
1

EdgeChain: An Edge-IoT Framework and Prototype
Based on Blockchain and Smart Contracts

Jianli Pan, Member, IEEE Jianyu Wang, Member, IEEE Austin Hester, Member, IEEE
Ismail Alqerm, Member, IEEE Yuanni Liu, Member, IEEE Ying Zhao Member, IEEE

Abstract—The emerging Internet of Things (IoT) is facing
significant scalability and security challenges. On the one hand,
IoT devices are “weak” and need external assistance. Edge com-
puting provides a promising direction addressing the deficiency
of centralized cloud computing in scaling massive number of
devices. On the other hand, IoT devices are also relatively “vul-
nerable” facing malicious hackers due to resource constraints.
The emerging blockchain and smart contracts technologies bring
a series of new security features for IoT and edge computing. In
this paper, to address the challenges, we design and prototype an
edge-IoT framework named “EdgeChain” based on blockchain
and smart contracts. The core idea is to integrate a permissioned
blockchain and the internal currency or “coin” system to link
the edge cloud resource pool with each IoT device’ account
and resource usage, and hence behavior of the IoT devices.
EdgeChain uses a credit-based resource management system to
control how much resource IoT devices can obtain from edge
servers, based on pre-defined rules on priority, application types
and past behaviors. Smart contracts are used to enforce the rules
and policies to regulate the IoT device behavior in a non-deniable
and automated manner. All the IoT activities and transactions are
recorded into blockchain for secure data logging and auditing.
We implement an EdgeChain prototype and conduct extensive
experiments to evaluate the ideas. The results show that while
gaining the security benefits of blockchain and smart contracts,
the cost of integrating them into EdgeChain is within a reasonable
and acceptable range.

Index Terms—Edge computing, fog computing, EdgeChain,
Internet of Things, IoT, blockchain, smart contracts, scalability,
security.

I. INTRODUCTION

It is predicted that the emerging Internet of Things (IoT)
will connect more than 50 billion smart devices by the year
2025 [1]. It will inevitably change the way we live and work
with smart houses, workspaces, transport and even cities on
the horizon. However, such trends create significant scalability
and security challenges. First, the IoT devices are relatively
“weak” and most of their data are sent to remote clouds to be
processed. Examples include the majority of the smart phones
applications and smart home devices such as Google Home
and Amazon Echo. But the existing centralized cloud comput-
ing model is very difficult to scale with the projected massive
number of devices due to the large amount of generated data

First manuscript: June 1st, 2018.
J. Pan, J. Wang, A. Hester, and I. Alqerm are with the Department of

Mathematics and Computer Science in University of Missouri, St. Louis, MO
63121, USA. (Email: pan, jwgxc, arh5w6, alqermi@umsl.edu).

Y. Liu is with the Institute of Future Network Technologies, Chong
Qing University of Posts and Telecommunications, China. (Email: li-
uyn@cqupt.edu.cn).

and the relatively long distance between IoT devices and
clouds. Second, the IoT devices are relatively “vulnerable”
and could be relatively easily controlled by malicious hackers
to form “botnet” for various attacks [2], [3]. This is aggravated
by the fact that most of the cheap IoT devices are with
very limited security capabilities, and very poor or even no
technical upgrading or maintenance services, though recently
Google’s Android Things 1.0 [4] started pushing this.

Edge computing 1 [5], [6], [7], [8], [9] is an emerging
direction to provide solutions for the IoT scalability issue.
It pushes more computing, networking, storage, and intel-
ligence resources closer to the IoT devices, and provide
various benefits such as faster response, handling big data,
reducing backbone network traffic, and providing edge intel-
ligence. Typical benefited IoT applications include emergency
response, augmented reality, video surveillance, speech recog-
nition, computer vision, and self-driving.

Many works have also been devoted to IoT security. Tra-
ditional general-purpose security solutions are not suitable to
run on the IoT devices due to the capability constraints [32].
A typical compromise is to use lightweight IoT security
protocols [13], [14], [16], [17], [15], [18]. Perimeter based
security through firewall [19], [20] does not require running
additional software on IoT devices but cannot prevent internal
attacks and has been proved ineffective in securing billions of
weak devices. Compared with perimeter based trust, zero-trust
approaches [21], [22], [23] are proved to be more effective
and seem promising. Direct or indirect system-level security
approaches, which do not put intensive security-related loads
on IoT devices and do not assume the IoT devices being well-
maintained, and if enabled with a zero-trust or trustless capa-
bilities, are much needed. Blockchain [24], [25] combined with
smart contracts [26], [33] enable a trustless environment and
are recently attracting more attention due to unique features
such as data/transactions persistence, tampering resistance,
validity, traceability, and distributed fault tolerance. Limited
efforts have been made applying them into decentralized IoT
and edge computing systems, and two typical work are Xiong
et al. [27], [28] using game theory and Chatzopoulos et
al. [31] focused on computation offloading. In comparison,
our research focus is not on consensus mechanism and mining.
Instead, we use permissioned blockchain and smart contracts
as carrying vehicle, and our major focus is to provision

1Edge computing is also often referred as “fog computing”, “Mobile Edge
Computing”, or “Cloudlet” in different literature, despite slightly different
definitions and scopes. We use edge computing or edge cloud in this paper.

ar
X

iv
:1

80
6.

06
18

5v
1

 [
cs

.D
C

]
 1

6
Ju

n
20

18
This paper has been accepted by IEEE Internet of Things Journal, Special issue on "The Convergence of Blockchain and
IoT: Opportunities, Challenges, and Solutions".

2

Fig. 1: EdgeChain position in the multi-tier edge-IoT system
network topology.

resources for various IoT applications and control and regulate
IoT devices’ behavior.

In this paper, we seek a fundamentally different approach to
tackle these key challenges collectively through a blockchain
based and resource oriented edge-IoT framework named
EdgeChain. The EdgeChain’s position in the multi-tier edge-
IoT system is illustrated in the Fig. 1. As we can see that
EdgeChain locates between the edge cloud platforms and
the various IoT applications that are launched in the shared
infrastructure. It means that EdgeChain can run on different
edge cloud platforms such as HomeCloud [46] or Cloudlet [9].

The core EdgeChain idea is to integrate a permissioned
blockchain and the internal currency or “coin” system to
link the edge cloud resource pool with each IoT device’
account and resource usage, and hence behavior of the IoT
devices. EdgeChain uses a credit-based resource management
system to control how much resource IoT devices can obtain
from edge servers, based on pre-defined rules on priority,
application types and past behavior. Smart contracts are used
to enforce the rules and policies to regulate the IoT device
behavior in a non-deniable and automated manner. All the
IoT activities and transactions are recorded into blockchain
for secure data logging and auditing. As a short summary, the
major contributions of the EdgeChain framework include:

1) A new EdgeChain framework integrating permissioned
blockchain and smart contracts capabilities.

2) An internal currency or coin system linking the edge
cloud resource pool with IoT device accounts and re-
source usage behavior.

3) A credit-based resource management system to control
how much resources IoT devices can obtain from edge
servers.

4) A resource-oritented and smart contracts based policy
enforcement method to regulate the IoT device behavior.

5) A prototype implementation and experimentation to val-
idate and evaluate the EdgeChain ideas.

Our latest EdgeChain accomplishments have been included
in two provisional patents we recently filed [30], [29]. Note
that EdgeChain is still an ongoing project and some of
the work are still in progress. We will discuss the status

Fig. 2: EdgeChain vision: the problem space and solution
space.

accordingly in the following sections. The rest of this paper
is organized as follows. In Section II, we discuss several
key approaches and designs of EdgeChain. We present the
EdgeChain framework and functional modules in Section III.
Section IV is about the key processes and workflows. In
Section V, we discuss the prototype and evaluation. Section VI
is the related work, while the conclusions and future work
follow in Section VII.

II. EDGECHAIN KEY APPROACHES AND DESIGNS

In this section, we discuss some key EdgeChain design
considerations. Fig. 2 shows the overall EdgeChain vision
including the problem space and the solution space.

A. Permissioned Blockchain

Blockchain networks can be generally categorized into per-
missionless or public blockchain, and permissioned or private
blockchain [33]. Permissionless blockchain such as Bitcoin
network is a peer-to-peer decentralized network. It is usually
not controlled by any private organization and the whole
network runs on broad consensus of all the members in the
network. The trade-off is relatively lower transaction process-
ing throughput and higher latency. Permissioned Blockchain,
however, is not a pure peer-to-peer network. The stakeholders
such as the application owners of this type of blockchain will
have a more controlled and regulated environment, and higer
transaction throughput. The consensus mechanisms used for
permissionless and permissioned blockchain are also different.

The EdgeChain system uses a permissoned blockchain since
the major goal is to support miscellaneous distributed IoT ap-
plications that generally have owners and customers. The sys-
tem stakeholders need more control and higher throughput and
performance. It is not necessary to run very resource-intensive
proof-of-work algorithms for consensus and sybil attacks can-
not happen. It also removes the necessity of economic incen-
tive for mining, which is usually very resource-consuming in
the Bitcoin network. More effective but less resource-intensive
consensus protocols are available and a typical example is
Practical Byzantine Fault Tolerance (PBFT) [34] for such an
environment.

3

In EdgeChain, the mining work is only done by the edge
servers that have more resources than the IoT devices. It
is never done by the resource constrained IoT devices. The
mining is much less resource intensive compared with permis-
sionless blockchain network. In other words, the edge servers
will be in charge of monitoring the transactions, creating and
appending new blocks when new transactions happen. The
IoT devices in EdgeChain are only blockchain and smart
contracts clients. If they are EdgeChain-aware devices and
installed with blockchain and smart contracts software, they
are able to interact with the edge servers and get resources
and assistance for their tasks through procedures such as cloud
offloading [35]. If they are legacy devices and do not need
resources from the edge servers, then they do not even need
to install the blockchain and smart contracts software. The
EdgeChain is totally transparent to them, but still can create
blockchain accounts and manage these IoT devices from the
back end.

B. Credit-based Resource Management

EdgeChain uses an internal currency or coin system en-
abled by blockchain to link the edge resource pool with the
IoT device accounts and resource usage behavior. EdgeChain
consists of a novel credit-based resource management system
where each IoT device is created a blockchain account and
given an initial amount of credit coins. The credit coin balance
determines the device’s ability to obtain resources from the
edge servers. Generally speaking, the device with a larger
balance is afforded quicker and faster access. The edge server
records credits and debits and provides the necessary resources
requested by the IoT device based on a set of rules that takes
pre-defined priority, application types and past behavior into
account. As an ongoing research effort, we are designing
detailed intelligent resource provisioning mechanism at the
edge clouds for the Quality of Experience (QoE) of multiple
applications and heterogeneous devices.

In fact, we observe that this resource credit management
mechanism not necessarily has to be implemented by the
internal currency system. The edge server can maintain a
traditional credit score system and decide how to grant re-
sources to different devices. However, by utilizing the internal
currency system, EdgeChain can gain a series of intrinsic
security benefits coming with blockchain. For example, all
the coin transactions are automatically logged into the secure
and unmodifiable database on blockchain, and it is good
for future auditing purposes. Also, it enables smart contracts
that could facilitate non-deniable and automated execution of
the scheduling rules and policy enforcement in the edge-IoT
systems. All these new benefits are not possible without the
blockchain and the internal currency system.

C. Resource-oriented, Smart Contracts Based Policy Enforce-
ment and IoT Behavior Regulating

EdgeChain controls the IoT devices based on their behavior
and resource use instead of their locations which results in
better security control. This overcomes limitations in existing

Fig. 3: A simple example of a standalone EdgeChain box
deployment in smart home.

Edge-IoT solutions which are usually “perimeter” based se-
curity, i.e., deploying a firewall or a filtering system between
the internal and external network and by default trusting the
users and nodes “inside” the network. If internal IoT devices
were hacked and turned to botnet, it is hard to control them.

EdgeChain uses a resource-oriented, smart contracts based,
and indirect security scheme for IoT behavior regulating and
auditing. EdgeChain adopts an indirect system-level security
approach, which means that we do not require the IoT
devices to run resource-intensive security software. Instead,
EdgeChain monitors, controls and regulates the behavior of
IoT devices based on their resource usage and activities. Based
on the application types, priority, device’s past behavior, the
pre-programmed smart contracts enforce the resource policy
automatically. It means that if some IoT devices were compro-
mised and controlled by hackers for malicious activities such
as behaving erratically, making continuous resource requests
that are out-of-line with its profile or application intent, or
initiating Denial of Service (DoS) attacks, the smart contracts
will execute automatically based on the pre-programmed poli-
cies. It will be very soon the device’s currency account will
run out of balance, through which EdgeChain will be able
to quickly identify, control, and contain malicious nodes or
devices in the network without requiring them actually to be
involved in specific security procedures. EdgeChain can easily
take further measures such as putting the devices into the
blacklist or blocking the specific devices for further actions.
Since smart contracts are based on blockchain, all the activities
are recorded into the blockchain. Thus, it is very difficult
for any malicious nodes to cause sustained damage or run
away with no traces. As an ongoing research effort, we are
designing intelligent methods to learn the devices’ history
behavior pattern based on the data logged in the blockchain
to more accurately identify and recognize potential malicious
behavior.

D. Evolutionary and Backward Compatible Approach

We realize the fact that there are a large number of cheap
IoT devices that may have very limited security capabilities
or are being very poorly maintained and barely upgraded.
Though the Google’s Android Things 1.0 [4] has just been
released trying to work on this, it still has a long way to
go. There are some extremely incapable IoT devices such as

4

Narrowband IoT (NB-IoT) devices. It may be infeasible to
run even the most lightweight blockchain client software. We
classify these devices as legacy devices which are EdgeChain-
unaware. The other type of devices are relatively capable
enough to install with blockchain and smart contracts software
and act as a blockchain client. We classify them as non-
legacy devices. Non-legacy devices are able to interact with
EdgeChain directly and request resources and assistance from
the edge servers. Legacy nodes are unaware of the existence
of and incapable of working with edge servers.

The EdgeChain framework adopts an evolutionary and
backward compatible approach allowing legacy or extremely
incapable IoT devices to work in the new paradigm without
assuming them to install new blockchain software or to be
updated regularly. The EdgeChain system level capability
enables measuring, monitoring, and controlling resource usage
of both current and previously installed IoT devices. This goal
is achieved through a proxy that works between the legacy
IoT devices and the blockchain and smart contract modules,
through which the blockchain and smart contracts run trans-
parently to the legacy devices. The proxy sniffs the activities
of the legacy nodes and creates blockchain accounts for them
just as for non-legacy nodes. In such case, EdgeChain only
monitors the behavior and take necessary action if detecting
malicious activities. It will not involve allocating edge server
resource for the devices. Through the proxy, the legacy IoT
devices are not required to know anything about blockchain
and smart contracts but they can still be monitored, managed,
and controlled by the new Edge-IoT framework. Even if they
are compromised by hackers, their malicious behavior can be
identified and damages can be contained.

E. Standalone Deployment vs. Distributed Deployment

Another important advantage with EdgeChain is the ability
to be tailored to the need of the intended application. This
allows it to be deployed in both stand-alone modes such as
in a smart home as well as distributed modes such as a smart
campus or smart city scenario. Fig 3 shows a simple example
of a standalone EdgeChain box that is deployed in a smart
home. In larger scale use cases and applications such as smart
campus and smart cities, multiple such EdgeChain boxes could
work in a fully distributed environment, in which cases the
distributed boxes work together and share the blockchain and
smart contracts data. The edge servers are also able to offload
and handover workloads with each other in busy situations.
The edge servers can also run appropriate incentive or gaming
algorithms associated with their resource pool and blockchain
coin accounts to optimize specific goals in revenue, cost, or
service latency.

III. EDGECHAIN FRAMEWORK AND FUNCTIONAL
MODULES

In this section, we discuss the overall EdgeChain framework
and functional modules. The overall system framework is
shown in Fig. 4. We can see that the EdgeChain sits between
the IoT devices and the edge servers listening to messages
and performing corresponding tasks which include device

Edge Resource Provision

Virtual
Machine

Virtual
Machine

Virtual
Machine

App1 App2 App3

Application Interface

Blockchain Server

Smart Contracts
Execution

Activities Logging
Blockchian

Smart Contracts

Digital Currency System Policy Management

Smart Contracts Interface

IoT Proxy

Legacy
IoT Devices

Non-legacy
IoT Devices

EdgeChain Platform

Provide

Resource

Register/
Request Resource

IoT activities

Interact Interact

Execute Record

Trigger

Register/
Request Resource

Fig. 4: EdgeChain framework and functional modules.

registration and device requests processing. Along the message
path, the key modules of EdgeChain include IoT Proxy, Smart
Contracts Interface, Smart Contracts, Blockchain Server, and
Application Interface. We discuss these modules in a bit more
details.

A. IoT Proxy

As we discussed in Subsection II-D, the major function
of the IoT Proxy module is to accommodate the legacy
devices and facilitate their interactions with the blockchain
and smart contracts modules. The proxy listens and sniffs
the legacy nodes’ activities and creates blockchain accounts
for them. Registration is done for them in the same way
as non-legacy nodes so that the IoT behavior regulating and
auditing functions work for them as well. Thus, all their
activities are recorded in blockchain as non-legacy nodes.
In contrast, the non-legacy devices can interact with smart
contract directly and get can get accounts created themselves
through the smart contracts interface. Implementing this proxy
server function requires appropriate sniffing software and we
are currently investigating the most effective open-source tools
for the EdgeChain project purposes.

B. Smart Contracts Interface

When the IoT activities occur such as registration, com-
municating between IoT devices, requesting edge server re-
sources, or sending data to outside servers on the Internet, pre-
programmed and deployed smart contracts will be triggered to

5

automatically perform corresponding operations and enforce
the predefined management rules or policies. Smart Contracts
Interface builds a bridge between the IoT applications and
the smart contracts. In our implementation, we utilize the
Javascript based APIs, named Web3 protocol, to create the
smart contract instances for IoT devices. Smart contract in-
stances can call the functions and perform the rules that were
encoded in the contracts on behalf of the specific IoT devices.

C. Smart Contracts

The smart contracts, as the containers of all the rules
and policies, consist of two main modules in the EdgeChain
system. First, we build a digital currency system whose token
are virtual coins to represent the trust levels of IoT devices or
their quotas of edge resources they can get. Since every IoT
device is bound with a blockchain account, it will be assigned
with a certain amount of coins based on its history behavior
and resource type. For example, if a device keep behaving
well without any malicious actions, it will receive more coins
to pay for more service resources. Otherwise, the device may
be penalized by being charged more coins to receive the same
services or never being rewarded. Second, a module of policy
management maintains all the rules that were determined at
the time of their creation. The policies can be divided into two
types: (1) rules to analyze behavior of IoT devices and handle
harmful ones; (2) resource allocation policies to dynamical
assign resource to the requests and schedule tasks.

D. Blockchain Server

In our implementation, the smart contracts are deployed and
distributed on the blockchain. The blockchain server provides
blockchain service where the IoT devices connect to it as
clients. Two functions are performed on the blockchain server.
First, the server executes the smart contracts by collecting
the transactions among devices and generating the new blocks
to run the code embedded in the contracts. Seconds, all the
activities in our system are recorded on the blockchain by
automatically logging device information, requests and other
activities on blocks. This process is also called “mining”
in the permissonless blockchain. However, as discussed in
Subsection II-A, the EdgeChain mining process is a lot less
resource intensive due to the possible usage of more effective
consensus mechanism such as PBFT [34] and no need for
proof-of-work mechanism.

E. Application Interface

After the interaction with smart contracts and blockchain,
there are two possible outcomes: the requests are either
rejected due to limited balance in their accounts or malicious
behavior identified, or the request are accepted and granted
with permission to receive extra edge resource from the edge
servers. If the requests are granted, then the IoT devices can
interact with the edge server IoT applications directly, e.g.,
the resource-intensive work such as face recognition from
the video stream can be offloaded to the edge servers for
faster processing. In this case, Application Interface opens

the channels between smart contracts and the edge cloud
to trigger resource provision based on the execution results
from smart contracts. We achieve this function using Node.js
frameworks to listen to the events on the channels and build
communications for IoT devices and edge cloud accordingly.

Note that in terms of delay and time cost, it is true that
smart contracts and blockchain operations are not for free and
it could take a certain amount of time to finish. The good
news is that registration is usually a one-time operation for
a specific device. For resource request with the edge servers,
after the initial request is granted, the resource provisioning
and interactions happen directly between IoT devices and edge
servers which will not cause further delay. We conduct very
detailed evaluation and experimentation in Section V.

F. Edge Resource Provisioning

Once the IoT devices are granted with resources and their
accounts are with enough balance for the requested resources,
the edge cloud will provision resources in computation, mem-
ory, storage, networking, and intelligence accordingly. Since
the application may have various requirements for computer
capability, bandwidth, latency and privacy, individual virtual
machines work as the basic units to meet the specific re-
source requests. For example, for the video stream based
face recognition application example we mentioned, the edge
servers could spawn and launch additional virtual machines to
process the video stream and get the face recognized. If not
sufficient resource available from this edge server, EdgeChain
can coordinate with neighbor edge servers to get additional
resource. Additional incentive mechanisms and dynamic pric-
ing schemes using game theory or auction can be useful to
optimize certain goals in revenue or cost. The IoT devices
accounts will be charged accordingly based on the service
amount and quality they receive.

IV. EDGECHAIN KEY PROCESSES AND WORKFLOWS

With all EdgeChain framework and modules, we will dis-
cuss the critical processes and workflows in this section.

A. Blockchain Deployment

Blockchain implementation can be performed in a dis-
tributed way on the edge servers and user devices, and
get synchronized across these nodes. We begin by installing
blockchain software on the edge server, non-legacy devices,
and the IoT Proxy. Our blockchain is built on the Ethereum
platform[47] which is initialized by default to sync with a live
public network. However, our EdgeChain system is currently
developed for the experimental purpose, so we configure it for
use on a private network on campus.

Fig. 5 shows the workflow of blockchain deployment. The
blockchain begins with creating a “genesis” block, which holds
configuration information such as the hash value of blockhead,
timestamp, and difficulty of block mining. It is worth noting
that the amount of difficulty makes a significant influence on
the mining speed and then on the global system performance
since the mining process is realized by solving a Proof-of-
Work (PoW) problem with a certain difficulty. Given that only

6

Fig. 5: Blockchain implementation workflow.

the edge server is permitted to do the mining job, there is no
need for a rigorous PoW mechanism to solve the consensus
problem. Therefore, our EdgeChain system sets the difficulty
to a reasonable low level to balance between over quick mining
to avoid storage waste and efficiency of packing transactions.
To further reduce the resource consumption of the edge server,
we implement an auto-mining function only occurring when
there exist unconfirmed transactions.

To sync with one another, all devices must have the same
genesis block. The initialization process will provide each
node with same genesis configuration. Next, a primary ac-
count must be created for each node and public keys are
assigned for unique identification. The account gives each
node a blockchain address with which it can interact with
other nodes and smart contracts. To isolate our system from
other public or private blockchains, all nodes are set “no
discovery” so they cannot connect to other peers without
explicit addresses. Such isolation secures the devices from
being hooked by external attackers. Thus, each node maintains
a specific whitelist called “enode addresses” which contains
the public keys, IP addresses and network ports of the edge
server and some dependent IoT devices. Adding the enode
addresses to each node’s configuration will allow syncing to
occur. Upon completion of the above steps, each node is ready
to launch. They will begin seeking friend nodes, syncing and
shortly be prepared for use.

B. Development and Deployment of Smart Contracts

The proper development of smart contracts guarantees the
correct execution of management rules. In our EdgeChain sys-
tem, the key functional operations including device registration
and edge resource allocation are enforced by the corresponding
contracts. We deploy smart contracts following the workflow
in Fig. 6. When developing a smart contract on the blockchain,
it is important to run thorough tests because once deployed, a
contract can only be redeployed and lose any data associated
with the previous version. Such a redeployment would migrate
the contract to the new location and the users may be out-
dated with an unsupported contract. After deployment, smart
contracts are assigned with addresses and treated as normal

Fig. 6: Smart contracts implementation workflow.

accounts on blockchain. In order to interact with them, a user
must have a copy of the correct address to create an instance as
an interface utilizing remote procedure calls (RPC) protocol.
The edge server is the performer to execute the functions in
the contracts when the IoT devices are the initiators to trigger
them.

The smart contracts specify various permissions to different
devices where the edge server owns the higher authority to
access all the functions but the IoT devices are only limited
to some basic functions. Such a setting reduces the impact
even if some weak devices are hacked to perform malicious
activities. To help engage the legacy nodes into the system, a
proxy is deployed in order to fulfill their interaction requests.
Other than the direct interaction launched by the nodes, smart
contracts are also able to indirectly interface with the outside
world by triggering “events” which are watched by application
interfaces running on the edge server or other nodes on the
network. Upon noticing an event of an application, some
smart contract can be automatically triggered to execute the
predefined tasks. For example, after the edge server finishes
serving one user requests, the related service data like service
time would be recorded on blockchain by executing a specific
contract.

C. Device Registration on Blockchain

Registration is the first step to engage the IoT devices
to be managed and monitored in the EdgeChain system. As
illustrated in Fig. 7, the registration starts from determining
the type of devices. If there are legacy devices lacking the
capability to run blockchain, the proxy can create accounts for
each device and register the device specifications stored in the
registration smart contracts. If there are non-legacy devices,
they can interact with contracts directly to save their attributes
by sending transactions.

The registered information makes decisive effect on the
request admission introduced in the next section. Specifically,
the device specifications partially reference the Manufacturers
Usage Description (MUD) [48] files which list the activities
and communications allowed for IoT devices. Such spec-
ifications contain input/output data type, requests of edge
resources, MAC address, IP address, network port, commu-
nication protocol, and indication flags. Besides, each device
registers a unique account address to join blockchain. Upon

7

Fig. 7: Devices registration workflow.

TABLE I: Registered device attributes.

Device Specifications Value Unit Example
account address string 0xc968efa8019d (hash value)

network port int 42024
input/output data string video,audio,text

bandwidth request double [minValue, maxValue]
CPU request double [minValue, maxValue]

memory request double [minValue, maxValue]
storage request double [minValue, maxValue]
MAC address string 00-14-22-01-23-45

priority* int 1 / 2 / 3 / 4
coin balance* double 200.00

credit* int 100
isBlocked* bool false

isRegistered* bool false
last request id* string 0xcf30613db6a84 (hash value)

registration, the edge server will verify the above information
and take control of the modification rights of registration
data. More parameters will be appended such as priority,
coin balance, credit, and requests timestamp to benefit device
management. As a summary, Table I represents the key device
attributes we defined in the registration database which include
all the devices key information, value units, and examples.
Edge server and IoT devices have different authorities to
modify the registry. The attributes marked with “*” can only
be updated by the edge server. The other basic attributes are
filled up during the first registration process initialized by IoT
devices.

D. IoT Behavior Regulation and Activities Management

The IoT behavior regulation and activities management is
the core function of our EdgeChain system for IoT scalability
and security. In this subsection, we explain the critical designs
in the following order: detailed workflows, edge resource
allocation algorithms and behavior management scheme.

1) IoT Behavior Regulation Workflow: EdgeChain not only
regulates the activities among IoT devices but also provides the
extra edge computing service to boost the resource-intensive
applications. When the activities or the requests from IoT
devices are recieved, they are treated differently based on the
type of devices, either legacy or non-legacy devices. Legacy
devices have no request for the support of edge cloud to handle
the additional workload. Non-legacy devices could request to

obtain edge resource and services under the enforced rules of
smart contracts. The detailed workflow is shown in Fig. 7 and
discussed below.

For a legacy device, the blockchain server monitors its
data flow to other IoT devices or outside network through
a sniffer deployed on the IoT gateway such as a WiFi router.
During the work process, its activities or behaviors, such as
network port and data destination, are logged on blockchain.
Then the smart contracts start analyzing the behavior of the
device by matching the above observation with the registered
attributes. Based on the analyzing results, the blockchain
server will choose to keep monitoring the normal behavior. Or
it will trigger the smart contract to block any malicious legacy
devices and update flags in their registration files. Their future
activities will be detected and blocked automatically without
performing behavior analysis again. Finally, the execution re-
sults of the related smart contracts will be stored on blockchain
automatically.

For non-legacy devices, they may send service requests for
additional resources for resource-intensive applications such as
Virtual Reality (VR) gaming. Once received, the requests are
recorded on blockchain in the form of transactions. Next, the
resource allocation contracts are executed by the edge server to
retrieve the attributes of the devices and analyze the resource
requirements in the service requests. If the devices are found to
attempt malicious behavior, they will be penalized by reducing
their coin balance, lowering credit points and even blocking
service for all future requests. If the devices behave normally,
the edge cloud will first check the remaining available resource
before further process the requests. If the resource pool is
exhausted, the requests is rejected and logged. Otherwise,
smart contracts perform the resource allocation strategy based
on the device types, request details and payable coins. After
obtaining the decisions, the edge server starts to schedule the
service for the devices immediately. In the meantime, coins
will be charged from the devices’ account when the edge
service begins. Again, the decisions and coin exchanges are
all recorded on blockchain.

2) Resource Allocation Based on Pricing Mechanism:
In this specific instance, our optimization goal of resource
allocation is to maximize the acceptance rate of user requests.
In this case, the currency system plays as the connector among
edge server, IoT devices and blockchain by linking edge
resource with coins. Our proposed currency system is built
on a pricing mechanism to decide: (a) the ordering of the
requests may be served; (b) the specific service fee.

The price of a resource request dynamically changes ac-
cording to the following environmental parameters:

• Total amount of edge resources
• Current available edge resources
• Requested edge resource
• Application priority

Considering the QoE requirements, we categorize the prior-
ity of IoT applications into 4 levels, from highest to lowest: (1)
Urgent monitoring: patient monitoring, people crowd sensing;
(2) Latency sensitive tasks: virtual reality (VR), augmented
reality (AR); (3) Reliable data transmission: bank transactions,

8

Fig. 8: IoT activities management workflow.

TABLE II: Parameters of pricing mechanism.

Symbol Definition
N amount of requests at timeslot t
M number of resource types
R requested resource R = {ri_1, ri_2, ..., ri_M }
C current availabe resource C = {c1, c2, ..., cM }
W total resources W = {w1, w2, ..., wM }
L priority level
K amount of accepted requested at timeslot
α constant basic price value
β influence factor of priority

privacy transferring; (4) Tolerant tasks: light control, sensors
based passive monitoring.

Table II shows the symbol notations used to calculate the
price. We first define the unit price of resource j for the request
i:

Pi_j = α
ri_ j
c j ∗ βLi

Then the total price for request i is defined as, where cj ∈
[0,wj]:

Pi =

M∑
j

ri_j ∗ [α
ri_ j
c_ j ∗ βLi] = βLi

M∑
j

ri_j∗α
ri_ j
c_ j

Using the dynamic pricing, we propose a heuristic request
admission algorithm as illustrated in Algorithm 1. The pro-
posed algorithm proceeds as follows. At the beginning of
timeslot t, the number of requests is N and the number of

resource types is M . For each request ri_j ∈ R, judge if any
kind of left edge resource ri_j is less cj . If yes, the request
is rejected without consideration in this timeslot. If there still
have enough resources, calculate the total price of the requests.
After all the requests are estimated, the one with the lowest
price value is accepted and added to acceptance queue. Then
the amounts of available resources C are updated. The rest of
requests are reestimated in the next iteration. The algorithm
continuous until no request can be admitted. Assume the final
acceptance number of request is K , we can conclude the time
complexity is O[(N ∗M + 1+M) ∗K] = O(N ∗M ∗K), where
K < N . Therefore, the algorithm can be solved in polynomial
time.

3) Behavior Management Based on Credit System: Behav-
ior management aims at detecting the potentially malicious
activities or requests and taking action to avoid further damage
to the system. We propose a credit system to perform the
behavior management. Our credit system is distinguished from
other similar schemes in the IoT environment because the
credit affects resource allocation on the edge server instead of
the coorperations between IoT devices. On the other hand, the
credit is not directly related to price strategy for edge service
but make up the incentive or punishment scheme to restrict
the request activities. In this paper, we present the ongoing
design and the primary model to show how the credit system
works. We consider the following features:
• Price threshold: Assume each device only runs one kind

9

Algorithm 1 Request Admission Algorithm
Require: N requests {req1, req2, ..., reqN } at time t, request queue

Q(t), current available amount of resources C = {c1, c2, ..., cM },
requested resource R = {ri_1, ri_2, ..., ri_M }, priority of reqiLi .

Ensure: accept or deny request reqi

1: while there exists resource for at least one request do
2: for each reqi in the request queue arrived at timeslot t do
3: if ri_j > cj then
4: deny request reqi ;
5: continue next iteration;
6: else if ri_j <= cj then
7: calculate the total price Pi ;
8: end if
9: end for

10: accpet reqi with minimal price Pi ;
11: remove the accepted request from Q(t);
12: update the avaible edge resources C;
13: end while
14: EXIT;

of application and sends one kind of resource request, a
specific threshold Pthres is set for this device i. If Ptotal

exceeds Pthres , the request is regard as potential bad
behavior so the deivce credit is reduced. Otherwise, the
request is regard as good behavior and credit increases.

• Request frequency: If a device continuously send requests
in an overhigh frequency, it tends to occupy resource than
the common use. So we reduce its credit.

• Network port: A device should communicate with the
edge server using the predefined network port in the MUD
file. Otherwise, some abnormal behavior happens.

• Data traffic destination: A device usually has fixed com-
munication targets, so the strange destination indicates
the possibility the device is hacked or under control.

Each new registered devices owns same initial credits. With
the changes of the real-time credit values, we propose two
kinds of management actions: (1) If the credit of a device
has already been reduced to 0, it is blocked for any future
activities; (2) otherwise, the device will get various coin
returned based on the credit changes. The equation is defined
as follow:

Coinsreturn = Coinscharged + ∆Credit ∗ η

where ∆Credit is the change of credit value and η is the
influence factors of changes.

We can conclude that the ability to pay for edge service
is under the control of the credit system. The better manner
receives higher chance to obtain more resources.

V. PROTOTYPE AND EVALUATION

In this section, we first introduce our experimental testbed
built as the EdgeChain prototype. Then, we implement the key
functions to verify if it is feasible with acceptable performance
overhead. In the third part, two typical IoT applications in
different service priorities are deployed on the EdgeChain
system to show the compatibility between blockchain and
applications. Finally, we test the performance of the pricing-
based resource allocation system.

Fig. 9: EdgeChain testbed.

A. EdgeChain Prototype Environment Setup

The testbed includes the back-end edge cloud cluster and
the front-end IoT devices, proxy, and access point. The edge
cloud cluster is an OpenStack deployment including 4 high-
performance Dell PowerEdge R630 rack servers, 1 high-
performance Dell PowerEdge C730x rack server, and 1 high-
performance Cisco 3850 switch. The front end consists of
several Raspberry Pi 3 Model B single board computers,
a Google AIY voice kit, a Google AIY vision kit, and a
laptop. One desktop is configured as the proxy for legacy IoT
devices, and a high-performance Cisco WiFi Access Point, as
illustrated in Fig. 9

The detailed hardware and software configurations are as
follows. From the aspect of hardware, each OpenStack com-
pute node rack server is equipped with 18 independent CPU
cores and 256GB RAM. The mining environment is set up
using one core and the rest of the processor cores are reserved
for the edge computing service. The miner can boost up to
3.5GHz CPU, 8GB RAM, 1TB storage. As the IoT devices, a
Raspberry Pi has 1.2GHz CPU, 1 GB RAM and 32GB storage
with several accessory modules including cameras, sense hat,
microphone and Google bonnet. The laptop has 2.2GHz CPU,
4GB RAM and 256 GB storage. As for the desktop proxy,
3.2 GHz CPU, 16GB RAM and 1TB storage are installed to
manage the multiple blockchain accounts of IoT devices.

Regarding the software, the edge server has installed with
CentOS 7 as the operating system, Go-ethereum as the
blockchain running framework, Solidity as the smart contract
development language, Truffle as the contract deployment
tool, and Node.js as the interface of interactions between IoT
applications and blockchain. Except for the blockchain part,
the edge computing resources are virtualized using OpenStack
cloud platform which helps scale up or down the resource pool
flexibly. The edge service is provided in the form of virtual
machines to fit the variant specifications of user requests. The
Raspberry Pis have been installed with Raspbian operating
system and Go-ethereum to work in the light mode without
block mining function. The laptop is with MacOS and the
desktop installs Ubuntu 16.

In the testbed, the rack server works as the edge service
provider and the block miner solving Proof-of-Work (PoW)
puzzle. The Raspberry Pis and the laptop act as blockchain

10

Fig. 10: Storage of prerequisite software.

clients generating and sending transactions of resource re-
quests to the edge server. The desktop interacts with the
blockchain on behalf on the legacy devices as a proxy. Given
the above installations, the edge server works as a “full”
blockchain node which stores all the transactions, executes
the predefined smart contracts and mines new blocks. The IoT
devices work as “light” blockchain nodes which only store the
transactions data. Fig. 10 shows the storage requirements for
the prerequisites software modules, where Ethash is the PoW
system used to mine blocks. We put most of the computation
work occurring on the blockchain to the full node in order to
reduce the overhead on the light nodes.

B. Overhead of Blockchain and Smart Contracts Operation

We evaluate the blockchain operation based on the two
primary functions: IoT devices registration and edge server
resource allocation to illustrate the extra overhead caused
by the block mining and the interactions of smart contracts.
The source of overhead can be divided into three aspects:
computation, communication, and storage.

1) Computation Cost of Mining Process on Edge Server:
We first evaluate the overhead of device registration in which
device specifications are loaded in the transactions signed by
their generators. Then the transactions are broadcasted to all
the other devices engaged in our system. Finally, these new
transactions are packed in the blocks and verified by the miner.
We observe the average usage of computation resource on the
edge server during mining and no mining, as illustrated in
Fig. 11a. During the block mining, the edge server consumes
much higher CPU and memory resource to commit and packs
transactions into new blocks. In contrast, in the idle situation,
it only listens to coming transactions such as mining new block
caused by new transactions thus consume much less CPU and
memory resource.

2) Communication and Storage Cost for Blocks Synchro-
nization: Given that blockchain is the fully distributed, each
device is required to be synchronized with the mainstream
chain. The synchronization mechanism relies on the automatic
updates and leads to the communication and storage overhead
to the system, where the former results from the data trans-
mission and the later from the writing to the local disk. In our
system, the edge server maintains the mainstream blockchain
and other devices download the chain data from it. In order

to evaluate the synchronization delay intuitively, we compare
IoT devices to the edge server. Since the edge server as the
miner has more computing and bandwidth resource than IoT
devices, it completes the validation and transmission of the
new blocks faster. As illustrated in Fig. 11b, we find the
average time to synchronize a new block is 4.09 ms for edge
server and 35.9 ms for IoT devices. With higher delay, the
IoT devices still meet the latency requirements even for the
real-time applications that response time is less than 100ms.

The average size of a block is 128.78 KB and each block
can store up to 208 device registrations. Fig. 11c presents a
sample of 50 blocks which have various sizes ranging from
108 KB to 223 KB. Thus, the system will generate around 1.8
MB blockchain data on average for 1,000 devices’ registration.

3) Computation and Communication Cost of Smart Con-
tract Transactions: In addition to block mining and syn-
chronization, blockchain operation relies on the transactions
triggered by the smart contracts. Taking the resource request
transaction as an example, we evaluate the computation cost
and the interaction delay with smart contracts. The CPU and
memory usage are compared between the edge server and IoT
devices, as illustrated in Fig. 11d. We observe that the regular
transactions take a very low percentage of CPU resource
while the memory usage is little higher since the blockchain
client occupies 8 % even in idel time. We also evaluate the
interaction delay of smart contracts which is significant to
guarantee system efficiency. Fig. 11e shows the completion of
one transaction is less than 50 ms. Such delay should satisfy
the latency requirement of the real-time applications.

C. Overhead Comparison of Two Typical IoT Applications

To evaluate the feasibility and compatibility of the proposed
system, we compare blockchain overhead of two typical
Edge-IoT applications. We evaluate the face recognition and
the natural-language processing applications by testing the
computation and communication cost. Face recognition is
widely used in the security monitoring applications such as
city surveillance, crowd control and door guarding which is
latency-sensitive to achieve quick reaction. The typical appli-
cation of the natural-language processing or voice recognition
is the smart home assistant such as Google Home and Amazon
echo.

For the face recognition, the Raspberry Pi captures video
frames with camera module in 1080p resolution and 60Hz
frequency, uploads them to the edge server for image process-
ing and waits for the detection results in the form of location
coordinates of detected faces. With regard to the natural-
language processing, the Raspberry Pi records the human voice
with a USB microphone, transfers it to the edge server, and
then the translated text is returned.

We first evaluate the computation cost of blockchain com-
paring with the two applications. Fig. 12a shows that the
blockchain has the lowest CPU usage compared with the two
applications. In addtion, Fig. 12b shows the blockchain has
the highest memory usage but still in a low percentage when
working with other applications in parallel. Thus, the IoT
devices will not suffer from the overload problem. Second,

11

(a) Computation resource usage of the edge
server for mining.

(b) Delay to synchronize a block. (c) Block sizes.

(d) Computation resource usage for sending
transactions.

(e) Time to complete one transaction.

Fig. 11: Overhead of system operation.

(a) Comparison of CPU Usage. (b) Comparison of memory Usage.

Fig. 12: Overhead comparison with IoT applications.

TABLE III: Comparison of communication rate

Applications Data Rate
Blockchain Transactions 0.54 KB/s

Face Recognition 1.64 MB/s
Natural-language Processing 8.12 KB/s

we evaluate the difference of communication data rate among
sending blockchain transactions, video and audio data on a
Raspberry Pi, as reported in Table III. We observe that the
regular transactions of resource requests bring very low over-
head to the I/O performance and overall network bandwidth.

In summary, we observe that the blockchain can support and
collaborate with the IoT application in a distributed and secure
way. The overhead is within a reasonable and acceptable range,
and the system is feasible to satisfy the requirements to build
a multi-application EdgeChain platform for future demands.

D. Resource Allocation Performance of the Pricing Scheme

At last, we evaluate the resource allocation performance of
the proposed pricing scheme. The goal of resource allocation
is to improve the acceptance rate of use requests, which mainly
depends on the proposed pricing mechanism.

We first evaluate the influence of α and β. α has no
effect on the performance since it determines the range of
α

ri_ j
c_ j is located in [1, α]. In contrast, β adjusts the impact

of application priority where the high-priority requests are
more likely to be served. We do three random simulations
and each one contains 2,000 iteration of random numbers of
user requests with different resource requirements. The system
parameters are set in Table IV and the request parameters are
set in Table V. Fig. 13a shows the best range of Beta is in
[1.3, 1.4] and the too large beta will lead to decrement of
acceptance rate since the requests admission simply depends
on the priority.

12

(a) Influence of β value. (b) Accpentance comparison with constant β. (c) Accpentance comparison with resource
change.

Fig. 13: Resource allocatioin performance.

TABLE IV: System parameters

α 100
CPU capacity 300

Memory capacity 250
Storage capacity 250

Bandwidth capacity 250

TABLE V: Requests parameters

Priority CPU Memory Storage Bandwidth Lifetime
Level 1 [1,5] [1,5] [1,5] [1,5] [1,5]
Level 2 [10,15] [5,10] [5,10] [1,10] [1,5]
Level 3 [1,5] [1,5] [1,5] [1,5] [1,5]
Level 4 [1,3] [1,3] [1,3] [1,3] [1,3]

Second, we compare the acceptance rates among the pricing
mechanism, First-Come-First-Serve (FCFS) and multi-level
scheduling based on priority, where β = 1.35. Fig. 13b shows
that our proposed algorithm performs best. Then, we evaluate
the performance with the change of total edge resources,
as illustrated in Fig. 13c. Starting from the configuration in
Table IV, the amount of resources gradually decreases to lower
percentages. Our pricing algorithm performs better.

VI. RELATED WORK

Due to the interdisciplinary essence of EdgeChain, related
work comes from different aspects such as IoT, edge comput-
ing, blockchain, and smart contracts. A great amount of efforts
have been focused on these individual topics, thus, limited
by the space, we will not enumerate all the separate efforts.
Instead, we will focus on those directly or closely related work.

The most closely related work are Xiong et al. [27], [28]
that uses game theory and a pricing mechanism to optimize
the profits of the miners at the edge servers. It focuses on the
blockchain running costs. Chatzopoulos et al. [31] focuses on
computation offloading between devices themselves by using
some incentive and reputation schemes. Sharma et al. [36]
proposes a conceptual software-defined edge nodes scheme
using multi-layer blockchain. Different from these work, our
research focus is not on blockchain itself. Instead, we use
blockchain as carrying vehicle to provision resources for
various IoT applications and control and regulate IoT devices’

behavior. More reviewing articles [33], [45], [37], [38], [40]
present the overall future prospects in combining blockchain
and IoT.

Blockchain and smart contracts are being used to secure
many different areas and we will not enumerate them here,
but a few example efforts include securing smart home [39],
securing 5G fog network handover [41], securing virtual ma-
chine orchestration [42], securing access control in IoT [43],
and secure data provenance management [44].

Another thrust of related work is about edge computing
research. A large amount of existing work are either on spe-
cific applications such as video analytics, vehicular network,
cognitive assistance, and emergency response, or very heavily
focused on optimizing specific targets such as revenue, cost,
delay, or energy consumption associated with operations such
as mobile edge offloading, service migration, virtual machines
chaining, placement, and orchestration. We will not list all of
these works but two good start reading points are [5], [6].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the design and prototype of the
EdgeChain framework which is a novel edge-IoT framework
based on blockchain and smart contracts. EdgeChain integrates
a permissioned blockchain to link the edge cloud resources
with each IoT device’s account, resource usage and hence
behavior of the IoT device. EdgeChain uses a credit-based
resource management system to control the IoT deivces’
resource that can be obtained from the edge server. Smart
contracts are used to regulate IoT devices’ behavior and
enforce policies. We implemented an EdgeChain prototype and
conducted extensive experiments which showed that the cost
for EdgeChain to integrate blockchain and smart contracts are
within reasonable range while gaining various intrinsic benefits
from blockchain and smart contracts. EdgeChain is still an
ongoing project and we are currently working on various
issues within the framework such as IoT Proxy, intelligent
resource provisioning for multiple heterogeneous applications,
and better IoT device behavior regulations.

13

ACKNOWLEDGMENT

The work is supported in part by National Security Agency
(NSA) under grants No.: H98230-17-1-0393 and H98230-17-
1-0352, and by National Aeronautics and Space Administra-
tion (NASA) EPSCoR Missouri RID research grant under No.:
NNX15AK38A.

REFERENCES

[1] Ericsson Inc, "CEO to Shareholders: 50 Billion Connections
2020," Stockholm, Sweden, 2010. [Online]. Available:
http://www.ericsson.com/thecompany/press/releases/2010/04/1403231

[2] N. Woolf, "DDoS attack that disrupted internet was largest of
its kind in history, experts say," The Guardian, available at:
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-
dyn-mirai-botnet

[3] Motherboard, "How 1.5 Million Connected Cameras Were Hi-
jacked to Make an Unprecedented Botnet," 2016. [Online]. Avail-
able at: https://motherboard.vice.com/en_us/article/8q8dab/15-million-
connected-cameras-ddos-botnet-brian-krebs

[4] Ars Technica, "Android Things 1.0 launches, Google promises 3
years of updates for every device," May, 2018. [Online]. Available
at: https://arstechnica.com/gadgets/2018/05/android-things-hits-version-1-
0-with-centralized-google-update-system/?amp=1

[5] Shi, Weisong, et al. "Edge computing: Vision and challenges," IEEE
Internet of Things Journal 3.5 (2016): 637-646.

[6] Jianli Pan and James McElhannon, "Future Edge Cloud and Edge
Computing for Internet of Things Applications," IEEE Internet of Things
Journal, Special Issue on Fog Computing in IoT, Volume: 5, Issue: 1,
pp:439-449, ISSN: 2327-4662, DOI: 10.1109/JIOT.2017.2767608, Febru-
ary 2018.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its
role in the Internet of Things," in Proc. 1st Ed. ACM MCC Workshop
Mobile Cloud Computing, 2012, pp. 13-16.

[8] Mobile-Edge Computing Initiative, Eur. Telecommun. Stand.
Inst., Sophia Antipolis, France, 2016. [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-
computing

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, "The case for
VM-based cloudlets in mobile computing," IEEE Pervasive Comput., vol.
8, no. 4, pp. 14-23, Oct./Dec. 2009.

[10] Arsalan Mosenia and Niraj K. Jha, "A comprehensive study of security
of internet-of-things," IEEE Transactions on Emerging Topics in Com-
puting 5.4 (2017): 586-602.

[11] Jing, Qi, et al., "Security of the Internet of Things: perspectives and
challenges," Wireless Networks 20.8 (2014): 2481-2501.

[12] Puthal, Deepak, et al., "Threats to networking cloud and edge datacenters
in the internet of things," IEEE Cloud Computing 3.3 (2016): 64-71.

[13] Jun-Ya Lee, Wei-Cheng Lin, and Yu-Hung Huang, "A lightweight
authentication protocol for internet of things," In IEEE International
Symposium on Next-Generation Electronics (ISNE), 1-2, 2014.

[14] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained Application
Protocol (CoAP)", RFC 7252, DOI 10.17487/RFC7252, June 2014,
<https://www.rfc-editor.org/info/rfc7252>.

[15] Kivinen, T., "Minimal Internet Key Exchange Version 2 (IKEv2) Initiator
Implementation", RFC 7815, DOI 10.17487/RFC7815, March 2016,
<https://www.rfc-editor.org/info/rfc7815>.

[16] Shahid Raza, Thiemo Voigt, and Vilhelm Jutvik, "Lightweight IKEv2:
a key management solution for both the compressed IPsec and the IEEE
802.15.4 security," In Proceedings of the IETF workshop on smart object
security, Vol. 23., 2012.

[17] Xuanxia Yao, Zhi Chen, and Ye Tian, "A lightweight attribute-based en-
cryption scheme for the Internet of Things," Future Generation Computer
Systems 49 (2015), 104-112.

[18] Internet Engineering Task Force (IETF), "IETF Light-Weight
Implementation Guidance (LWIG) Working Group", Web
https://datatracker.ietf.org/wg/lwig/charter/

[19] Oppliger, Rolf. "Internet security: firewalls and beyond." Communica-
tions of the ACM 40.5 (1997): 92-102.

[20] Chen, Shigang, and Qingguo Song. "Perimeter-based defense against
high bandwidth DDoS attacks." IEEE Transactions on Parallel and
Distributed Systems 16.6 (2005): 526-537.

[21] Osborn, Barclay, et al. "BeyondCorp: Design to Deployment at Google."
(2016): 28-35.

[22] Rory Ward and Betsy Beyer, "Beyondcorp: A new approach to enterprise
security," login 39.6 (2014): 6-11.

[23] Palo Alto Networks, "Getting Started with a Zero Trust Approach to
Network Security," Whitepaper, 2016.

[24] Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system,"
White paper, 2008.

[25] Narayanan, Arvind, et al., "Bitcoin and cryptocurrency technologies,"
Princeton Press, 2016.

[26] N. Szabo, "Smart contracts: building blocks for digital markets," EX-
TROPY: The Journal of Transhumanist Thought,(16) (1996).

[27] Xiong, Zehui, et al., "When Mobile Blockchain Meets Edge Computing:
Challenges and Applications," arXiv preprint arXiv:1711.05938 (2018).

[28] Xiong, Zehui, et al. "Edge computing resource management and pricing
for mobile blockchain." arXiv preprint arXiv:1710.01567 (2017).

[29] Jianli Pan, Jianyu Wang, and Austin Hester, “Edge-IoT Framework
Based on Blockchain and Smart Contracts and Associated Method of
Use,” U.S. Provisional Patent Serial No. 62/681,936, filed June 07, 2018.
Pending.

[30] Jianyu Wang, Austin Hester, and Jianli Pan, “Method and System for
Secure Resource Management of IoT Utilizing Blockchain and Smart
Contracts,” U.S. Provisional Patent Serial No 62/657,387, filed: April 13,
2018. Pending.

[31] Chatzopoulos, Dimitris, et al., "FlopCoin: A Cryptocurrency for Com-
putation Offloading," IEEE Transactions on Mobile Computing (2017).

[32] O. Garcia-Morchon, S. Kumar, and M. Sethi , "State-of-the-Art and
Challenges for the Internet of Things Security," IRTF draft, draft-irtf-
t2trg-iot-seccons-15, May, 2018.

[33] Christidis, Konstantinos, and Michael Devetsikiotis, "Blockchains and
smart contracts for the internet of things," IEEE Access 4 (2016): 2292-
2303.

[34] Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault toler-
ance." OSDI. Vol. 99. 1999.

[35] M. Satyanarayanan, "A brief history of cloud offload: A personal journey
from odyssey through cyber foraging to cloudlets," GetMobile: Mobile
Comp. and Comm., vol. 18, no. 4, pp. 19-23, Jan. 2015.

[36] Sharma, Pradip Kumar, Mu-Yen Chen, and Jong Hyuk Park. "A Software
Defined Fog Node based Distributed Blockchain Cloud Architecture for
IoT," IEEE Access (2017).

[37] Yeow, Kimchai, et al. "Decentralized Consensus for Edge-Centric Inter-
net of Things: A Review, Taxonomy, and Research Issues." IEEE Access
(2017).

[38] Dorri, Ali, Salil S. Kanhere, and Raja Jurdak. "Blockchain in internet
of things: challenges and solutions." arXiv preprint arXiv:1608.05187
(2016).

[39] Dorri, Ali, et al. "Blockchain for IoT security and privacy: The case
study of a smart home." Pervasive Computing and Communications
Workshops (PerCom Workshops), 2017 IEEE International Conference
on. IEEE, 2017.

[40] Kshetri, Nir. "Can Blockchain Strengthen the Internet of Things?." IT
Professional 19.4 (2017): 68-72.

[41] Sharma, Vishal, et al. "Secure and Energy-Efficient Handover in Fog
Networks Using Blockchain-Based DMM." IEEE Communications Mag-
azine 56.5 (2018): 22-31.

[42] Bozic, Nikola, Guy Pujolle, and Stefano Secci. "Securing virtual ma-
chine orchestration with blockchains." Cyber Security in Networking
Conference (CSNet), 2017 1st. IEEE, 2017.

[43] Zhang, Yuanyu, et al. "Smart Contract-Based Access Control for the
Internet of Things." arXiv preprint arXiv:1802.04410 (2018).

[44] Ramachandran, Aravind, and Dr Kantarcioglu. "Using Blockchain and
smart contracts for secure data provenance management." arXiv preprint
arXiv:1709.10000 (2017).

[45] Subramanian, Hemang. "Decentralized blockchain-based electronic mar-
ketplaces." Communications of the ACM 61.1 (2017): 78-84.

[46] J. Pan, L. Ma, R. Ravindran, and P. TalebiFard, "Homecloud: An
edge cloud framework and testbed for new application delivery," in
Telecommunications (ICT), 2016 23rd International Conference on. IEEE,
2016, pp.1-6.

[47] G. Wood, "Ethereum: A secure decentralised generalised transaction
ledger," Ethereum Project Yellow Paper 151 (2014): 1-32.

[48] L. Eliot, D. Ralph, and R. Dan ,"Manufacturer Usage Description Spec-
ification," IETF OPSAWG MUD 22, 2018, https://www.ietf.org/id/draft-
ietf-opsawg-mud-22.txt.

14

Jianli Pan is currently an Assistant Professor in the
Department of Mathematics and Computer Science
at the University of Missouri, St. Louis. He obtained
his Ph.D. degree from the Department of Computer
Science and Engineering of Washington Univer-
sity in St. Louis. He also holds a M.S. degree in
Computer Engineering from Washington University
in Saint Louis and a M.S. degree in Information
Engineering from Beijing University of Posts and
Telecommunications (BUPT), China. He is currently
an associate editor for both IEEE Communication

Magazine and IEEE Access. His current research interests include edge
clouds, Internet of Things (IoT), Cybersecurity, Network Function Virtual-
ization (NFV), and smart energy.

Jianyu Wang is currently a Ph.D. student with the
Department of Mathematics and Computer Science
at the University of Missouri, St. Louis. He received
an M.S. in Electrical and Computer Engineering
from the Rutgers University, New Brunswick. His
current research interests include edge cloud and
mobile cloud computing.

Austin Hester is currently an undergraduate student
with the Department of Mathematics and Computer
Science at the University of Missouri, St. Louis. His
current research interests include Internet of Things
and Blockchain.

Yuanni Liu is an associate professor at the Insti-
tute of Future Network Technologies, Chong Qing
University of Posts and Telecommunications. She
received her Ph.D. from the Department of network
technology Institute, Beijing University of Posts and
Telecommunications, China, in 2011. Her research
interests include mobile crowd sensing, IoT security,
and data virtualization.

	I Introduction
	II EdgeChain Key Approaches and Designs
	II-A Permissioned Blockchain
	II-B Credit-based Resource Management
	II-C Resource-oriented, Smart Contracts Based Policy Enforcement and IoT Behavior Regulating
	II-D Evolutionary and Backward Compatible Approach
	II-E Standalone Deployment vs. Distributed Deployment

	III EdgeChain Framework and Functional Modules
	III-A IoT Proxy
	III-B Smart Contracts Interface
	III-C Smart Contracts
	III-D Blockchain Server
	III-E Application Interface
	III-F Edge Resource Provisioning

	IV EdgeChain Key Processes and Workflows
	IV-A Blockchain Deployment
	IV-B Development and Deployment of Smart Contracts
	IV-C Device Registration on Blockchain
	IV-D IoT Behavior Regulation and Activities Management
	IV-D1 IoT Behavior Regulation Workflow
	IV-D2 Resource Allocation Based on Pricing Mechanism
	IV-D3 Behavior Management Based on Credit System

	V Prototype and Evaluation
	V-A EdgeChain Prototype Environment Setup
	V-B Overhead of Blockchain and Smart Contracts Operation
	V-B1 Computation Cost of Mining Process on Edge Server
	V-B2 Communication and Storage Cost for Blocks Synchronization
	V-B3 Computation and Communication Cost of Smart Contract Transactions

	V-C Overhead Comparison of Two Typical IoT Applications
	V-D Resource Allocation Performance of the Pricing Scheme

	VI Related Work
	VII Conclusions and Future Work
	References
	Biographies
	Jianli Pan
	Jianyu Wang
	Austin Hester
	Yuanni Liu

