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Abstract. Recently, two attacks were presented against Proof-of-Stake
(PoS) Ethereum: one where short-range reorganizations of the under-
lying consensus chain are used to increase individual validators’ profits
and delay consensus decisions, and one where adversarial network delay
is leveraged to stall consensus decisions indefinitely. We provide refined
variants of these attacks, considerably relaxing the requirements on ad-
versarial stake and network timing, and thus rendering the attacks more
severe. Combining techniques from both refined attacks, we obtain a
third attack which allows an adversary with vanishingly small fraction
of stake and no control over network message propagation (assuming in-
stead probabilistic message propagation) to cause even long-range con-
sensus chain reorganizations. Honest-but-rational or ideologically moti-
vated validators could use this attack to increase their profits or stall the
protocol, threatening incentive alignment and security of PoS Ethereum.
The attack can also lead to destabilization of consensus from congestion
in vote processing.

1 Introduction

The Proof-of-Stake (PoS) Ethereum consensus protocol [1,2,4] is constructed by
applying the finality gadget Casper FFG [6] on top of the fork choice rule LMD
GHOST, a flavor of the Greedy Heaviest-Observed Sub-Tree (GHOST) [20] rule
which considers only each participant’s most recent vote (Latest Message Driven,
LMD). Participants with stake that allows them to vote as part of the protocol
are called validators. A slightly simplified and analytically more tractable variant
of PoS Ethereum is given by the Gasper protocol [7].

Recent works [19,18,16] have presented two attacks on Gasper and PoS
Ethereum. The first attack [19] uses short-range reorganizations (reorgs) of the
blockchain stipulating consensus to delay finality of consensus decisions. Such
short-range reorgs also allow validators to increase their earnings from partici-
pating in the protocol (e.g., from Maximal Extractable Value, MEV [10]). As a
result, honest-but-rational validators will deviate from the protocol, threatening
the assumptions underlying the security arguments for it. In the second attack
[18,16], the adversary exploits adversarial network delay and strategic voting by
a vanishing fraction of adversarial validators to stall the protocol indefinitely.
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Our Contributions In this paper we present enhanced variants of the above two
attacks [19,18]. First, we reduce the number of validators necessary to launch a
short-range reorg. An adversary who could perform a reorg of k blocks (k-reorg)
using the old strategy [19] is now able to perform a (k + 1)-reorg using our new
strategy. Second, we considerably relax the network assumption under which the
adversary can stall PoS Ethereum using techniques similar to [18,16]: we show
that the adversary does not need to exert control over message propagation
delays, but that merely stationary probabilistic network delay, as is commonly
assumed to model networks under normal operation, together with a still vanish-
ingly small (albeit slightly larger than before) fraction of adversarial validators
suffices for the adversary to be able to effectively stall the protocol. We then
combine techniques from both refined attacks to devise a long-range reorg at-
tack which requires only an extremely small number of adversarial validators
and no adversarial (but only probabilistic) network delay.

This third attack is particularly severe for PoS Ethereum for three reasons:
1. Honest-but-rational validators might adopt the strategy as they can use it to
increase their payouts from MEV and transaction fees. The resulting protocol
deviations destabilize consensus on both the fork choice and the finality gadget
level because the blockchain does not grow steadily anymore. 2. Reorgs lead
to uncertainty and delay in block confirmation, impacting user experience and
quality of service, and undermining users’ trust in the protocol. 3. Reorgs can
reduce the throughput of the consensus layer to the point where not enough
votes can be processed timely, reducing resilience against adversarial validators
and jeopardizing proper functioning of PoS Ethereum.

Related Work In both selfish mining [11] and our attacks the adversary withholds
blocks to displace honest blocks from the chain. Unlike selfish mining however,
our attacks do not lead to an increased block production reward. Undercutting
attacks [12] showcase how consensus instability can arise from reorgs incentivized
by large variance in block rewards. In fact, this concern will be aggravated by
diminishing block rewards in Bitcoin in the future [9]. Time-bandit attacks [10]
point out that MEV earned in past blocks can incentivize and subsidize reorgs
and other attacks in the future, e.g., for renting hash power or bribing validators.

Outline PoS Ethereum and its network model are reviewed in Section 2. Sec-
tions 3 and 4 each first introduce a recent attack and then describe our refined
variant thereof. Combining techniques from our refined attacks, we devise a
long-range reorg attack in Section 5. We discuss in Section 6 the impact of the
presented long-range reorg attack on various aspects of PoS Ethereum.

2 Proof-of-Stake Ethereum: The Gasper Protocol

We provide a concise summary of the PoS Ethereum/Gasper protocol and the
network environment it is designed for. The exposition is slightly idealized and
streamlined for ease of comprehension. For all details, refer to the paper [7] of
Gasper and the PoS Ethereum beacon chain protocol specifications [2,4,1].
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2.1 Model

We assume a static pool of N protocol participants (called validators or nodes),
each with unit stake. This corresponds to consensus in a permissioned setting.
Network communication among validators is synchronous, i.e., network delay is
under adversarial control, up to a known delay upper bound ∆. Clocks across
nodes are synchronized. This amounts to a synchronous network [13]. There is
an external shared source of randomness which can be used by the protocol
to sample a group (of predetermined size) of validators in a uniform manner
without replacement. Validators follow the protocol as prescribed, except for a
fraction β which are under adversarial control and can deviate from the protocol
in arbitrary and coordinated fashion (Byzantine faults).

In its basic version, the state machine replication (SMR) formulation of con-
sensus asks for a protocol that can be run among the N protocol participants
to obtain a linear ordering of transactions input by the environment to partic-
ipants, into a shared ledger (i.e., to implement an ordering service) with the
following security properties:

– Liveness: If some honest validator becomes aware of a transaction, then not
too long thereafter that transaction will have entered the ledger as output
by any honest validator (i.e., ‘good things do happen’, ‘transactions enter
the ledger’).

– Safety: The ledgers output by different honest validators at different points
in time are consistent. In other words, it does not happen that a transaction,
which has once entered the ledger in some honest validator’s view at some
time, disappears later (i.e., ‘bad things do not happen’, ‘if a transaction
enters the ledger, then it will not leave it’).

Given an SMR protocol, we seek to understand for which adversarial fractions
β the ledger output by that protocol is both safe and live (and hence secure).

2.2 Protocol

Being a composite with the LMD GHOST fork choice rule as the basis and
Casper FFG as a finality gadget on top, PoS Ethereum consensus proceeds
roughly in two stages and on two time scales.

First, on the smaller time scale where LMD GHOST operates, time proceeds
in synchronized slots of duration 2∆. For each slot, one block proposer and a
committee of W validators is drawn uniformly at random from the N validators.
The following LMD GHOST rule is used to determine a canonical block (and
its prefix of blocks as a canonical chain) in a node’s view in slot t: “Starting at
the highest block b0 ‘justified’ by Casper FFG (see below), sum for each child
block b the number of unique (i.e., one per slot and slot’s committee member,
breaking ties adversarially) valid (i.e., only from earlier than the current slot,
and no voting on future blocks) votes for that block and its descendants; count
for every validator only its most recently cast vote (LMD). Pick the child block b∗

with highest weight (GHOST) (breaking ties adversarially). Recurse (b0 ← b∗),



4 C. Schwarz-Schilling, J. Neu, B. Monnot, A. Asgaonkar, E. N. Tas, D. Tse

until reaching a leaf block. Output that leaf block.” At the beginning of each
slot, the slot’s proposer determines a block using LMD GHOST and extends it
with a new proposal. Half way into each slot (i.e., ∆ time after the proposal
and after the beginning of the slot), the slot’s committee members determine
a block using LMD GHOST in their view and vote for it (votes are also called
attestations). (At the same time they also cast a Casper FFG vote, as described
later.) An exact confirmation rule of LMD GHOST/Gasper is not specified.

Second, on the larger time scale where Casper FFG operates, time proceeds
in epochs comprised of 32 slots. On a high level, Casper FFG is a two-phase tradi-
tional propose-and-vote-style Byzantine fault tolerant (BFT) consensus protocol
(cast as a blockchain protocol into the chained framework, like Chained HotStuff
[22]), except there is no leader in charge of assembling proposals. Instead, the
proposals are supposed to be generated consistently across honest nodes by the
LMD GHOST fork choice layer. Casper FFG proceeds as follows: Blocks first
become justified if a super-majority (2N/3) votes ‘for them’, and subsequently
become finalized, roughly when a super-majority votes ‘from them’ for a subse-
quent block. The genesis block is justified and finalized by definition. The blocks
among which validators cast their votes during an epoch are the so-called epoch
boundary blocks, which are those blocks that are leaf blocks after truncating the
block tree to only those blocks that came from the previous epoch. Validators
vote for the highest epoch boundary block that is consistent with the highest
justified block they have observed, which in turn extends the latest finalized
block they have observed. Due to the super-majority required to advance a pro-
posal, as well as the two-phase confirmation (called finalization), Casper FFG
remains safe even under temporary network partition. The confirmation rule on
the Casper FFG level is to output the latest finalized block and its prefix.

3 A Refined Reorg Attack

3.1 Motivation

Previous work [19] described a malicious, low-cost reorg attack. In particular,
the attack leverages strategic timing of broadcasting blocks and attestations,
as opposed to honestly releasing them when supposed to. In a nutshell, in the
strategy of [19], an adversarial block proposer in slot n keeps its proposal hidden.
The honest block proposer in slot n+1 will then propose a competing block. The
adversary can now use its committee members’ votes from both slots n and n+1
to vote for the withheld block of slot n in an attempt to outnumber honest votes
on the proposal of slot n+ 1. As a result, blocks proposed by honest validators
may end up orphaned, i.e., they are displaced out of the chain chosen by LMD
GHOST. In [19] this reorg strategy is part of a bigger scheme to delay consensus.

We show how the attack of [19] can be modified such that the number of
adversary validators required is significantly reduced, from a set of size linear
in the total number of validators to a constant-size set – indeed for a one-block
reorg as little as one adversarial validator is sufficient. Note that similar to [19]
the adversarial strategy does not involve any slashable behavior and is therefore
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Slot n Slot n+ 1 Slot n+ 2 Slot n+ 3

Votes

n

n+ 1

n+ 2

n+ 3

Fig. 1. Example of a one-block reorg attack using the refined strategy: In slot n+1 the
adversary privately creates block n+ 1 on block n and attests to it. Honest validators
of slot n+1 do not see any block and thus attest to block n as head of the chain. In the
next slot, an honest proposer publishes block n + 2 building on block n, which is the
current head in their view. Simultaneously, the adversary finally publishes block n+ 1

and the attestation voting for block n+ 1. All honest validators of slot n+ 2 attest to
block n+ 1 as head of the chain, because it has more weight than block n+ 2. In the
next slot block n+ 3 is proposed building on block n+ 1. Block n+ 2 is reorged out.

relatively cheap. In Section 5, we further improve upon this refined reorg attack,
combining strategies from both this section and Section 4.

3.2 Refined Reorg Strategy

Consider Figure 1, which shows the adversary being the proposer of slot n+1 as
well as controlling a committee member in slot n+1. We describe the adversarial
strategy to perform a 1-reorg:

1. At the beginning of slot n+1 the adversary privately creates block n+1 on
block n and privately attests to it. Honest validators do not see block n+ 1
and so they attest to the previous head of the chain, block n.

2. At the beginning of the next slot, an honest validator proposes block n+ 2.
Assuming zero network latency for now, the adversary finally publishes the
private block and attestation from slot n + 1 at the same time as block
n + 2 is released. Honest validators now see both block n + 1 (and its one
attestation) as well as block n+2. These blocks are conflicting because they
share the same parent, block n. Another result of sharing the same parent is
that block n+ 1 inherits all the weight of block n, in particular the honest
attestations from slot n+ 1 voting for block n also count in favor of it.

3. Hence, in slot n+ 2 all honest validators vote for block n+ 1 as head of the
chain, because it has more weight due to the single adversarial attestation
from slot n+ 1.
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4. Finally, at the beginning of slot n + 3, an honest validator proposes block
n + 3 pointing to block n + 1 as its parent. This effectively orphans block
n+ 2 and brings the reorg attack to its conclusion.

The above strategy shows that a block proposer which controls a single com-
mittee member of the same slot can successfully perform a 1-reorg. Naturally,
the logic of this strategy can be extended to reorg attacks of arbitrary length
k. Let the number of honest validators in any given committee be Whonest ≈
(1− β)W ≤W . Then, for a successful reorg attack of length k > 1, the propos-
ing adversary needs to control Whonest(k−1)+1 validators, since it offsets honest
committee members’ votes in the first (k − 1) slots and uses the above refined
attack strategy in the last slot.

The refined reorg attacked described here improves on the strategy proposed
in [19] by removing the need for the adversary to compete with the committee
of slot n+k+1. While the improvement for long-range reorg attacks may not be
as significant, short reorg attacks are considerably more feasible using the above
refined strategy. In particular, 1-reorg attacks are effectively always possible for
large enough parties. With currently 230,000 active validators3 and 32 slots per
epoch, an adversary controlling 200 validators (which amounts to 0.09% of total
stake) has a 99.8% chance of being selected block proposer at least once per any
given day, and once selected as block proposer in a particular slot controls at
least one committee member validator in that slot with probability 99.8%. So
with more than 99.6% probability, an adversary with 0.09% of total stake is in
a position to execute a 1-reorg for any given day.

We will now relax the assumption of zero network latency. PoS Ethereum’s
fork choice rule only considers attestations that are at least one slot old [2] (so
votes from slot n+ 2 do not count in the fork choice for slot n+ 2). Further, a
committee member is supposed to attest if “(a) the validator has received a valid
block from the expected block proposer for the assigned slot or (b) one-third
of the slot has transpired [...] – whichever comes first”4 [4]. After block n + 2
is broadcasted to the network, honest validators immediately attest to it upon
reception (unless by that time they see another chain as leading in fork choice).
Thus, the adversary must ensure that a majority of validators of slot n + 2 see
block n + 1 and the adversary’s attestation voting for block n + 1 (from slot
n+1) before they see block n+2, but after block n+2 was proposed (to ensure
it extends block n). This proves to be a non-trivial but practically feasible issue.

Suppose the adversary controls a number of nodes at different ‘locations’
in the topology of the peer-to-peer gossip network [3] (these nodes might still
be physically collocated). This is possible without greater difficulty because the
gossip network has no defenses against such Sybil attacks. Then, some adversarial
node will likely receive the new proposal block n + 2 relatively early on in its
dissemination process. The adversary can then release the private block and
attestation in a coordinated fashion from all the different locations in the peer-
to-peer topology where the adversary controls nodes. Due to the superior number

3 https://beaconcha.in/validators. Accessed: 2021-10-09
4 Regarding attestation timing, PoS Ethereum practice slightly deviates from Gasper
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of sources of the adversarial block and attestation it is likely that these arrive
earlier than the proposal block n+ 2 at enough (a majority of) honest nodes to
ultimately orphan block n+ 2.

4 A Refined Liveness Attack

4.1 Motivation

Earlier works [8,14,15,16,18] have described balancing-type attacks against vari-
ants of the GHOST fork choice rule used in PoS Ethereum as modelled in the
Gasper protocol [7]. In particular, the attack described in [18,16] uses adver-
sarial network delay to show that PoS Ethereum is not secure in traditional
(partially) synchronous networks. While adversarial network delay (up to some
delay bound) is a widely employed assumption in the consensus literature, there
is disagreement whether it is appropriate for Internet-scale open-participation
consensus. As a result, past attacks are often seen as impractical and have not
been mitigated: “Note that this attack does depend on networking assumptions
that are highly contrived in practice (the attacker having fine-grained control
over latencies of individual validators), [...]” [5]

We show how the attack of [16,18] can be modified and implemented [17]
so that an adversary controlling 15% of stake can stall PoS Ethereum without

requiring adversarial network delay. (For ever larger numbers of validators, ever
smaller fractions of adversarial stake suffice.) To this end, we show through ex-
periments that aggregate properties of many individually random message prop-
agation processes (e.g., ‘within time T this transmission is received by fraction
x of nodes’) in real-world Internet-scale peer-to-peer gossip networks [3,21] are
sufficiently predictable to give the adversary the required control over how many
validators see which adversarial messages when. None of the adversarial actions
are slashable protocol violations.

4.2 High-Level Idea

Recall that the balancing attack [16,18] consists of two steps: First, adversarial
block proposers initiate two competing chains – call them Left and Right. Then,
a handful of adversarial votes per slot, released under carefully chosen circum-
stances, suffice to steer honest validators’ votes so as to keep the system in a tie
between the two chains and consequently stall consensus.

Assume, w.l.o.g., that when viewing Left and Right with equal number of
votes, the protocol’s tie-break favors Left over Right. If the adversary manages
to deliver a withheld adversarial vote for Right from an earlier slot to roughly
one half of honest validators for the current slot i, before validators submit their
votes for slot i, while the other half does not receive said vote before casting
their votes, then roughly half of honest validators (those who have received the
sway vote ‘in time’) see Right as leading and will vote for it in slot i, while the
other half (those who see the sway vote ‘late’ and hence at the time of voting see
a tie which they break in favor of Left) will vote for Left in slot i (see Figure 2).
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Time

Adversary sends sway vote for Right from slot ≤ i− 1

A receives sway vote

Honest validators scheduled to vote for slot i

A votes Right (due to sway vote)

B votes Left (due to tie-break)

B receives sway vote

TdelayTA

TB

Fig. 2. Assuming a tie between two chains Left and Right, with tie-break favoring
Left. The adversary releases a sway vote for Right from a slot < i at time Tdelay before
the point in time at which honest validators vote in slot i according to the protocol.
The parameter Tdelay is chosen such that roughly half of honest validators (such as A)
receive the sway vote before they submit their vote (and hence vote Right, as Right
now has more votes in their view), and the other half of honest validators (such as
B) receive the sway vote after they submit their vote for (and hence vote Left, as the
tie-break still favors Left in their view).

Idealizing the above as voting according to a coin flip for each validator,
roughly Whonest/2 of Whonest honest validators per slot would vote Left and
Right, respectively, with a gap of O(

√
Whonest) (cf. variance of a binomially

distributed random variable). So, O(1/
√
Whonest) adversarial fraction of stake

would suffice to rebalance the vote to a tie and keep the system in limbo. In
Section 4.4 we provide evidence from real-world propagation delay measurements
in a replica of Ethereum 2’s gossip network [3] to support the hypothesis that the
adversary can indeed reliably determine the time Tdelay it takes for approximately
half of nodes to receive a message broadcast by the adversary.

4.3 Detailed Description

First we describe the attack for a given Tdelay, then we describe how to obtain
Tdelay. Our simulation5 using the gossip network propagation model obtained in
Section 4.4 provides further details.

First, the adversary waits for an opportune epoch to launch the attack. An
epoch is opportune if the block proposers in slot 0 and 1 are adversarial (this can
be strengthened). Due to the random committee selection in PoS Ethereum, this
happens with probability β2 for any given epoch, so that the adversary needs
to wait on average 1/β2 epochs until it can launch the attack. In the following,
assume epoch 0 is opportune. The adversarial proposers of slots 0 and 1 propose
conflicting new chains ‘Left’ and ‘Right’, respectively. Note that this is not a

5 Source code: https://github.com/tse-group/gasper-gossip-attack
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Fig. 3. Fraction of participants in the peer-to-peer gossip network who have received a
message broadcast by node 0 at time 0 by the given time (50 sample messages in gray,
mean over all samples in blue). Median (dashed red) at ≈ 100ms.

slashable protocol violation. Both withhold their proposals so that none of slot
0 or 1 honest validators vote for either block. The adversary releases the blocks
after slot 1. We assume w.l.o.g. that the tie between Left and Right (recall that
no vote has been cast for either so far) is broken in favor of Left.

Time Tdelay before honest validators in slot 2 vote, the adversary releases a
vote for Right from an adversarial committee member of slot 1 (so called sway

vote, see Figure 2). If Tdelay is tuned well to the network propagation behavior
at large, then roughly one half of honest committee members of slot 2 see the
sway vote before they cast their vote, and thus view Right as leading (due to
the sway vote) and will vote for it; and the other half see the sway vote only
after they cast their vote, and thus view Left as leading (due to the tie-break)
at the time of voting and will vote for it. Once the adversary has observed the
outcome of the vote, which now should be a split up to an O(

√
Whonest) gap, the

adversary uses its slot 2 committee members (which stipulates the adversarial
fraction O(1/

√
Whonest) required for this attack) as well as slot 0 and 1 committee

members to rebalance the vote to a tie. As the tie is restored, the adversary can
use the same strategy in the following slot, and so forth.

Note that the adversary can observe the outcome of a vote and learns how
many honest committee members saw Left and Right leading, respectively. The
adversary can use this information to improve its estimate of Tdelay. We show in
Section 4.4 that the optimal Tdelay can be reliably localized using grid search.

4.4 Experimental Evaluation

To understand whether the network propagation delay distribution is sufficiently
well-behaved for an adversary to reproducibly broadcast messages so that they
arrive at roughly half of nodes by a fixed deadline, we replicated the gossip net-
work of Ethereum 2 [3] and measured the network propagation delay of test ‘ping’
packets from a designated sender to all nodes. The implementation in the Rust
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Fig. 4. Using the propagation delay measurements to model network propagation, we
simulated our attack for fixed β = 0.15, varying Tdelay, and five different positions of
the adversary in the network, and plot the resulting average duration of the liveness
interruption (cut off at 800 slots horizon). Observe that the peak for node 0 fits well
to the median observed in Figure 3. The curves are smooth and allow for easy and
reliable localization of the optimal Tdelay.

programming language used libp2p’s Gossipsub protocol and implementation,
as is used in Ethereum 2 [3].

The gossip network comprised 750 nodes, each on an AWS EC2 m6g.medium

instance (with 50 instances each in all 15 AWS regions that supported m6g.medium

as of 21-April-2021). Each node initiated a connection with ten randomly chosen
peers. The five nodes with lowest instance ID were designated as senders and
continuously broadcasted beacon messages with inter-transmission times uni-
formly distributed between zero and five seconds over a period of 20 minutes,
logging the time when each message was broadcast. All nodes logged the time
when a message was first received.

The network propagation delay was determined for each message and each
receiving node. The respective CDFs, i.e., what fraction of nodes have received
a given message by a certain delay, is plotted as an example for a sample of
messages from the first designated sender (node 0) in Figure 3 (together with
the average CDF of all messages originating at node 0). (CDFs for the other four
designated senders are omitted for brevity here. They show similar behavior, just
slightly shifted in time.) It is apparent from the CDFs that depending on the
location of the node (nodes 0, 1, 2, 3, 4 happened to be located in us-east-2,
ap-northeast-1, us-east-1, ap-northeast-1, ap-northeast-2, respectively)
both geographically as well as within the peer-to-peer network topology, the
median of the average CDF varies, but considering messages originating at a
fixed sender, the fraction of validators reached by the median of the average
CDF is fairly concentrated around 1/2. This suggests that the adversary can
indeed determine Tdelay so that with little dispersion honest validators get split
in two halves.
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We simulated the attack for β = 0.15,m = 128, using the network prop-
agation delay samples as a model for random network delay.6 Assigning the
simulated adversary to one of the five designated senders for all of the attack,
whenever the adversary broadcasts a sway vote, the propagation delays to the
honest committee members of the given slot are sampled (without replacement)
from the delays of one randomly drawn message of that designated sender.

To determine the optimal Tdelay, we performed grid search (with 5ms step
size) and for each Tdelay simulated ten attacks in opportune epochs and recorded
(see Figure 4) how long the adversary was able to stall liveness (terminating at a
horizon of 800 slots corresponding to 160 minutes). It is apparent that for the ad-
versary in the position of each of the five designated senders of the measurement
experiment, different Tdelay are optimal. The optimal Tdelay correspond well with
the median of the average CDF (cf. Figure 3). As the curves are smooth and
have a single distinct peak of width ≈ 5ms, the adversary can locate the optimal
Tdelay well. In particular, even with Tdelay approximating the optimal value only
up to 10ms, the adversary can stall liveness for dozens of slots. Recall that none
of the adversarial actions are slashable protocol violations, so the adversary can
refine Tdelay iteratively and launch this attack over and over.

5 Reorg Attack Using Probabilistic Network Delay

5.1 Motivation

In Section 3 we describe how an adversary might execute a 1-reorg with only
a single adversarial committee member’s vote. In Section 4 we show how an
adversary can stall consensus and thus delay finality without adversarial control
over network delay. By combining ideas from both attacks, we now describe an
attack in which the adversary can execute a long-range reorg with vanishingly
small stake and without control over network delay.

On a high level, the adversary avoids competing directly with honest valida-
tors of (k − 1) committees, as done in the reorg attack described in Section 3.
Instead, the adversary uses the technique of Section 4 to keep honest committee
members split roughly in half by ensuring they have different views on what the
current head of the chain is. This way, honest nodes work against each other
and maintain a tie which the adversary can tip to their liking at any point using
only a few votes.

5.2 Refined Strategy Using Probabilistic Network Delay

Consider Figure 5, in which the adversary is the proposer of slot n + 1. We
describe the strategy where the adversary executes a 2-reorg and analyze how
many validators the adversary needs to control, depending on our assumption
on the adversary’s control over the network:

6 Source code: https://github.com/tse-group/gasper-gossip-attack



12 C. Schwarz-Schilling, J. Neu, B. Monnot, A. Asgaonkar, E. N. Tas, D. Tse

Slot n Slot n+ 1 Slot n+ 2 Slot n+ 3 Slot n+ 4

n

n+ 1

n+ 2 n+ 3

n+ 4

Fig. 5. Example of a 2-reorg combining refined reorgs and balancing strategies: In slot
n+1 the adversary privately creates block n+1 on block n and withholds adversarial
votes on it. Honest validators of slot n+ 1 attest to block n. In slot n+ 2, an honest
proposer builds block n+ 2 on block n. The adversary releases block n+ 1 and one of
the withheld votes in such a way that roughly half of honest committee members vote
for blocks n+1 and n+2, respectively. If the adversary has tight control over network
delays, they can effect that block n+ 2 has one more vote than block n+ 1. Without
adversarial control of delays, a vanishing fraction of adversarial votes still suffices to
rebalance accordingly. In slot n+3, the honest proposer views block n+2 leading and
proposes block n+ 3 off it. The adversary releases two votes voting for block n+ 1 in
such a way that a majority of honest committee members vote for block n+1, breaking
the tie and completing the 2-reorg which orphaned blocks n+2 and n+3 in slot n+4.

1. First, in slot n+ 1 the adversary privately builds block n+ 1 on top of the
current head of the chain, block n. Further, the adversary privately votes for
block n+ 1 using an attestation from slot n+ 1.

2. In the next slot, the proposer of block n+ 2 builds on block n because they
have not seen block n+ 1. Before honest validators in slot n+ 2 attest, the
adversary releases block n+ 1, along with the withheld attestation, in such
a way that roughly half of honest committee members of slot n + 2 attest
before they see the sway vote (and thus vote for block n + 2 as the current
head), and the other half sees block n+ 1 as leading due to the attestation
from slot n+ 1 and thus votes for block n+ 1 as the current head.
If the adversary has control over the network delay, as assumed in [18,16],
then it can target the release of the withheld block and vote such that block
n+2 accumulates exactly one more attestation than block n+1. If network
delay is instead probabilistic, as in Section 4, then the adversary needs to
spend O(

√
Whonest) adversarial votes to rebalance the gap in votes.

In the case of a k-reorg, this step is repeated for the first (k − 1) slots.
3. Since slot n + 3 is the last slot of the reorg attack, we use the insight of

Section 3 that the adversary does not have to wait for honest votes to take
place and rebalance them, but instead can sway validators towards the ad-
versarial chain as soon as the honest proposal for this slot was created. So, in
slot n+3, the current proposer views block n+2 as leading and thus builds
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block n + 3 on it. Finally, the adversary releases two withheld attestations
such that a majority of honest committee members of slot n+3 views them
before attesting. Thus, a majority of validators votes for block n+1 as head
of the chain. Remember that the fork choice rule only considers attestations
at least one slot old.

4. Lastly, in slot n+4 the proposer views block n+1 as leading and thus builds
block n + 4 on block n + 1. This completes the 2-reorg and orphans blocks
n+ 2 and n+ 3.

For 1-reorg the adversary needs to control a single validator in the same slot
they propose their block. For reorg lengths k > 1, the number of adversarial
validators required depends on the level of control over network delays. If de-
lays are under adversarial control, then (2k − 1) adversarial validators suffice
for a k-reorg, an amount linear in the reorg length only, but independent of the
size of the validator set. If instead network delay is probabilistic rather than
under adversarial control, a vanishingly small fraction O(1/

√
Whonest) of adver-

sarial validators suffices to perform the necessary rebalancing to maintain the
tie throughout the first (k− 1) slots of the k-reorg, leading to an overall require-
ment of O(k

√
Whonest) adversarial votes. Thus, large stakers can easily execute

long-range reorg attacks. To illustrate the severe reduction of attacking condi-
tions, consider the following: Under adversarial network delay, an adversary can
perform a 10-reorg by merely controlling 19 validators.

6 Discussion

6.1 Ex Ante Vs Ex Post Reorgs

Typically reorgs refer to an attack in which the adversary observes a block that
they subsequently attempt to fork out. We call this an ex post reorg attack. The
reorg attacks we describe are different in nature. Here, the adversary attempts
to fork out a future block that is unknown to the adversary at the start of the
attack. We call this an ex ante reorg attack.

In an ex post reorg attack, the adversary typically targets a block with ab-
normally large rewards that the adversary seeks to capture for themselves. In the
context of Bitcoin it could be a block that contains transactions paying extraordi-
nary amounts of fees, also referred to as ‘whale transactions’ [12]. In the context
of Ethereum it could be blocks containing large MEV opportunities. Upon ob-
serving a lucrative block, the adversary attempts to capture it retrospectively.
In PoS Ethereum this proves to be exceptionally difficult for non-majority actors
due to the fact that the block the adversary wishes to orphan quickly accrues
attestations from committee members in parallel. Each attestation adds weight
to the block in question, which in turn is considered by the fork-choice rule LMD
GHOST to determine the head of the chain. In short, no technique is known for
non-majority adversaries to perform ex post reorg attacks reliably.

In contrast, ex ante reorg attacks are currently very much possible in PoS
Ethereum, as this paper shows. The adversary overcomes the ‘power of many
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parallel attestations’ by exploiting LMD GHOST as described in Sections 3
and 5. Intuitively, this is enabled by tricking honest validators into contrary
views of the chain such that a handful of adversary validators are sufficient
to tip the chain to their favor and thus successfully perform reorgs of sizable
length. As a consequence of the different nature of the attack, the adversary’s
motivations to attack are different. In an ex ante reorg the adversary cannot
observe valuable blocks and orphan them ex post, but must find other strategies
to extract more value from it than it could from making an honest proposal, one
of which is discussed in Section 6.2.

6.2 Reaping Higher Fees and MEV Via The Attack

Maximal Extractable Value (MEV, formerly Miner Extractable Value [10]) rep-
resents a third source of profits for block producers, along with the proposer and
attester rewards as well as transaction fees. MEV in PoS Ethereum captures
the block proposer’s action space to extract value by strategically including and
ordering transactions in a given block. Common MEV opportunities include ar-
bitraging a trade, frontrunning it to earn greater profits, or tailing liquidation
events to buy the collateralized assets backing the defaulting position.

MEV opportunities grow with an increasing amount of pending transactions
since more possible transaction order combinations exist. At the same time, the
adversary is able to choose from a larger set of pending transactions those earn-
ing them the highest fees. More time between blocks then implies weakly more
extractable MEV and transaction fees, which in turn implies more profits for the
block proposer. The reorg attacks described in this paper can be interpreted as
buying the adversary more time to construct their block.

With k-reorgs, it is possible for the malicious proposer to extend their lis-
tening period to up to 12k seconds (refined reorg strategy from Section 3), the
12 seconds elapsed between the previous block produced and their own slot,
as well as 12(k − 1) more seconds until the next honest block is included in
the canonical chain. (The 2∆ duration introduced in Section 2.2 is set to 12
seconds in the PoS Ethereum implementation.) With k-reorgs in less idealized
scenarios, as described in Section 3, the adversary only gains an additional 12
seconds of listening time (24 seconds in total). This is due to the fact that in the
refined strategy using probabilistic network delay the adversary always releases
the private block early (irrespective of reorg length k) to split honest committees
roughly in half.

Further, the adversary may listen to honest blocks they wish to orpahn, and
capture their MEV should they find better opportunities than the adversary
themselves. Interestingly, the adversary may also simply release their block late,
without attempting a reorg, to increase their listening time and ultimately re-
wards.
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6.3 Reorgs Cause Attestation Overflow

While reorg attacks weakly benefit those who launch them, consensus degrada-
tion may be obtained as an unintended side-effect of the reorg.

Validators in a slot committee are distributed among a number of subcom-
mittees. With a target subcommittee size of 128 and currently 230,000 active
validators, ≈ 57 subcommittees are formed per slot. In the current implementa-
tion of PoS Ethereum, all identical votes from the same subcommittee may be
aggregated into one ‘summary’ vote, lightening the block size. A block may in-
clude up to 128 such aggregates. Ideally, with all validators voting correctly and
on time, the next block need only feature 57 aggregates, one per subcommittee.
In practice, we observe such a number of large aggregates (summarizing many
votes) in the block, with most validators voting identically, along with some ag-
gregates summarizing other votes from validators who may have suffered from
latency issues and voted identically, albeit wrongly. Suboptimal packing of the
aggregates or adversarial voting behavior may also contribute to filling up the
available slots for aggregates in the block. In the case of a reorg, deconfirmed
aggregates return into the mempool and need to be included in future blocks.
Even for short-range reorgs this can lead to congestion in the sense that many
more aggregates wait to be included than there is space available in blocks.

Votes state their view of the current target of the FFG mechanism. A target
vote is valid only if it is included in a block no later than 32 slots after the
attesting slot. By reorging blocks, an attacker strains the capacity of the chain to
include these valid votes. In the worst case, finalization is fully delayed whenever
more than 1/3− β of valid honest votes do not manage to be included.

6.4 Delaying Finality

Our attacks also enable a priori malign actors, perhaps ideologically motivated,
to delay and in some cases outright stall consensus decisions. The refined attack
of Section 4.2 gives the adversary a tool to do just that, even if the adversary
cannot control message propagation delays (which instead are assumed to be
probabilistic). Furthermore, in the regime of many validators, a vanishing frac-
tion of adversarial stake suffices to mount the attack.

The attack of Section 5 enables long-range reorgs of the chain constitut-
ing consensus. The consequences are two-fold. Readily, transaction confirmation
in the LMD GHOST part of the protocol gets delayed. Transactions might en-
ter/leave the LMD GHOST chain multiple times before eventually settling. This
causes uncertainty and delay for users who consider a transaction confirmed once
it has stabilized in the LMD GHOST chain. Furthermore, the adversary can use
reorgs, as proposed in [19], to destabilize epoch boundary blocks. No epoch
boundary block might then get the necessary number of FFG votes to become
justified, which delays finality by at least an epoch and thus creates delay for
users who rely on the finalized ledger.
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