.

For experiments involving crash faults or Byzantine behaviour, the num-
ber of faulty nodes is given by Nfault = b(N − 1)/3c, where N is the total
number of validators.

9.2 Throughput and Latency

This section describes experiments which measure the raw performance of
Tendermint in non-adversarial conditions, where all nodes are online and
synced and no accommodations are made for asynchrony. That is, an ar-
tificially high TimeoutPropose is used (10 seconds), and all other timeout
parameters are set to 1 millisecond. Additionally, all mempool activity is
disabled (no gossiping of transactions or rechecking them after commits),
and an in-process nil application is used to bypass TMSP. This serves as

65

a control scenario for evaluating the performance drop in the face of faults
and/or asynchrony.

Experiments are run on validator set sizes doubling in size from two to 64,
and on block sizes doubling from 128 to 32768. Transactions are preloaded
on each validator. Each experiment is run for 16 blocks.

As can be seen in Figure 9.1, Tendermint easily handles thousands of
transactions per second with around one second block latency, though there
appears to be a capacity limit at around ten thousand transactions per sec-
ond. A block of 16384 transactions is about 4 MB in size, and analysis of net-
work bandwidth shows each connection easily reaching upwards of 20MB/s,
though analysis of the logs shows that at high block sizes, validators can
spend upwards of two seconds waiting for block parts. Additionally, experi-
ments in single data centers, as shown in Figure 9.2, demonstrate that much
higher throughputs are possible, while experiments on much larger machines
exhibit more consistent performance, relieving the capacity limit, as shown
in Figure 9.3. We leave further investigations of this capacity limit to future
work.

In the experiments that follow, various forms of fault are injected and
latency statistics presented. Each experiments was run for validator set sizes
doubling from 4 to 32, for varying values of TimeoutPropose, and with a
block size of 2048 transactions.

9.3 Crash Failures

To evaluate the performance of a network subject to crash failures, ev-
ery three seconds Nfault validators were randomly selected, stopped, and
restarted three seconds later.

The results in Table 9.1 demonstrate that performance under this crash
failure scenario drops by about 50%, and that larger TimeoutPropose values
help mediate latencies. While the average latency increases to about two
seconds, the median is closer to one second, and latencies may run as high as
ten or twenty seconds, though in one case it was as high as seventy seconds.
It is likely that modifying TimeoutPropose to be slightly non-deterministic
may ease the probability of such extreme latencies.

66

102 103 104 105

Transaction Throughput (txs/second)

0

2

4

6

8

10

P
e
r-

B
lo

ck
 L

a
te

n
cy

 (
se

co
n
d
s)

2 vals
4 vals
8 vals
16 vals
32 vals
64 vals

102 103 104 105

Block size (number of transactions)

0

2000

4000

6000

8000

10000

12000

14000

16000

T
ra

n
sa

ct
io

n
 T

h
ro

u
g
h
p
u
t

(t
x
s/

se
co

n
d
)

2 vals
4 vals
8 vals
16 vals
32 vals
64 vals

Figure 9.1: Latency-throughput trade-off. Larger blocks incur diminish-
ing returns in transaction throughput, with an ultimate capacity at around
10,000 txs/s

67

102 103 104 105

Transaction Throughput (txs/second)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
P
e
r-

B
lo

ck
 L

a
te

n
cy

 (
se

co
n
d
s)

4 vals
8 vals
16 vals

102 103 104 105

Block size (number of transactions)

0

5000

10000

15000

20000

25000

30000

T
ra

n
sa

ct
io

n
 T

h
ro

u
g
h
p
u
t

(t
x
s/

se
co

n
d
)

4 vals
8 vals
16 vals

Figure 9.2: Single datacenter. When messages don’t need to cross the pub-
lic Internet, Tendermint is capable of tens of thousands of transactions per
second.

68

102 103 104 105

Transaction Throughput (txs/second)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
P
e
r-

B
lo

ck
 L

a
te

n
cy

 (
se

co
n
d
s)

4 vals
8 vals
16 vals
32 vals

102 103 104 105

Block size (number of transactions)

0

5000

10000

15000

20000

T
ra

n
sa

ct
io

n
 T

h
ro

u
g
h
p
u
t

(t
x
s/

se
co

n
d
)

4 vals
8 vals
16 vals
32 vals

Figure 9.3: Large machines. With 32 vCPU and 60 GB of RAM, transaction
throughput increases linearly with block-size, relieving the capacity limits
found on smaller machines.

69

TimeoutPropose Min Max Mean Median 95th %− ile
500 434 15318 2179 1102 5575
1000 516 18149 2180 1046 5677
2000 473 15067 2044 1049 5479
3000 428 9964 2005 1096 5502

(a) 4 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
500 618 126481 2679 990 5589
1000 570 9832 1763 962 5835
2000 594 8869 1658 968 5481
3000 535 10101 1633 959 5485

(b) 8 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
500 782 21354 1977 1001 5930
1000 758 12659 1761 981 5642
2000 751 21285 2041 1005 6872
3000 719 72406 2395 991 5987

(c) 16 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
500 760 24692 2591 1087 14025
1000 755 19696 2328 1119 9321
2000 852 21044 2178 1141 6514
3000 763 25587 2289 1119 6707

(d) 32 Validators

Table 9.1: Crash-fault latency statistics. Every three seconds, a random
selection ofNfault validators were crashed, and restarted three seconds later.
This crash-restart procedure continued for 200 blocks. Each table reports
the minimum, maximum, average, median, and 95th percentile of the block
latencies, for varying values of the TimeoutPropose parameter.

70

9.4 Random Network Delay

Another form of fault, which may be attributed either to Byzantine be-
haviour or to network asynchrony, is to inject random delays into every read
and write to a network connection. In this experiment, before every read
and write on every network connection, Nfault of the validators slept for X
milliseconds, where X was drawn uniformly on (0, 3000). As can be seen in
Table 9.2, latencies are similar to the crash failure scenario, though increas-
ing the TimeoutPropose has the opposite effect. Since not all validators were
faulty, small values of TimeoutPropose allow faulty validators to be skipped
quickly. If all validators were subject to the network delays, larger Timeout-
Propose values would be expected to reduce latency since there would be no
non-faulty validators to skip to, and more time would be provided to receive
delayed messages.

9.5 Byzantine Failures

A more explicit Byzantine failure can be injected through the following mod-
ifications to the state machine:

• Conflicting proposals: during its time to propose, a Byzantine validator
signs two conflicting proposals and broadcasts each, along with a pre-
vote and pre-commit, to separate halves of its connected peers.

• No nil votes: a Byzantine validator never signs a nil-vote.

• Sign every proposal: a Byzantine validator submits a pre-vote and a
pre-commit for every proposal it sees, as soon as it sees it.

Taken together, these behaviours explicitly violate the double signing
and locking rules. Note, however, that the behaviour is dominated by the
broadcast of conflicting proposals, and the eventual committing of one of
them. More complex arrangements of Byzantine strategies are left for future
work.

Despite the injected Byzantine faults, which would cause many systems to
fail completely and immediately, Tendermint maintains respectable latencies,
as can be seen from Table 9.3. Since these faults have little to do with
asynchrony, there is no real discernible effect from TimeoutPropose. The

71

TimeoutPropose Min Max Mean Median 95th %− ile
1000 873 2796 1437 1036 2627
2000 831 4549 1843 1180 4036
3000 921 5782 2273 1251 5491
4000 967 6875 2700 1413 6781

(a) 4 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
1000 870 2840 1449 1040 2786
2000 957 4268 1848 1076 4148
3000 859 5724 2156 1100 5649
4000 897 11859 3055 1093 11805

(b) 8 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
1000 914 5595 1821 1135 5466
2000 950 7782 2490 1165 7650
3000 978 10305 3049 1163 9890
4000 1018 6890 2808 1174 6813

(c) 16 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
1000 1202 8562 2219 1349 5733
2000 1196 7878 2549 1365 7579
3000 1164 10082 3003 1382 9805
4000 1223 17571 3696 1392 12014

(d) 32 Validators

Table 9.2: Random delay latency statistics. Nfault validators were set to
inject a random delay before every read and write, where the delay time was
chosen uniformly on (0, 3000) milliseconds.

72

performance also falls off with larger validator sets, which may be the result
of a naive algorithm for handling Byzantine votes.

9.6 Related Work

The throughput experiments in this chapter were modeled after those in [67],
which benchmarks the performance of a PBFT implementation and a new
randomized BFT protocol called HoneyBadgerBFT. In their results, PBFT
achieves over 15,000 transactions per second on four nodes, but decays expo-
nentially as the number of nodes increases, while HoneyBadgerBFT attains
roughly even performance of between 10,000 and 15,000 transactions per sec-
ond. Block latencies in HoneyBadgerBFT, however, are much higher, closer
to 10 seconds for validator sets of size 8, 16, and 32, and even more for larger
ones.

A well known tool for studying consensus implementations is Jepsen [52],
which is used to test the consistency guarantees of databases by simulating
many forms of network partition. Testing Tendermint with Jepsen remains
an exciting area for future work.

The author is not aware of any throughput experiments in the face of
persistent Byzantine failures, like those presented here.

9.7 Conclusion

The implementation of Tendermint written by the author and Jae Kwon eas-
ily achieves thousands of transactions per second on up to 64 nodes on ma-
chines distributed around the globe, with latencies mostly in the one to two
second range. This is highly competitive with other solutions, and especially
with the current state of blockchains, with Bitcoin, for instance, capping
out at around 7 transactions per second. Furthermore, our implementation
is shown to be robust to both crash faults, message delays, and deliberate
Byzantine faults, being able to maintain over a thousand transactions per
second in each scenario.

73

TimeoutPropose Min Max Mean Median 95th %− ile
1000 868 3888 1450 1086 3320
2000 929 4375 1786 1272 4166
3000 881 4363 1224 1099 1680
4000 824 8256 1693 1272 2607

(a) 4 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
1000 771 3445 1472 916 3288
2000 731 3661 1426 902 3339
3000 835 6402 1912 962 6155
4000 811 4462 1512 964 3592

(b) 8 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
1000 877 15930 2086 1024 5844
2000 808 5737 1580 1027 4155
3000 919 10533 1801 1110 4174
4000 915 5589 1745 1095 4181

(c) 16 Validators

TimeoutPropose Min Max Mean Median 95th %− ile
1000 1594 11730 2680 1854 5016
2000 1496 17801 3430 1874 11730
3000 1504 15963 3280 1736 9569
4000 1490 24836 3940 1773 12866

(d) 32 Validators

Table 9.3: Byzantine-fault latency statistics. Byzantine validators propose
conflicting blocks and vote on any proposal as soon as they see it. Each table
reports the minimum, maximum, average, median, and 95th percentile of the
block latencies, for varying values of the TimeoutPropose parameter.

74

Chapter 10

Related Work

Byzantine consensus has a rich history that spans cryptography, distributed
computing, and economics, but the socio-economic context for its products
to be deployed in industry has not existed until recently, at least not outside
of traditionally critical real-time systems like aircraft control [47]. On the
one hand, the invention of Bitcoin and the coining of the term “blockchain”
popularized the notion of a distributed ledger not controlled by a single en-
tity, using cryptography and aligned economic incentives to preserve safety
in the face of Byzantine faults. On the other, the continued commoditization
of servers, in the form of “The Cloud”, and the invention of Raft, have popu-
larized distributed computing in mainstream developer culture, and brought
renewed attention to distributed consensus algorithms as co-ordination hubs
in large-scale deployments.

At the intersection are a collection of solutions, typically geared for bank-
ing and financial applications, but also for governance, logistics, and other
general forms of co-ordination, that draw on classic academic BFT modified
and modernized in various ways. This chapter reviews the history and diver-
sity of these ideas, with the goal of providing a rich context within which to
understand the blockchain phenomenon.

10.1 Beginnings

Distributed algorithms first emerged in the late 19th century in the telecom-
munications and railroad industries, in attempts to effectively handle multi-
ple concurrent message streams in a transmission, or multiple trains on the

75

same set of tracks.
Academic work on the subject appears to have been launched officially by

the seminal work of Edsger Dijkstra on the mutual exclusion problem [30],
and of Tony Hoare on models for describing communicating processes [46].

A host of concurrency problems with catchy names were popularized
around this time, including the cigarette smokers problem [44], where smok-
ers sit around a table, each with a different ingredient, and must successfully
roll a full cigarette; the dinning philosophers problem [29], where philoso-
phers sitting around a table must take turns eating and thinking, but each
can only eat while its neighbours are thinking; and the two-generals or co-
ordinated attack problem [38], where two generals must co-ordinate from afar
to attack an enemy city at the same time.

These problems served to put the focus on synchronization primitives
such as semaphores, mutexes, and communication channels, and would lay
the groundwork for a number of advancements over the coming decades.

10.1.1 Faulty Things

Fault tolerant distributed computing effectively emerged in the late seventies
out of the effort to utilize microprocessors for aircraft control, resulting in a
number of early systems [103, 48]. Today, it is standard for NASA to conduct
BFT research [70], and for commercial aircraft to use BFT systems, such as
the SAFEbus [49].

Many systems, however, do not require tolerance to Byzantine faults as
they are run in controlled environments, where there is presumably no ma-
licious behaviour and the code is written correctly. In these circumstances,
which are common in data-centers managed by large companies like Google
or Amazon, fault tolerant computing is used to defend against various faults,
whether it be a break in a network link, power failure in a server rack, or a
dead hard-drive.

10.1.2 Clocks

The problem of distributed consensus, however, did not formally emerge
until Leslie Lamport introduced it in his “Time, clocks, and the ordering of
events in a distributed system” [60]. In that work, Lamport demonstrated
how a partial ordering of events emerges from a definition of causality based
on communication [60]. That is, events occurring in concurrent processes,

76

between communication events, effectively happen at the same time, as they
cannot influence one another. Thus, a system of logical clocks can be defined
based on the individual sequential processes and the fact that messages are
sent before they are received. Events can then be totally ordered by assigning
any arbitrary but consistent total ordering above the partial ordering, for
instance by assigning each process in the system an index and ordering events
which happen at the same logical time by the index of the process in which
they happen. The algorithm is quite simple, requiring each process to hear
from each other process in order to determine the order of events.

Lamport’s work established time as a principle obstacle to designing fault
tolerant distributed systems, as synchronizing clocks across geographical lo-
cations requires the communication of messages which is ultimately limited
by the speed of light. This formulation of the problem has close ties to the
relativism of modern physics, wherein frames of reference are relative to an
observer and the speed of light imposes a constraint on information propa-
gation.

10.1.3 FLP

As discussed in Chapter 2, one of the primary factors in designing consensus
algorithms are assumptions made about network and/or processor synchrony.
A synchronous network is one in which messages are delivered within some
fixed, known amount of time. Similarly, synchronous processors are one
whose clocks stay within some fixed, known number of ticks of each other.
In the early days of consensus research, the distinction was not well charac-
terized, though the close relationship between asynchrony and crash failures
is apparent even in [60]. Lamport’s original consensus algorithm is able to
operate in asynchronous environments, so long as all messages are eventually
delivered from each process. However, the algorithm is obviously not fault
tolerant as the failure of just a single process can halt the algorithm forever.

The intuition behind a single failure thwarting a consensus protocol was
given formal ground by Fischer, Lynch, and Patterson, who proved the impos-
sibility of deterministic distributed consensus in asynchronous environments
even if a single process fails [37]. The result does not apply to synchronous
contexts, as assumptions about network synchrony allow processors to de-
tect failures using timeouts, such that if a process does not respond within
some given amount of time it is assumed to have crashed. Furthermore, the
result applies to deterministic consensus protocols only, as its proof relies on

77

the moment when the network goes deterministically from a bivalent state,
where not all processes hold the same value, to a univalent one, where they
do. Since the point of transition is a deterministic point in time, consensus
fails if a single process crashes at that opportune moment.

10.1.4 Common Coin

The FLP result became something of a warning bell to distributed systems
scientists, establishing a clear impossibility result at the heart of the emerg-
ing field. Later, the approach would be generalized to derive many more
impossibility results [36], and significant academic effort would be expended
on relaxing either the synchrony or determinism assumptions to derive algo-
rithms which circumvent the result.

In particular, in a short note, Ben Or demonstrated how an algorithm
which includes a simple amount of non-determinism can circumvent the FLP
result [5]. The algorithm is tolerant to faults of up to half of the processes in
asynchronous environments. Essentially, in trying to reach consensus on the
value of a single bit, if a process does not receive votes from a majority for
the same value, it randomly changes the value it votes for the next round.
With everyone changing values, eventually more than half of them will vote
the same value. This approach came to be known as a common coin, due to
the resemblance of the procedure to communally flipping a coin to obtain a
shared value.

The problem with Ben Or’s common coin is that, in the asynchronous
case, the algorithm requires a number of rounds exponential in the number
of validators. This was quickly rectified in a follow up by Rabin, who showed
how a common coin could be constructed using secret sharing, as pioneered
by Shamir [88], to achieve consensus in a fixed number of rounds [85]. The
approach is useful for BFT as well, and is discussed more fully in that context
in a later section.

10.1.5 Transaction Processing

Parallel to the development of fault tolerant consensus algorithms was the
emergence of the first commercial database systems. While they did not at
first use the consensus protocols being developed, they built atop the growing
body of work in distributed computing and concurrency. In particular is the
seminal work of Jim Gray, who introduced the term transaction as an atomic

78

unit of work in a database system [42]. That is, a transaction is either applied
in full or not at all.

Gray also introduced other classic features of modern databases, such
as the principles of Atomicity, Consistency, Isolation, and Durability, which
come part and parcel with the transaction concept [42], and the use of write-
ahead-logs, for logging transactions to disk before they are executed in order
to recover from faults occurring during transaction execution [41].

In a distributed database setting, this work on transactions, atomicity,
and consistency led to a series of approaches for database replication centered
around the notion of an atomic commit, wherein a transaction is replicated
atomically across all machines. These approaches are known as two-phase-
commit [41], and its non-blocking alternative, three-phase-commit [90].

Both two-phase and three-phase commit protocols work only in a syn-
chronous setting, where crash failures can be detected, and utilize a co-
ordinator process that serves as leader for the protocol.

10.1.6 Broadcast Protocols

The two most important broadcast protocols, RBC and ABC, were intro-
duced in Chapter 2. A taxonomy and survey of solutions to the problem is
provided in [27].

10.2 Byzantine

Many fault tolerant protocols focus only on crash failures, as they are the
most common, while much less attention has been given to the problem of
potentially arbitrary, including malicious, behaviour of software. This more
general problem is known as Byzantine Fault Tolerance.

10.2.1 Byzantine Generals

Lamport introduced the problem of Byzantine Fault Tolerance in [78], but
gave the problem its name in a later paper by making an analogy with the
problem faced by the Byzantine army in co-ordinating to attack an enemy
city [61]. The army is composed of multiple divisions, each of which is led
by a general. Communication between generals happens only via messenger.

79

How can the generals agree on a common plan of action if one or some of the
generals is a traitor?

The original paper provides the first proof that to tolerate f Byzantine
faults, a system must have at least 3f + 1 nodes. The intuition behind this
result was depicted in Figure 2.2 and discussed throughout Chapters 2 and
3. A number of algorithms are provided in both papers as the first solutions
to the problem, though they are designed to work only in the synchronous
case, where the absence of a message can be detected.

10.2.2 Randomized Consensus

Asynchronous Byzantine consensus saw its first solution in the form of the
common coins introduced by Ben Or [5] and Rabin [85]. However, neither
solution achieves optimal Byzantine fault tolerance of 3f + 1 machines for f
faults. Ben Or’s solution requires 5f + 1 machines, while Rabin’s requires
10f + 1 machines. The solution was iteratively improved to achieve optimal
Byzantine agreement with low overhead [35, 16, 13].

10.2.3 Partial Synchrony

The next major advancement in BFT came in the form of the so called DLS
consensus algorithms, named after the authors Dwork, Lynch, and Stock-
meyer [31]. The innovation of DLS was to define a middle ground between
synchrony and asynchrony called partial synchrony. The secret to partial
synchrony is to suppose one of the following:

• Messages are guaranteed to be delivered within some fixed but unknown
amount of time.

• Messages are guaranteed to be delivered within some known amount of
time, beginning an unknown amount of time in the future.

The DLS algorithm proceeds via a series of rounds, each of which is
divided into trying and lock-release phases. Each round has a corresponding
proposer, and processes can lock on a value at a round if they think the
proposer will propose that value. A round begins with processes gossiping the
values they deem acceptable. The proposer will propose a value if it has heard
from at least N−f processes that the value is acceptable. Any process which
receives the proposed value should lock on it, and send an acknowledgment

80

message that it has done so. If the proposer receives acknowledgment from
f + 1 processes, it commits the value.

Variations on the basic protocol are discussed for different combinations
of assumptions, and many proofs are provided of its soundness. Despite
its success, however, DLS algorithms were never widely adopted for BFT.
Tendermint’s original design was based on DLS, in particular the version
which assumes a partially synchronous network but synchronous processor
clocks. In practice, due to the use of protocols like the Network Time Proto-
col (NTP), synchronized clocks may be a fair assumption. However, NTP is
vulnerable to a number of attacks, and protocols which assume synchronous
clocks can be slow to recover from crash faults. In the summer of 2015, the
core Tendermint consensus protocol was redesigned to be more fully asyn-
chronous, as described in Chapter 3, and has thus come to more closely
resemble another BFT algorithm, known as Practical Byzantine Fault Tol-
erance (PBFT).

10.2.4 PBFT

PBFT was introduced in 1999 [17], and was widely hailed as the first prac-
tical BFT algorithm, suitable for use in asynchronous networks, though it
does in fact make weak synchrony assumptions which can be violated by a
careful adversary [67]. PBFT proceeds through a series of views, where each
view has a proposer, known as a primary, that is selected in round-robin
order. The primary receives requests from clients, assigns them a sequence
number, and broadcasts a signed pre-prepare messages to the other processes
containing the view and sequence numbers. Replicas accept the pre-prepare
message if they have not already accepted one for the same view and se-
quence numbers, assuming the message is for the current view and signed by
the correct primary.

Once a pre-prepare is accepted, a replica broadcasts a signed prepare
message. A replica is said to be prepared for a given client request when it
has received 2f prepare messages for that request, with the same view and
sequence number. The combination of pre-prepare and prepare ensure a total
order on the requests in a single view, according to their sequence number.
Once a replica is prepared, it broadcasts a signed commit message, which
is accepted so long as it’s properly signed and the view is correct. When a
replica accepts a commit message, it runs the client request against the state
machine and returns the result to the client.

81

PBFT employs an additional mechanism to facilitate view changes in the
event the primary is faulty. Replicas maintain a timeout, which restarts every
time they receive a new client request, and terminates when a pre-prepare is
received for that request. If no pre-prepare is received, the replica times out,
and triggers the view change protocol. View change is subtle and somewhat
complicated as it requires consensus that the view should be changed, and
all client requests since the last commit must be brought into the new view.

Tendermint side-steps these issues through the use of blocks and by chang-
ing proposers every block, allowing a proposer to be skipped using the same
mechanism used to commit the proposed block. Furthermore, the use of
blocks allows Tendermint to include the set of pre-commit messages from
one block in the next block, removing the need for an explicit commit mes-
sage.

10.2.5 BFT Improvements

Many improvements have been proposed for PBFT since it was published.
Some of these focus on so-called optimistic execution, where transactions
are executed before they are committed in order to provide a low-latency,
optimistic reply to clients [58, 39]. The trouble with these approaches is that
the responsibility of managing inconsistency is relegated to the client, while
presumably the reason they used a consistent consensus protocol in the first
place was to avoid that responsibility. Alternatively, this may be a useful
approach in low-fault circumstances. The phenomenon is referred to as zero-
conf transactions in Bitcoin and is widely warned against, given the insecurity
of accepting transactions before sufficient work has been committed on top
of them.

Others have focused on the possibility of running independent transac-
tions concurrently to achieve higher throughputs [57]. This is the approach
that has begun to be researched in the blockchain community, especially by
Ethereum, in order to produce a scalable blockchain architecture.

10.3 Non-Byzantine

In parallel to the BFT algorithms, a number of non-BFT algorithms have
emerged, and a number of important highly available Internet services have
been built on top of them.

82

10.3.1 Paxos

It is often said in consensus science that there is only one consensus algorithm,
and it is Paxos. This is on the one hand a statement of the significance of the
Paxos algorithm to the field, and on the other a reflection on the universal
foundation of consensus protocols, which is in every case “Paxos-like”.

Lamport introduced Paxos in the early nineties, though the article was
not accepted for publication until almost a decade later [59]. Many have
pointed out that the algorithm is actually quite similar to Viewstamped
Replication, published in the late eighties [73], and that the two represent
independent discovery of the same protocol.

The protocols are quite similar to PBFT, which came after them, but
require only 2f + 1 machines to tolerate f faults as they are not BFT. An-
other similar protocol, the Zookeeper Atomic Broadcast protocol (ZAB) [54]
was developed for the Apache Zookeeper distributed key-value store. The
similarities and differences of each algorithm are illuminated in [99].

10.3.2 Raft

Non-BFT consensus science received a major improvement with the introduc-
tion of Raft [75], which was designed from the ground up to be understand-
able, and which even proved itself to be more understandable than Paxos
through a user survey [74].

Raft is similar in spirit to Paxos and Viewstamped Replication, but it
emphasizes replicating a transaction log, rather than a single bit, and intro-
duces randomization for more efficient leader elections. Furthermore, Raft’s
safety guarantees have been formally proven using the Coq proof assistant
[106] and a framework built above Coq, called Verdi, for formally verifying
distributed systems [104]. It remains to be seen how Verdi will compare to
process calculus based approaches.

10.4 Blockchain

This thesis was motivated by the introduction of blockchain technology,
which emerged in the form of Bitcoin, and has since seen many iterations.
Few have succeeded in putting the blockchain in context of classical consensus
science until recently [102, 14, 67].

83

10.4.1 Bitcoin

Bitcoin was the first blockchain, introduced in [71]. It solved the atomic
broadcast problem in a public, adversarial setting through a clever use of
economics. In particular, the order of transactions comes in blocks proposed
by those who solve partial hash collisions, where the data being hashed is the
block of transactions. Since computing partial hash collisions is expensive,
requiring brute force search in a large space, the effort is subsidized by the
issuance of a currency, known as bitcoins, with every block. The protocol has
been wildly successful, with the currency achieving a market capitalization
in the billions of dollars (USD), and with many clones of the original that
have market capitalizations in the millions.

However, Bitcoin is not without its issues. A number of design flaws make
the protocol cumbersome and difficult for application developers to work with
it. Furthermore, a number of academic works have shed light on incentive
incompatibilities in the protocol, weakening widely held assumptions about
the protocol’s security [33, 24].

Numerous approaches have been proposed to improve Bitcoin, including
those that change the nature of the partial hash collision function [66], those
that change the nature of leadership election in the protocol to improve many
features of the economics and underlying performance [34] and those that aim
to augment the protocol in an effort to achieve scalability [4, 83].

10.4.2 Ethereum

Ethereum was introduced by Vitalik Buterin as a solution to the proliferation
of cryptocurrencies that followed Bitcoin, with different varieties of features
[11]. Ethereum sought a more pure mandate: to have no features. Instead,
Ethereum provides a Turing complete virtual machine, the Ethereum Virtual
Machine (EVM), for transaction execution above the consensus, and provides
a means for users to upload code to the EVM that can execute upon the pro-
cessing of future transactions. So-called smart contracts [94] offer the promise
of automatically enforced execution of code in a public setting, using strong
cryptography and BFT replication. The Ethereum project was successful in
one of the largest crowd-funds to date, over $18 million USD, and the market
capitalization of its native token, ether, which is used to pay for transaction
execution and code uploads, has since reached $1 billion USD.

Ethereum currently uses a modified form of Proof-of-Work called Greedy

84

Heaviest Observed Sub Tree (GHOST) [91], but is planning to move to a
more secure economic consensus algorithm modeled around Proof of Stake.

10.4.3 Proof-of-Stake

Proof-of-Stake (PoS) was first proposed as an alternative to Proof-of-Work
for use in the PPCoin [56]. Under PoS, proposals are made by, and voted on,
those who can prove ownership of some stake of coins in the network. While
eliminating the excessive energy of costs of PoW, naive implementations of
PoS are vulnerable to so called “nothing-at-stake” attacks, wherein validators
may propose and vote on multiple blocks at a given height, resulting in
a dramatic violation of safety, with no incentive to converge. While the
problems with naive PoS are well known [82], many popular cryptocurrencies
still use it.

The nothing-at-stake problem can be rectified with a mechanism known
as slasher [12], whereby validators must place a security deposit in order
to be eligible to validate blocks, such that the deposit can be slashed if the
validator is found to propose or vote for conflicting blocks. Tendermint was
the first implementation of such an approach, though other BFT algorithms
may work as well.

10.4.4 HyperLedger

The success of Bitcoin, Ethereum, and other cryptocurrencies has inspired
an increasingly diverse cross section of society, including regulators, bankers,
business executives, auditors, account managers, logisticians, and more. In
particular, a recent project under the Linux Foundation, spearheaded by IBM
and a new blockchain-based company called Digital Asset Holdings (DAH),
seeks to provide a unified blockchain architecture for industrial applications.
The project is called HyperLedger, after a company with the same name,
which provided a rudimentary implementation of a PBFT-based blockchain,
was acquired by DAH.

Two contributions to the HyperLedger initiative are particularly relevant.
The first is the combination of Juno and Hopper by the team at JP Morgan.
Juno is an implementation of Tangaroa, a BFT version of Raft [22]. Hopper
is a new virtual machine design, based on linear logic [40] and dependent type
systems [8], that aims to provide an execution environment for smart contract
systems equipped with a formal logic for making and proving statements

85

about the state of the system, or the behaviour of a contract. Both Juno
and Hopper are written in Haskell.

The other project is the OpenBlockchain by IBM, a PBFT-based blockchain
written in Go, sporting an application state that supports the deployment of
arbitrary docker containers. Since an arbitrary docker container may contain
non-determinism, their PBFT implementation was modified with additional
steps to preserve safety in the face of possibly non-deterministic execution
[14].

Another relevant contribution from IBM is a recent review paper, similar
in spirit to this chapter [102].

10.4.5 HoneyBadgerBFT

All Paxos-like consensus protocols, including Raft, PBFT, and Tendermint,
despite functioning well in asynchronous environments, are not strictly asyn-
chronous. This is because each one uses a timeout somewhere in the protocol,
typically to detect faulty leaders. On the other hand, randomized consensus
protocols like the common coin offer solutions that work in a fully asyn-
chronous context, with no timeouts.

All consensus protocols rely one way or another on the eventual delivery
of messages. The assumption of asynchrony simply states that there is no
upper bound on when a message will be delivered. Most of the time, net-
works act synchronous, in the sense that most messages are delivered within
some bound. The difference between a fully asynchronous protocol and one
with timeouts is that an asynchronous protocol can always make progress
during times when the network is behaving synchronously. This point is il-
lustrated clearly in [67], which introduces HoneyBadgerBFT, the first fully
asynchronous blockchain design, based on common coin consensus.

An adversary with arbitrary control over the network, and the ability to
crash any one node at a time, can cause PBFT to halt for arbitrarily long.
This can be done by crashing the current primary/proposer/leader during
times when the network is synchronous, and bringing it back for periods
of asynchrony. The network still eventually delivers messages, with some
average synchrony, but with precise timing can stop all system progress.
The experiment is carried out on PBFT directly in [67], and would work
similarly against Tendermint.

HoneyBadgerBFT utilizes a series of cryptographic techniques, including
secret sharing, erasure coding, and threshold signatures to design a high per-

86

formance asynchronous BFT consensus protocol that over comes this prob-
lem, on account of not incurring any synchrony assumptions, as it is fully
leaderless. However, it requires a trusted dealer for initial setup and for
validator changes, and it relies on relatively new cryptographic assumptions
about the hardness of certain problems that have yet to withstand the test
of time.

10.5 Conclusion

Tendermint emerges from and complements a rich history of consensus sci-
ence which spans the gamut of synchrony and fault-tolerance assumptions.
The invention of the blockchain and of Raft have rekindled the fire in con-
sensus research and spawned a new generation of protocols and software for
co-ordination over the Internet.

87

Chapter 11

Conclusion

Byzantine Fault Tolerant consensus provides a rich basis upon which to build
services that do not depend on centralized, trusted parties, and which may
be adopted by society to manage critical components of socioeconomic in-
frastructure. Tendermint, as presented in this thesis, was designed to meet
the needs of such systems, and to do so in a way that is understandably
secure and easily high performance, and which allows arbitrary systems to
have transactions ordered by the consensus protocol, with minimal fuss.

Careful considerations are necessary when deploying a distributed con-
sensus system, especially one without an agreed upon central authority to
mediate potential disputes and reset the system in the event of a crisis. Ten-
dermint seeks to address such problems using explicit governance modules
and accountability guarantees, enabling integration of Tendermint deploy-
ments into modern legal and economic infrastructure.

There is still considerable work to do. This includes formal verification
of the algorithm’s guarantees, performance optimizations, and architectural
changes to enable the system to increase capacity with the addition of ma-
chines. And of course, many, many TMSP applications remain to be built.

We hope that this thesis better illuminates some of the problems in dis-
tributed consensus and blockchain architecture, and inspires others to build
something better.

88

Bibliography

[1] A Deterministic Version of Javascript.
https://github.com/NodeGuy/Deterministic.js.

[2] Samson Abramsky. “Proofs as processes”.
In: Theoretical Computer Science 135.1 (1994), pp. 5–9.

[3] M AdelsonVelskii and Evgenii Mikhailovich Landis.
An algorithm for the organization of information. Tech. rep.
DTIC Document, 1963.

[4] Adam Back et al.
“Enabling blockchain innovations with pegged sidechains”.
In: (2014).

[5] Michael Ben-Or. “Another advantage of free choice (extended
abstract): Completely asynchronous agreement protocols”.
In: Proceedings of the second annual ACM symposium on Principles
of distributed computing. ACM. 1983, pp. 27–30.

[6] Daniel J Bernstein.
“Curve25519: new Diffie-Hellman speed records”.
In: Public Key Cryptography-PKC 2006. Springer, 2006,
pp. 207–228.

[7] Bitcoin Blockchain Charts. https://blockchain.info/charts.

[8] Ana Bove and Peter Dybjer. “Dependent types at work”.
In: Language engineering and rigorous software development.
Springer, 2009, pp. 57–99.

[9] Buckie. Juno - Smart Contracts Running on a BFT Hardened Raft.
https://github.com/buckie/juno. 2016.

89

https://github.com/buckie/juno

[10] Mike Burrows.
“The Chubby lock service for loosely-coupled distributed systems”.
In: Proceedings of the 7th symposium on Operating systems design
and implementation. USENIX Association. 2006, pp. 335–350.

[11] Vitalik Buterin. Ethereum white paper: a next generation smart
contract & decentralized application platform. 2013.

[12] Vitalik Buterin. Slasher: a punitive proof of stake algorithm.
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-
stake-algorithm/.

[13] Christian Cachin, Klaus Kursawe, and Victor Shoup.
“Random oracles in constantipole: practical asynchronous Byzantine
agreement using cryptography”. In: Proceedings of the nineteenth
annual ACM symposium on Principles of distributed computing.
ACM. 2000, pp. 123–132.

[14] Christian Cachin, Simon Schubert, and Marko Vukolić.
“Non-determinism in Byzantine Fault-Tolerant Replication”.
In: arXiv preprint arXiv:1603.07351 (2016).

[15] Luıs Caires and Luca Cardelli.
“A spatial logic for concurrency (part I)”.
In: Information and Computation 186.2 (2003), pp. 194–235.

[16] Ran Canetti and Tal Rabin.
“Fast asynchronous Byzantine agreement with optimal resilience”.
In: Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing. ACM. 1993, pp. 42–51.

[17] Miguel Castro, Barbara Liskov, et al.
“Practical Byzantine fault tolerance”. In: Proceedings of the Third
Symposium on Operating Systems Design and Implementation. 1999.

[18] Tushar D Chandra, Robert Griesemer, and Joshua Redstone.
“Paxos made live: an engineering perspective”.
In: Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing. ACM. 2007, pp. 398–407.

[19] Tushar Deepak Chandra and Sam Toueg.
“Unreliable failure detectors for reliable distributed systems”.
In: Journal of the ACM (JACM) 43.2 (1996), pp. 225–267.

90

[20] Nikos Chondros, Konstantinos Kokordelis, and Mema Roussopoulos.
“On the practicality of practical Byzantine fault tolerance”.
In: Proceedings of ACM/IFIP/USENIX International Middleware
Conference (MIDDLEWARE). Springer, 2012, pp. 436–455.

[21] Bram Cohen. The BitTorrent protocol specification. 2008.

[22] Christopher Copeland and Hongxia Zhong.
“Tangaroa: a Byzantine Fault Tolerant Raft”. In: ().

[23] James C Corbett et al.
“Spanner: Google’s globally distributed database”. In: ACM
Transactions on Computer Systems (TOCS) 31.3 (2013), p. 8.

[24] Nicolas T Courtois and Lear Bahack. “On subversive miner
strategies and block withholding attack in bitcoin digital currency”.
In: arXiv preprint arXiv:1402.1718 (2014).

[25] Martin Davis. Computability & unsolvability.
Courier Corporation, 1958.

[26] Giuseppe DeCandia et al.
“Dynamo: amazon’s highly available key-value store”.
In: ACM SIGOPS Operating Systems Review. Vol. 41. 6.
ACM. 2007, pp. 205–220.

[27] Xavier Défago, André Schiper, and Péter Urbán. “Total order
broadcast and multicast algorithms: Taxonomy and survey”.
In: ACM Computing Surveys (CSUR) 36.4 (2004), pp. 372–421.

[28] Whitfield Diffie, Paul C Van Oorschot, and Michael J Wiener.
“Authentication and authenticated key exchanges”.
In: Designs, Codes and cryptography 2.2 (1992), pp. 107–125.

[29] Edsger W. Dijkstra. “Hierarchical ordering of sequential processes”.
In: Acta informatica 1.2 (1971), pp. 115–138.

[30] Edsger W Dijkstra.
“Solution of a problem in concurrent programming control”.
In: Pioneers and Their Contributions to Software Engineering.
Springer, 2001, pp. 289–294.

[31] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
“Consensus in the presence of partial synchrony”.
In: Journal of the ACM (JACM) 35.2 (1988), pp. 288–323.

91

[32] ETCD Distributed Key-Value Store Source Code Repository.
https://github.com/coreos/etcd.

[33] Ittay Eyal and Emin Gün Sirer.
“Majority is not enough: Bitcoin mining is vulnerable”.
In: Financial Cryptography and Data Security. Springer, 2014,
pp. 436–454.

[34] Ittay Eyal et al. “Bitcoin-ng: A scalable blockchain protocol”.
In: arXiv preprint arXiv:1510.02037 (2015).

[35] Paul Feldman and Silvio Micali.
“Optimal algorithms for Byzantine agreement”. In: Proceedings of
the twentieth annual ACM symposium on Theory of computing.
ACM. 1988, pp. 148–161.

[36] Michael J Fischer, Nancy A Lynch, and Michael Merritt.
“Easy impossibility proofs for distributed consensus problems”.
In: Distributed Computing 1.1 (1986), pp. 26–39.

[37] Michael J Fischer, Nancy A Lynch, and Michael S Paterson.
“Impossibility of distributed consensus with one faulty process”.
In: Journal of the ACM (JACM) 32.2 (1985), pp. 374–382.

[38] Luciano Floridi.
“On the logical unsolvability of the Gettier problem”.
In: Synthese 142.1 (2004), pp. 61–79.

[39] Rui Garcia, Rodrigo Rodrigues, and Nuno Preguiça. “Efficient
middleware for byzantine fault tolerant database replication”.
In: Proceedings of the sixth conference on Computer systems.
ACM. 2011, pp. 107–122.

[40] Jean-Yves Girard. “Linear logic”.
In: Theoretical computer science 50.1 (1987), pp. 1–101.

[41] James N Gray. Notes on data base operating systems. Springer, 1978.

[42] Jim Gray et al. “The transaction concept: Virtues and limitations”.
In: VLDB. Vol. 81. 1981, pp. 144–154.

[43] Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and
the US surveillance state. Macmillan, 2014.

[44] A Nico Habermann. “On a solution and a generalization of the
Cigarette Smokers’ Problem”. In: (1972).

92

[45] Hashicorp’s Implementation of Raft in Go.
https://github.com/hashicorp/raft.

[46] Charles Antony Richard Hoare. Communicating sequential processes.
Springer, 1978.

[47] Albert L Hopkins Jr, Jaynarayan H Lala, and T Basil Smith III.
“The evolution of fault tolerant computing at the Charles Stark
Draper Laboratory, 1955–85”.
In: The Evolution of fault-tolerant computing. Springer, 1987,
pp. 121–140.

[48] Albert L Hopkins Jr, T Smith III, and Jaynarayan H Lala.
“FTMP—a highly reliable fault-tolerant multiprocess for aircraft”.
In: Proceedings of the IEEE 66.10 (1978), pp. 1221–1239.

[49] Kenneth Hoyme and Kevin Driscoll. “SAFEbus (for avionics)”.
In: Aerospace and Electronic Systems Magazine, IEEE 8.3 (1993),
pp. 34–39.

[50] Walter L Hürsch and Cristina Videira Lopes.
“Separation of concerns”. In: (1995).

[51] InfluxDB: Scalable datastore for metrics, events, and real-time
analytics. https://github.com/influxdata/influxdb.

[52] JEPSEN - Distributed Systems Safety Analysis. http://jepsen.io.

[53] JSON-RPC. http://json-rpc.org/.

[54] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini.
“Zab: High-performance broadcast for primary-backup systems”.
In: Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on. IEEE. 2011, pp. 245–256.

[55] Sunny King and Scott Nadal.
“Ppcoin: Peer-to-peer crypto-currency with proof-of-stake”.
In: self-published paper, August 19 (2012).

[56] Sunny King and Scott Nadal.
“Ppcoin: Peer-to-peer crypto-currency with proof-of-stake”.
In: self-published paper, August 19 (2012).

93

[57] Ramakrishna Kotla and Mike Dahlin.
“High throughput Byzantine fault tolerance”. In: Dependable
Systems and Networks, 2004 International Conference on.
IEEE. 2004, pp. 575–584.

[58] Ramakrishna Kotla et al.
“Zyzzyva: speculative byzantine fault tolerance”.
In: ACM SIGOPS Operating Systems Review. Vol. 41. 6.
ACM. 2007, pp. 45–58.

[59] Leslie Lamport. “The part-time parliament”. In: ACM Transactions
on Computer Systems (TOCS) 16.2 (1998), pp. 133–169.

[60] Leslie Lamport.
“Time, clocks, and the ordering of events in a distributed system”.
In: Communications of the ACM 21.7 (1978), pp. 558–565.

[61] Leslie Lamport, Robert Shostak, and Marshall Pease.
“The Byzantine generals problem”.
In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 4.3 (1982), pp. 382–401.

[62] Arnaud Legout, Guillaume Urvoy-Keller, and Pietro Michiardi.
“Rarest first and choke algorithms are enough”. In: Proceedings of
the 6th ACM SIGCOMM conference on Internet measurement.
ACM. 2006, pp. 203–216.

[63] Steven Levy. Crypto: How the Code Rebels Beat the
Government–Saving Privacy in the Digital Age. Penguin, 2001.

[64] Roberto Lucchi and Manuel Mazzara.
“A pi-calculus based semantics for WS-BPEL”. In: The Journal of
Logic and Algebraic Programming 70.1 (2007), pp. 96–118.

[65] Ralph C Merkle.
“A digital signature based on a conventional encryption function”.
In: Advances in Cryptology—CRYPTO’87. Springer. 1987,
pp. 369–378.

[66] Andrew Miller et al. “Nonoutsourceable Scratch-Off Puzzles to
Discourage Bitcoin Mining Coalitions”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM. 2015, pp. 680–691.

94

[67] Andrew Miller et al. The Honey Badger of BFT Protocols. Tech. rep.
Cryptology ePrint Archive 2016/199, 2016.

[68] Robin Milner, Joachim Parrow, and David Walker.
“A calculus of mobile processes, i”.
In: Information and computation 100.1 (1992), pp. 1–40.

[69] Robin Milner, Joachim Parrow, and David Walker.
“Modal logics for mobile processes”.
In: Theoretical Computer Science 114.1 (1993), pp. 149–171.

[70] Paul Miner et al. “A unified fault-tolerance protocol”. In: Springer.

[71] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

[72] Uwe Nestmann, Rachele Fuzzati, and Massimo Merro.
“Modeling consensus in a process calculus”.
In: CONCUR 2003-Concurrency Theory. Springer, 2003,
pp. 399–414.

[73] Brian M Oki and Barbara H Liskov.
“Viewstamped replication: A new primary copy method to support
highly-available distributed systems”. In: Proceedings of the seventh
annual ACM Symposium on Principles of distributed computing.
ACM. 1988, pp. 8–17.

[74] Diego Ongaro. “Consensus: Bridging theory and practice”.
PhD thesis. Stanford University, 2014.

[75] Diego Ongaro and John Ousterhout.
“In search of an understandable consensus algorithm”.
In: 2014 USENIX Annual Technical Conference (USENIX ATC 14).
2014, pp. 305–319.

[76] OpenBlockChain: Blockchain Fabric Code.
https://github.com/openblockchain/obc-peer.

[77] OpenSSL Vulnerabilities.
https://www.openssl.org/news/vulnerabilities.html.

[78] Marshall Pease, Robert Shostak, and Leslie Lamport.
“Reaching agreement in the presence of faults”.
In: Journal of the ACM (JACM) 27.2 (1980), pp. 228–234.

95

[79] Riccardo Petrocco, Johan Pouwelse, and Dick HJ Epema.
“Performance analysis of the libswift p2p streaming protocol”.
In: Peer-to-Peer Computing (P2P), 2012 IEEE 12th International
Conference on. IEEE. 2012, pp. 103–114.

[80] Andrew Phillips and Luca Cardelli. “Efficient, correct simulation of
biological processes in the stochastic pi-calculus”.
In: Computational methods in systems biology. Springer. 2007,
pp. 184–199.

[81] Rob Pike. “The Go Programming Language”.
In: Talk given at Google’s Tech Talks (2009).

[82] Andrew Poelstra et al.
Distributed Consensus from Proof of Stake is Impossible. 2014.

[83] Joseph Poon and Thaddeus Dryja.
The bitcoin lightning network: Scalable off-chain instant payments.
Tech. rep.
Technical Report (draft). https://lightning. network, 2015.

[84] Eric A Posner and E Glen Weyl.
“Quadratic voting as efficient corporate governance”.
In: University of Chicago Law Review, Forthcoming (2013).

[85] Michael O Rabin. “Randomized byzantine generals”.
In: Foundations of Computer Science, 1983., 24th Annual
Symposium on. IEEE. 1983, pp. 403–409.

[86] Ronan Ryan. “Beyond Flash Boys: Improving Transparency and
Fairness in Financial Markets”.
In: CFA Institute Conference Proceedings Quarterly. Vol. 32. 4.
CFA Institute. 2015, pp. 10–17.

[87] Fred B Schneider. “Implementing fault-tolerant services using the
state machine approach: A tutorial”.
In: ACM Computing Surveys (CSUR) 22.4 (1990), pp. 299–319.

[88] Adi Shamir. “How to share a secret”.
In: Communications of the ACM 22.11 (1979), pp. 612–613.

[89] Share Memory By Communicating.
https://blog.golang.org/share-memory-by-communicating.

96

[90] Dale Skeen and Michael Stonebraker.
“A formal model of crash recovery in a distributed system”. In:
Software Engineering, IEEE Transactions on 3 (1983), pp. 219–228.

[91] Yonatan Sompolinsky and Aviv Zohar.
“Secure high-rate transaction processing in Bitcoin”.
In: Financial Cryptography and Data Security. Springer, 2015,
pp. 507–527.

[92] Colin Stirling and David Walker.
“Local model checking in the modal mu-calculus”.
In: Theoretical Computer Science 89.1 (1991), pp. 161–177.

[93] Paul Syverson.
“A taxonomy of replay attacks [cryptographic protocols]”.
In: Computer Security Foundations Workshop VII, 1994. CSFW 7.
Proceedings. IEEE. 1994, pp. 187–191.

[94] Nick Szabo.
“Formalizing and securing relationships on public networks”.
In: First Monday 2.9 (1997).

[95] Nassim Nicholas Taleb and Constantine Sandis.
“The skin in the game heuristic for protection against tail events”.
In: Review of Behavioral Economics 1 (2014), pp. 1–21.

[96] The Raft Consensus Algorithm. http://raft.github.io.

[97] “The Trust Machine”. In: The Economist, 2015.

[98] Alan Mathison Turing. “On computable numbers, with an
application to the Entscheidungsproblem”.
In: J. of Math 58.345-363 (1936), p. 5.

[99] Robbert Van Renesse, Nicolas Schiper, and Fred B Schneider.
“Vive la différence: Paxos vs. viewstamped replication vs. zab”.
In: Dependable and Secure Computing, IEEE Transactions on 12.4
(2015), pp. 472–484.

[100] Kenton Varda. “Protocol buffers: Google’s data interchange format”.
In: Google Open Source Blog, Available at least as early as Jul
(2008).

[101] Hugo Vieira, Lúıs Caires, and Ruben Viegas.
“The spatial logic model checker user’s manual”. In: (2004).

97

[102] Marko Vukolic. “The quest for scalable blockchain fabric:
Proof-of-work vs. BFT replication”.
In: Proc. IFIP WG 11.4 Workshop on Open Research Problems in
Network Security (iNetSec 2015).

[103] John H Wensley et al. “SIFT: Design and analysis of a fault-tolerant
computer for aircraft control”.
In: Proceedings of the IEEE 66.10 (1978), pp. 1240–1255.

[104] James R Wilcox et al. “Verdi: A framework for implementing and
formally verifying distributed systems”.
In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM. 2015,
pp. 357–368.

[105] Gavin Wood.
“Ethereum: A secure decentralised generalised transaction ledger”.
In: Ethereum Project Yellow Paper (2014).

[106] Doug Woos et al. “Planning for change in a formal verification of the
raft consensus protocol”. In: Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs. ACM. 2016,
pp. 154–165.

[107] Jian Yin et al. “Separating agreement from execution for byzantine
fault tolerant services”.
In: ACM SIGOPS Operating Systems Review. Vol. 37. 5.
ACM. 2003, pp. 253–267.

[108] Paul J Zak and Stephen Knack. “Trust and growth”.
In: The economic journal 111.470 (2001), pp. 295–321.

[109] Vlad Zamfir. Introducing Casper “the Friendly Ghost”.
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-
ghost/.

98

	Introduction
	Bitcoin
	Tendermint
	Contributions

	Background
	Replicated State Machine
	Asynchrony
	Broadcast and Consensus
	Byzantine Fault Tolerance
	Cryptography, Trust, and Economics
	Blockchain
	Process Calculus
	The Need For Tendermint

	Tendermint Consensus
	Tendermint Overview
	Consensus
	Proposals
	Votes
	Locks
	Formal Specification

	Blockchain
	Why Blocks?
	Block Structure

	Safety
	Accountability
	Faults and Availability
	Conclusion

	Tendermint Subprotocols
	P2P-Networking
	Consensus Gossip
	Block Data
	Votes

	Mempool
	Syncing the Blockchain
	Conclusion

	Building Applications
	Background
	Tendermint Socket Protocol
	Separating Agreement and Execution
	Microservice Architecture
	Determinism
	Termination
	Examples
	Merkleeyes
	Basecoin
	Ethereum

	Conclusion

	Governance
	Governmint
	Validator Set Changes
	Punishing Byzantine Validators
	Software Upgrades
	Crisis Recovery
	Conclusion

	Client Considerations
	Discovery
	Broadcasting Transactions
	Mempool
	Semantics
	Reads
	Light Client Proofs
	Conclusion

	Implementation
	Binary Serialization
	Cryptography
	Merkle Hash Tree
	RPC
	P2P Networking
	Reactors
	Mempool
	Consensus
	Blockchain

	Conclusion

	Performance and Fault Tolerance
	Overview
	Throughput and Latency
	Crash Failures
	Random Network Delay
	Byzantine Failures
	Related Work
	Conclusion

	Related Work
	Beginnings
	Faulty Things
	Clocks
	FLP
	Common Coin
	Transaction Processing
	Broadcast Protocols

	Byzantine
	Byzantine Generals
	Randomized Consensus
	Partial Synchrony
	PBFT
	BFT Improvements

	Non-Byzantine
	Paxos
	Raft

	Blockchain
	Bitcoin
	Ethereum
	Proof-of-Stake
	HyperLedger
	HoneyBadgerBFT

	Conclusion

	Conclusion

